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Abstract

In exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative
understanding of the relationship between expression and growth rate will advance our ability to forward engineer
bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling
model based on optimal allocation of ribosomes for protein translation. This model quantitatively predicts a linear
relationship between microbial growth rate and heterologous protein expression with no free parameters. With the aim of
validating this model, we have rigorously quantified the fitness cost of gene expression by using a library of synthetic
constitutive promoters to drive expression of two separate proteins (eGFP and amiE) in E. coli in different strains and growth
media. In all cases, we demonstrate that the fitness cost is consistent with the previous findings. We expand upon the
previous theory by introducing a simple promoter activity model to quantitatively predict how basal promoter strength
relates to growth rate and protein expression. We then estimate the amount of protein expression needed to support high
flux through a heterologous metabolic pathway and predict the sizable fitness cost associated with enzyme production.
This work has broad implications across applied biological sciences because it allows for prediction of the interplay between
promoter strength, protein expression, and the resulting cost to microbial growth rates.
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Quantitative understanding of the fitness cost of gene expression

is important for fields as diverse as synthetic biology, metabolic

engineering, evolutionary biology, and applied microbial physiol-

ogy. In this work, the fitness cost for a given strain is defined as the

reduction in growth rate upon a specific gene expression relative to

no gene expression. It has been understood for at least a

generation that heterologous protein expression exerts a fitness

cost on the host organism [1,2] with approximately a linear

relationship between gene expression and growth rate [3–6]. The

mathematical models proposed in some of these previous studies

sufficiently corroborated cellular component mass balances and

fitted empirical relationships to experimental data, though the

form of these early models yielded little predictive value. Ideally, a

model with few or zero free parameters that allows quantitative

prediction of fitness cost a priori would enhance a model’s utility

for forward engineering of microorganisms.

Recently, Scott et al. revisited existing empirical relationships

relating specific growth rates to RNA/protein ratios [7]. From

these results, a growth theory model was proposed stating that

growth rates are limited by mRNA translation of a proteome

fraction apportioned to match the nutrient influx, along with a

fraction of ribosome-affiliated proteins needed for protein synthe-

sis. According to this model, increased expression of unnecessary

heterologous protein will decrease the proteome fraction allocated

for synthesis of ribosome associated proteins and hence the growth

rate. This model predicts that for expression of every 1% of

heterologous protein per dry cell weight, the relative growth rate is

reduced by ,3% through a single non-dimensional equation

containing no free parameters. Validation of this model would

have profound implications on our ability to forward engineer

biological systems, albeit with some known limitations [8–10]. As

one example, metabolic engineers often need to express high

amounts of heterologous enzymes to support flux through a given

pathway; this overexpression is often described as a ‘‘metabolic

load’’ or a ‘‘metabolic burden’’ [11–13]. Precise quantification of

this metabolic load would significantly reduce experimental search

space in flux optimization.
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However, the prediction of the fitness cost of gene expression

has not been rigorously assessed beyond a handful of systems.

Scott et al. [7] used IPTG to induce a lac promoter driving b-

galactosidase expression in E. coli in three different growth

conditions and confirmed the fitness cost of gene expression to be

consistent with their ribosome allocation model. However, IPTG

induction is known to result in bimodal gene expression in a wide

range of conditions, potentially clouding results by introducing cell

heterogeneity [14]. Assessing the fitness costs of unimodal gene

expression driven by different constitutive promoter strengths

provides an alternative way to rigorously test of the ribosome

allocation model. Testing on constitutive promoters will also serve

another purpose: with the advent of synthetic promoters in a range

of model organisms, flux optimization in metabolic engineering

often occurs by transcriptional engineering [15,16]. Activities of

synthetic promoters are often reported in relative terms [17], and

for constitutive promoters overall steady state protein concentra-

tions are known to scale inversely with cellular growth rates [18].

Incorporating ribosome allocation model with known relationships

between promoter activity and growth rates would enable

quantitative prediction of the interrelationship between promoter

strength, gene expression, and growth rates.

With the aim of validating these proposed relationships, we

generated a library of synthetic promoters, which were used to

drive expression of two separate proteins under different media

conditions and strains. We find that the ribosome allocation model

sufficiently explains the fitness cost of gene expression. Further-

more, we find that a model based on basal promoter strength can

be used to predict gene expression and fitness costs across different

growth media in E. coli. Combined, these results suggest a

surprising simplicity to the interrelationships between promoter

strength, gene expression, and exponential growth rate in bacteria.

Materials and Methods

Reagents
All chemicals were purchased from Sigma-Aldrich (St. Louis

MO, USA), except where noted. All primers were purchased from

IDT (Coralville IA, USA). Sequences of all genetic constructs used

in this study were verified by Genewiz (South Plainfield, New

Jersey) and are listed in Note S1. Representative constructs have

been made available on the AddGene plasmid repository (www.

addgene.org).

Preparation of plasmids
The starting plasmid pJK_proB_eGFP was created by modify-

ing the promoter and antibiotic resistance gene of pET-29b(+)

(Novagen). The proB promoter sequence [19] was ordered as a

gBlock (IDT) and cloned into pET-29b(+) between the BglI and

XbaI restriction sites using standard techniques. On pET-29b(+)

the lacI, lacO, and the T7 promoter were removed between these

restriction sites. The antibiotic resistance gene on pET-29b(+) was

swapped to TEM-1 BLA (AmpR) from pET-22b(+) (Novagen)

using Gibson assembly [20]. eGFP (BBa_E0040) from the

BioBrick collection (partsregistry.org) was cloned in-frame between

the NdeI and XhoI restriction sites using Gibson assembly. The

full-length construct includes the eGFP sequence with a C-

terminal LEHHHHHH sequence (27.98 kDa expected MW). The

ribosome binding site (sequence AGGAG), pMB1 ori, and the T7

terminator were not modified during the creation of the base

plasmid (full sequence listed in Note S1).

Five promoter libraries were created in the 235 (NNTACG,

TTNNCG, TTTANN) and 210 (NNATAT, TANNAT) regions

of the proB promoter. Mutagenic primers were designed using

QuikChange Primer Design software (Agilent) and libraries

created by Kunkel mutagenesis [21]. Libraries were individually

transformed into E. coli TUNER [F– ompT hsdSB (rB– mB–) gal

dcm lacY1] (Novagen). From each plate, thirty-six colonies were

chosen spanning the range of colony fluorescence, grown, flash

frozen, and stored at 280uC. 22 representative sequences were

selected for further testing (Table S1).

To prepare the amidase constructs, a codon optimized gene

amiE encoding an aliphatic amidase from Pseudomonas aerugi-
nosa [22] was custom ordered from Genscript with flanking NdeI/

XhoI restriction sites, and cloned in-frame to the appropriate pJK-

series or pET29 (Novagen) plasmid using standard methods. The

full-length protein has a predicted MW of 39.0 kDa. Plasmids

were transformed into E. coli TUNER and E. coli MG1655rph+
[F2 l2] (E. coli genetic stock center, Yale University, New Haven,

CT). Strains were stored as above. Tested sequences are listed in

Table S2.

Growth Conditions and Determination of Growth Rates
E. coli strains were grown in one of three media conditions with

carbenicillin: M9 salts plus 4 g/L glucose (M9), M9 salts plus

0.2%(w:v) casamino acids plus 4 g/L glucose (M9-CA), or LB

[23]. Cells were taken from 280uC freezer stocks and incubated at

37uC and 900 rpm overnight in a Heildoph Titramax 1000 plate

shaker (Heildoph Instruments). The next morning, 37uC pre-

warmed Hungate tubes (125 mm height, 14 mm inner diameter;

Chemglass Life Sciences) containing 4.0 mL of appropriate media

were inoculated with cells from overnight culture at a starting

OD600 of 0.02. The tubes were incubated at 37uC and shaken at

250 rpm in New Brunswick I-26 shaker with a 30u tilt angle for the

test tube holder. OD600 measurements using a Genesys 20

spectrophotometer (Thermo Scientific) were taken until the

culture OD600 approached 0.6, and were taken at least two

independent times.

Flow cytometry
Cells were sampled at exponential growth (0.15#OD600#0.3)

and diluted 50-fold into phosphate buffered saline. Cells were

immediately processed on an Accuri C6 Flow Cytometer (BD),

and eGFP fluorescence was recorded on the FL-1 channel using a

51067.5 nm filter.

Determination of conversion factor between OD600 and
dry cell weight

Cells were inoculated in 50 mL of one of the three media

conditions in a 250 mL flask and incubated overnight at 37uC and

250 rpm in a New Brunswick I-26 shaker. The next morning,

500 mL of pre-warmed fresh media was inoculated to a starting

OD600 of 0.02 and incubated at 37uC and 250 rpm. When

cultures reached an OD600 of 0.4 and, separately, 0.7, 200 mL of

the culture was transferred to a pre-chilled 500 mL container and

placed in an ice bath for 10 minutes. Cells were pelleted at 4uC
and 8,000 rpm and resuspended in nanopure water three times.

The final centrifugation step was done in a pre-weighed

polypropylene Falcon tube (Fisher), which was then fitted with

qualitative cellulose filter paper (Whatman) and placed in a 50uC
isotemp oven (Fisher Scientific) for 48 hr. Controls were done to

correct for Falcon tube mass lost during the drying step. For each

media condition this experiment was performed at least two

independent times. The conversion factors are listed in Table S3
and are consistent with other experimental determinations of

optical density conversions to dry cell weight [24]. There was little

difference in the conversion factors between the two strains tested,
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the three different media conditions, and between strains

expressing high or low amounts of heterologous protein.

eGFP quantification
200 mL of culture was sampled at exponential growth (0.15#

OD600#0.3), and the fluorescence (RFUGFP) immediately mea-

sured using a Synergy H1 Hybrid Microplate Reader (Biotek)

(excitation wavelength 481 nm, emission wavelength 507 nm, gain

50, and read height 7 mm) in 96-well black microtiter plates. By

comparing cell fluorescence to a standard curve, sample eGFP

concentration (Wu) was determined according to the following

equation:

WU ½
mgGFP

mgDCW

�~ RFUGFP

200mL �OD600
jApmolGFP

RFUGFP

j

27:98 � 10{3mg

pmol
j 1OD600

m
mgDCW

mL
cm
j1:4cmj(1z

m

1:54h{1
)

ð1Þ

Where A is the conversion between pmol GFP and the standard

curve, m is the conversion between dry cell weight and OD600

determined for different growth media in this study, 1.4 cm is the

pathlength through the Hungate tubes, and the right-hand term

corrects for GFP maturation time [25]. For each strain, eGFP was

quantified at least two independent times.

To prepare the eGFP standard, the plasmid pJK_proB_eGFP

was transformed into E. coli TUNER. The next day, a single

colony was picked and inoculated into 400 mL LB with 400 mL

carbenicillin. The flask was incubated at 37uC and shaken at

250 rpm overnight. The next morning, the cells were pelleted at

4000 rpm for 15 minutes, resuspended in 20 mL resuspension

buffer (50 mM Tris-HCl pH 8.0, 50 mM NaCl, and 15 mM

imidazole), and pelleted again at 4000 rpm for 10 minutes.

Resuspension buffer was added to cells at a ratio of 3 mL

buffer:1 g wet cell weight, along with 12 mL DNAse, 12 mL

lysozyme, and 10 mL PMSF. The cell suspension was sonicated,

incubated at 30uC for 15 minutes, and then centrifuged at 15000 g

for 20 minutes at 4uC. The supernatant was applied to a Ni-NTA

agarose affinity column (Qiagen), and eGFP was eluted with

2.5 mL of buffer containing 50 mM Tris-HCl (pH 8.0) and

400 mM imidazole. eGFP was desalted using gravity flow PD-10

desalting columns (GE Healthcare) into 3.5 mL phosphate

buffered saline, pH 7.5. The protein purity was at least 95% as

determined by SDS-PAGE. The concentration of the eGFP

standard was determined by absorption intensity of eGFP at

448 nm by the NaOH denaturation method [26] using the

published extinction coefficient of 44,100 M21cm21.

Amidase quantification
1000 mL of culture was sampled at exponential growth (0.15#

OD600#0.3), pelleted immediately at 10,0006g for 5 min, and

resuspended in PBS. OD600 was recorded using a cuvette with a

1 cm pathlength, and cells lysed by sonication using a 120 W,

20 kHz FB120 sonicator (Fisher Scientific) with a 1/80 sonicator

horn using the settings: 39 s total on time, cycled for 3 s on, 15 s

off, 37% amplitude. Controls were done to ensure that $95% of

total activity was recovered during this initial lysis step. The

supernatant was clarified by centrifugation at 15,0006g for 5 min,

and amiE activity quantified by determination of free ammonia by

a phenol nitroprusside microplate method [27]. Briefly, superna-

tant from each lysate was diluted into PBS and incubated at room

temperature with 50 mM filter-sterilized acetamide at a total

volume of 1 mL. Every 3–5 minutes, 100 mL of sample was drawn

and reaction stopped by pipetting into a microwell plate with

50 mL ice-cold phenol nitroprusside. At the end of the last time

point, 50 mL of alkaline hypochlorite solution was added to each

well. The plate was incubated for 40 min at 35uC in a Synergy H1

Hybrid Microplate Reader (Biotek). A625 was continuously

monitored during the incubation, and endpoint absorbance

measurements were taken once stabilized. By comparing sample

velocities to velocities of known amounts of amiE standard, the

soluble amidase concentration (Wu) for each sample was deter-

mined according to the following equation:

WU ½
mgAmidase

mgDCW

�~
DA625

min

YmL � ZOD600
j

AnmolGFP
DA625

min

j 39:0mg

nmol
j 1OD600

m
mgDCW

mL
cm

ð2Þ

Where Y is the amount of lysate in the 1 mL reaction volume, Z

is the sample OD600 at the time of lysis, A is the conversion

between nmol amidase and the reaction velocity as determined

from the standard curve, and m is the conversion between dry cell

weight and OD600 determined for different strains. Representative

sample data of the assay endpoint data is shown in Figure S3.

Tested sequences are listed in Table S2. For each strain, amiE

was quantified at least three independent times.

The amidase standard was prepared by transforming pET29-

amiE into E. coli BL21* (DE3) and producing protein by auto-

induction [28]. Protein was purified using the same method as

eGFP except that a Talon metal affinity column (Clontech) was

used and the protein was desalted into PBS, quantified by A280

using the predicted theoretical extinction coefficient of

e280 = 56,980 M21cm21, diluted to 60 mM in PBS, and stored at

4uC until use. Controls were done to ensure that protein activity

stored at 4uC remained constant for the duration of the

experiment.

Western blots of amiE were performed on soluble, insoluble,

and total cell extracts of E. coli strains harboring plasmids

pJK_proB_amiE and pJK_pro6_amiE. Briefly, the soluble and

insoluble portions of 0.5 or 1 mg total cell lysate was run on 10–

20% Tris-HEPES (Thermo scientific) denaturing gel electropho-

resis and then transferred to nitrocellulose filter paper using an

iBlot (Invitrogen). amiE was probed using an Anti-6X His tag

Antibody (HRP) (abcam, catalog # ab1187) and visualized using

enhanced DAB substrate (Thermo scientific) according to standard

protocols. Gel densitometry was quantified using ImageJ [29]. All

data was collected in triplicate on separate days. Total amidase

concentration was found by summing the soluble and insoluble

concentrations.

Beta lactamase quantification
Cell lysates were prepared as above for the amiE quantification

except that lysates were prepared in 50 mM sodium phosphate

buffer, pH 7.0. TEM-1 beta lactamase (BLA) activity was

quantified by incubating cell lysates with 62.5 mM nitrocefin in

50 mM sodium phosphate buffer, pH 7.0 at 30uC and monitoring

A482 for 45 min. Velocity was converted to mass of BLA relative to

total dry cell weight using known catalytic parameters of TEM-1

BLA on nitrocefin under the assay conditions [30].

Promoter Strength Impacts Gene Expression and Growth Rate
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Theory

Ribosome allocation model
The general ribosome allocation model of gene expression cost

has been laid out in previous work [7,10]. Only the salient details

are reported here. Consider a four-component proteome consist-

ing of unneeded heterologous protein (WU), ribosomal-associated

proteins (WR), non ribosomal-associated proteins that are growth-

rate dependent (WP), and the remaining proteins (WQ). Variables

for these proteins are normalized to total protein. By definition:

WUzWRzWPzWQ~1 ð3Þ

Two of these terms can be related to cellular growth rate as

previously shown from empirical correlation [7]:

WR~
m

kT

zWo
R ð4Þ

WP~
m

kN

ð5Þ

Where m is specific growth rate, KT and KN are scaling

constants, Wo
R is an intercept under conditions of no growth.

Empirical relation (4) above states that the ribosomal associated

proteins (and, thus, active ribosomes) are linearly proportional to

the exponential growth rate, and relation (5) sets a fraction of the

proteome that is non-ribosome associated to be linearly propor-

tional to the growth rate. These empirical relations, combined

with the mass balance of the proteome, serve as the basis for the

ribosome allocation model. Substituting in terms and solving for

the dependence of growth rate, m, on unnecessary protein:

WUzm(
1

kT

z
1

kN

)~1{(WQzWo
R) ð6Þ

Defining mmax as the maximum growth rate of the strain that

can be supported in a given media in the absence of unneeded

protein expression:

mmax~
1{(WQzWo

R)

( 1
kT

z 1
kN

)
ð7Þ

Which leads to the main equation tested in the present work:

m

mmax

~1{bWU ð8Þ

WU is now expressed in more convenient units of protein mass

per dry cell weight, and the constant b is defined as:

b~
1

fp(1{(WQzWo
R))

ð9Þ

Where fP is the fraction of dry cell weight that is protein.

Previous experimental results [7,31] set a lower and upper bound

for the parameter b in E. coli as:

0:45ƒWQzWo
Rƒ0:52 ð10Þ

0:55ƒfpƒ0:68 ð11Þ

2:7ƒbƒ4:0 ð12Þ

Thus, this ribosome allocation model predicts bacterial growth

rate dependence to be linearly dependent on unnecessary protein

production with zero free and two fixed parameters – parameter b,

which is set between 2.7–4.0 as shown above, and mmax, which is

the growth rate of the strain in the media condition in the absence

of unnecessary protein expression. This latter parameter can be

independently measured.

Gene expression model
Consider the case of constitutive expression of an unneeded

protein (WU) from cellular mRNA (R). Mass balances on the

unneeded protein (WU) and cellular mRNA ([R]) entail:

d½R�
dt

~k1g{kd1½R�{m½R� ð13Þ

dWU

dt
~k2½R�{kd2WU{mWU ð14Þ

Where k1 is the transcription rate in units of mol mRNA per

gene copy per time, g is the gene number per unit mass, kd1 is the

degradation rate of mRNA, k2 is an effective translation rate of the

unneeded protein in units of mass protein per mole mRNA per

time, and kd2 is the degradation rate of the protein. Growth rates

are included on the right hand side of these balances for

concentration dilution by cell growth. Assuming steady state

conditions during exponential growth, the fraction of unneeded

protein can be expressed as:

WU~
k1k2g

(mzkd1)(mzkd2)
ð15Þ

Making the simplifying assumption that growth rate is much

slower than the mRNA degradation rate (for bacteria, typically on

the order of seconds to minutes) and much faster than the protein

degradation rate (on the order of tens of hours):

kd1&m&kd2 ð16Þ

Leads to the following expression:

WU~
a

m
ð17Þ
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a~
k1k2g

kd1
ð18Þ

Making a further simplifying assumption that a does not depend

on growth rate, and substituting (17) into (8) leads to the following

promoter activity relationship:

a~mmaxWU (1{bWU ) ð19Þ

Using a limited dataset, Hintsche and Klumpp [32] recently

proposed that the promoter activity scales with growth rate

according to:

a~ao(1{e
{m
m� ) ð20Þ

where ao is the portion of the bundled promoter activity that is

invariant with respect to growth rate and m* is a fitted parameter

that describes the growth dependence on promoter activity. We

can rewrite ao solely in terms of expressed protein fraction by

substituting (8) into (20):

ao~
mmaxWU (1{bWU )

(1{e
{

mmax(1{bWU )

m� )

ð21Þ

This combined promoter activity/growth rate model has a

single adjustable parameter, m*. Hintesche and Klumpp use a

fitted value for m* = 0.33 h21, whereas we found that

m* = 0.40 h21 fit our eGFP datasets marginally better. The

molecular underpinnings of this exponential decay term is unclear

and could reflect decreased mRNA stability, decreased basal

transcription rate by RNA polymerase, decrease in plasmid copy

number per unit mass, decreases in protein translation rates and/

or efficiencies, or a combination of some or all of these terms. A

more fundamental understanding of this exponential decay term is

clearly needed. Regardless, combining the gene expression and

ribosome allocation models allows quantitative determination of

the dependence of growth rate and gene expression on promoter

strength with a single fitted parameter.

Explicit assumptions and limitations in the model
Owing to the simplicity of the model, there are explicit

assumptions beyond the ones described above. These assumptions,

and conditions under which they are expected to fail, include:

N These derivations only apply under conditions of steady state,

balanced exponential growth. Promoter activity in lag and

stationary phases of growth are known to be different [33].

N The translation rate of the unneeded protein matches that of

the average translation rate in the host organism. This

assumption is clearly not true under conditions of poor codon

adaptability with the host organism [9].

N The fitness cost of generating mRNA transcripts is very small

compared to the cost of protein expression.

N The protein translation rate does not depend on growth rate.

This assumption fails under conditions of very weak growth

[10].

N The fraction of dry cell weight that is protein is invariant with

respect to growth rate. In fact, in E. coli the protein fraction

increases slightly under conditions of weak growth [7,31] and

thus may slightly change the slope of the correlation between

growth rate and unnecessary protein fraction at very low

growth rates.

Results

Ribosome allocation model predicts gene expression
cost on growth rates

We chose eGFP expression as an initial test of the ribosome

allocation model because it is highly soluble, non-toxic, and

activity can be easily assayed. eGFP was expressed using a medium

copy number plasmid with a constitutive, insulated promoter [34].

We then created double mutant libraries of this promoter at the 2

35 and 210 transcriptional start sites and screened colonies for

fluorescence intensity visually. We chose a total of 22 clones

spanning a range of eGFP expression (Table S1) and transformed

them into E. coli TUNER.

We grew these constructs aerobically at 37uC in media with

three different nutritional capacities (M9+Glucose (M9), M9+
Glucose+Casamino Acids (M9-CA), and Luria Broth (LB)). For

each of these 22 promoter variants we confirmed unimodal eGFP

expression as judged by flow cytometry (Figure S1). For two

representative variants, we confirmed that the plasmid marker

expression is insignificant compared to eGFP expression by

quantifying mass of TEM-1 BLA relative to total dry cell weight

in different growth media (Table S4). We then recorded growth

rates (m) and the mass of eGFP relative to total dry cell weight (WU)

during exponential growth of each construct in these different

media (Table S1). For each media tested there was a clear and

striking linear relationship between growth rate and the fraction of

protein expressed (Figure 1A). The best fits of the unnormalized

slopes through each dataset ranged from 2.07 mg DCW per mg

eGFP per hr for constructs grown on M9 (R2 = 0.93) to 2.85 mg

DCW per mg eGFP per hr for constructs grown on LB (R2 = 0.70).

When these growth rates were normalized to the maximum

growth rate supported by the specific media in the absence of

protein expression, the data collapsed onto a single line predicted

by ribosome allocation theory (Figure 1B):

m

mmax

~1{bWU ð8Þ

Where mmax is the growth rate in the absence of protein

expression, and b is a slope depending solely on two measurable

parameters: the protein fraction of the dry weight of a cell, and

fraction of the proteome that is not growth-associated. According

to previous experimental results [7,31], both parameters are

expected to have weak dependencies on the growth rate that are

neglected in this analysis. The best fit through the entire dataset

was 2.33 mg DCW per mg eGFP (R2 = 0.76), slightly outside the

lower bound of the theoretical prediction (range 2.7–4.0 mg DCW

per mg eGFP). However, the combined dataset can be fit to the

predicted lower bound with only minimal differences in the

coefficient of determination (R2 = 0.71).

To test whether this ribosome allocation model holds for

another heterologous protein, we measured growth rates and

protein expression of an aliphatic amidase amiE from Pseudomo-
nas aeruginosa. amiE was chosen because it is thermally stable,

has previously been expressed in E. coli, and has an activity assay

Promoter Strength Impacts Gene Expression and Growth Rate
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with no background in cell lysates [35]. We chose 9 different

promoter variants spanning the range of promoter activities tested

in the eGFP samples above, which we cloned in front of amiE and

transformed into two different strains of E. coli (TUNER and

MG1655rph+). Our quantification of amiE is an activity assay on

soluble cell extracts; because of this, any insoluble amiE produced

by cells would result in a higher apparent fitness cost to gene

expression. To confirm that all of the amidase expressed solubly,

we used Western blotting to quantify the fraction of soluble and

insoluble amiE from TUNER - expressing the separate plasmids

pJK_pro6_amiE and pJK_proB_amiE. In both cases there was a

significant insoluble protein fraction (Figure 2A). This experi-

ment was repeated in the MG1655rph+ strain with similar results:

quantification of the insoluble fraction by gel densitometry leads to

3966% of the total amiE protein is expressed insolubly in

TUNER pJK_proB_amiE compared to an insoluble percentage of

2565% for the MG1655rph+ pJK_proB_amiE strain (Fig-
ure 2B).

Next, we determined growth rates and amidase fraction of total

cell weight for each construct at 37uC in M9-CA under aerobic

conditions (Table S2). In the MG1655rph+ strain, all variants

were able to support exponential growth. By contrast, expression

driven from the two strongest predicted promoter variants, proK1

and proK3, had severe growth defects in the TUNER strain and

we were unable to fit exponential growth curves to their growth

data (Figure S2). When the relative growth rate was plotted

against fraction of amidase expressed, the data from the two

different strains again collapsed onto a single line consistent with

theoretical predictions (Figure 2A). Including the insoluble

amount of amidase in a balancing of growth rate and protein

expression results in a best fit of this slope of 3.55 mg DCW per mg

AmiE (R2 = 0.97), well within the range predicted by theory

(Figure 2C). Thus, this scaling law appears to hold even for cases

where a significant fraction of the protein is expressed insolubly

[36].

Promoter activity scales with growth rates according to
ribosome allocation theory

We then asked to what extent the non-regulated promoter

activity correlates across the different media tested in our dataset.

From mass balance considerations of protein and mRNA amounts

per unit mass, one can derive the following:

WU~
a

m
ð17Þ

Where the bundled parameter a, a wholistic measure of

promoter activity, is a function of the transcriptional efficiency

per gene copy, the gene copy number normalized to cell mass, the

translational rate per mRNA transcript, and the mRNA degra-

dation rate ([37]; See Theory). The inverse dependence on growth

rate describes the effect of protein dilution by growth under

conditions where protein degradation is minimal, a common

assumption consistent with other experimental results in bacteria

[38]. A null hypothesis is that this bundled promoter activity is

independent of growth rate. This hypothesis predicts that, for each

unique promoter variant, a would be equivalent for each growth

condition and could be determined solely from the protein

expression data by:

a~mmaxWU (1{bWU ) ð19Þ

To test this null hypothesis, we compared measured promoter

activities from the M9 and LB cases as compared to the M9-CA

case (Figure 3A–B). This simple model was sufficient to explain

the entire range of promoter activities in LB and many of the

promoter activities for the M9 dataset as compared to expression

in M9-CA. However the model significantly over-predicted

promoter activities for the M9 media for promoters with eGFP

fractions above 0.07 mg eGFP per mg D.C.W. and growth rates

below 0.59 h21. Since activity of the strongest promoters are still

well described by the datasets between the LB and M9-CA

datasets, we propose that the low growth rates of the strains in M9

media is the cause for deviations from theoretical predictions.

Indeed, including a correction term for promoter activity under

conditions of weak growth rates, as recently proposed [32], leads

to almost perfect agreement between model and experimental

results (Figure 3C–D). While future work is needed to elucidate

the molecular details of the bundled promoter activity under

conditions of very high gene expression and low growth rates

Figure 1. Growth rate as a function of eGFP expression in different growth media. A. Growth rate plotted as a function of eGFP mass
fraction of dry cell weight (d.c.w.) for promoter variants grown in M9 (blue open squares), M9-CA (green open triangles), and LB (red open circles).
Dashed lines are best linear fits of each dataset. B. Relative growth rate plotted as a function of eGFP mass fraction of d.c.w. for promoter variants.
The growth rate is normalized to the maximum growth rate in the absence of gene expression. The dashed olive lines represent the range of values
from theoretical predictions. Error bars represent one standard deviation of at least two independent measurements.
doi:10.1371/journal.pone.0109105.g001
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[10,39], the promoter activity model presented sufficiently

explains eGFP fraction variance across different growth condi-

tions. Accordingly, this model allows for a quantitative prediction

of the interrelationship between promoter strength, gene expres-

sion, and growth rate for a given genetic construct using two fixed

and one single fitted parameter.

Figure 2. Growth rate dependence on amidase expression in different E. coli strains. A. Sample Western blot of pJK_proB_amiE expressed
in E. coli TUNER. T – total cell lysate, I – insoluble fraction of the cell lysate, S – soluble fraction of cell lysate. B. Quantification of insoluble amiE relative
to total amiE expressed for plasmid pJK_proB_amiE expressed in TUNER and in MG1655rph+. The percentage of insoluble amiE was determined by
Western blots, while the absolute amount of soluble amiE was determined by enzyme assay of total cell lysates. C. Relative growth rate plotted as a
function of soluble (open symbols) or total (insoluble plus soluble; closed symbols) amiE mass fraction of d.c.w. for promoter variants grown in M9-CA
for E. coli TUNER (orange circles) or MG1655rph+ (blue diamonds). Error bars represent one standard deviation of at least three independent
measurements. The solid lines represent linear best fits through the combined datasets. The dashed olive lines represent the range of values from
theoretical predictions.
doi:10.1371/journal.pone.0109105.g002

Figure 3. Experimental validation of predicted promoter strengths. For each promoter variant driving eGFP expression, the bundled
promoter activity a (A), ao (C), and eGFP mass fraction (B,D) of cells grown in M9-CA are plotted against values of cells grown in M9 (blue open
squares) or LB (red open circles). Dashed lines indicate the predictions from the promoter activity model in the absence (A,B) or presence (C,D) of a
correction term for promoter activity under weaker growth rates. Note the strong deviations from prediction in the absence of the correction term
when cells are grown in M9. Error bars are one standard deviation from at least two independent measurements.
doi:10.1371/journal.pone.0109105.g003
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Gene expression cost can significantly constrain pathway
flux in metabolic engineering

Metabolic engineering has increasingly moved from enhancing

or rerouting primary metabolism to donating heterologous

pathways composed of enzymes from secondary metabolism. It

is well known that such enzymes are often less catalytically efficient

than enzymes from primary metabolism [40]. Based on the results

presented here, we have estimated the lower bound of the fitness

cost of expressing a metabolic pathway comprised of enzymes

from secondary metabolism (Figure 4). For simplicity we assume

that each enzyme has a multiple species median value for its

turnover rate. Enzymes in a model three-step pathway need to be

expressed to at least 12% by weight in order to support a flux of

10 mmol product per g dcw per h, a flux value close to aerobic

glycolytic flux in E. coli. Expressing five or more heterologous

enzymes in a pathway, even if balanced, would result in a growth

rate less than 0.5 mmax, significantly hampering growth rate and

hence volumetric productivities. It is important to note that these

calculated values are a strict lower bound of the fitness cost: the

analysis does not account for the reversibility of individual

reactions or for non-saturating kinetics [41]. Inclusion of these

terms would be expected to increase the cost of expressing such a

pathway. Historically, one way that metabolic engineers have

circumvented this fitness cost is by expressing metabolic pathways

on inducible promoters. Thus, the fitness cost of gene expression is

not borne until the end of the growth cycle and is accordingly

minimized. However, recent drives for continuous fermentations

and resultant growth-phase associated product formation places an

increasing importance on satisfying these constraints.

In this work we have rigorously quantified the fitness cost to

gene expression by systematically varying promoter strengths

driving expression of two separate protein systems. We have

developed datasets for three different media and for two different

E. coli strains, and have shown that fitness cost of gene expression

is consistent with a theory based on ribosome allocation. One of

these proteins, amiE, expressed in both soluble and insoluble form.

Thus, this ribosome allocation theory is consistent with experi-

mental results even under conditions where a sizeable fraction of

the protein is expressed insolubly. We have developed a simple

measure of promoter activity and shown that this can be used to

predict amount of expression of a given genetic construct across

different growth media. Finally, we have estimated the fitness cost

necessary to support high flux through a secondary metabolic

pathway. This estimated fitness cost suggests a serious limitation in

the ability to support high flux through a pathway comprised of

enzymes with weak catalytic efficiencies, such as those from

secondary metabolic pathways.

Although we have rigorously assessed the fitness cost of protein

expression for synthetic promoters driving expression of two

separate genes in E. coli, we speculate as to how broadly this

fitness scaling law can be applied. The foundation of the

integrative model is based on the ideal that a cell is able to

allocate its ribosomal resources effectively. The linear relationship

between decreasing growth rate and unnecessary protein expres-

sion should hold true for any organism that has a linear

relationship between RNA:protein ratio and specific growth rate

that is the hallmark of efficient ribosome allocation. For example,

this correlation holds for many bacteria, yeast (including S.
cerevisiae), but not the algae Prototheca zopfii [42]. Furthermore,

many commonly used knock out strains in metabolic engineering

have severe growth defects and/or non-exponential growth

phases, or may otherwise not be able to allocate their proteome

efficiently in response to changing growth conditions [8]. Thus, we

predict that most lab-adapted bacterial strains and several model

eukaryotic microorganisms should obey the proposed scaling law.

The slope of the linear relationship in the scaling law (parameter

b in equation (8); Theory) is a product of the fraction of dry cell

weight that is protein and a term accounting for the growth

invariant portion of the proteome and the ribosomal fraction of

the proteome under conditions of no growth. These values should

be somewhat growth condition (e.g. anaerobic) and species-specific

but the slope should not vary considerably beyond 3. For example,

the nitrogen percentage of microbial dry cell weight between

species ranges between 7.5–14% [43], suggesting a less than 2-fold

Figure 4. The protein fraction of dry cell weight (WU, triangles) and relative growth rate (m/mmax, squares) necessary to support a
flux of 10 mmol product per gDCW per h is plotted against the number of pathway enzymes involved in a secondary metabolic
pathway. Each enzyme is assumed to have a turnover number of 2.6 s21 (the median value for secondary pathway enzymes) and have a molecular
weight of 40 kDa. Because saturating kinetics and reaction irreversibility are assumed, this is strictly a lower bound on the fitness cost. Lines are
guides for the eye.
doi:10.1371/journal.pone.0109105.g004
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variation in the protein contribution to dry cell weight. The

growth invariant portion of the proteome was found empirically

for E. coli [7] at slightly more than 50%. While it is unclear how

much this percentage will vary among different organisms or

different growth conditions, it is tough to imagine a significantly

greater fraction among heterotrophs. An additional area where

this model can fail is if the net translation rate of the unnecessary

protein is much lower than that of the remainder of the proteome,

for example if the mRNA encoding the protein has poor codon

adaptability. In such a case, as a given ribosome is occupied for a

longer time to synthesize the same protein, the model would

predict that lower translation rates result in greater fitness cost

controlling for protein expression levels.

While more detailed and rigorous model parameterization can

alleviate some of the discussed limitations and enhance general

utility of the model, nevertheless we have confirmed the model set

forth by Scott et al. [7] for two different protein systems in E. coli.
This relationship appears to set a lower bound on the fitness cost of

expressing heterologous protein. Furthermore, we have shown that

combining the Scott model with a simple promoter model can be

used to quantitatively predict the interrelationship between gene

expression, growth, and promoter strength across different media

conditions and genes with a single fitted parameter. As such, this

work has broad implications for the fields of applied microbial

physiology, biochemical engineering, metabolic engineering, and

synthetic biology.

Supporting Information

Figure S1 Promoter strength of plasmid variants ex-
pressing eGFP as judged by flow cytometry. Samples were

grown from an initial OD600 = 0.02 in M9-CA at 37uC in deep

well plates for 3 h. Then, cells were diluted 506 into PBS and

fluorescence immediately measured on a flow cytometer using a

488 nm laser and fluorescence channel FL-1 equipped with a

51067.5 nm filter. Histograms of five representative clones are

shown in order of increasing fluorescence: proK17 – light purple,

proK14 – blue, proK11 – light green, pro6 – dark purple, j23150*

- orange. All promoter variants supported eGFP expression in

unimodal distributions.

(TIFF)

Figure S2 OD600 vs. Time (panel A) and ln(OD600) vs.
time (panel B) for selected plasmid variants expressing

amiE in E. coli TUNER at 376C in M9-CA. Sample variants

shown are proK17 (green triangles), proK9 (red squares), pro9

(blue diamonds), and proK1 (blue circles). In panel B, dashed

lines indicate best fits for growth rate determination. proK1 and

proK3 (not shown) showed severe growth defects and their growth

curves could not be fit to a single exponential growth rate.

(TIFF)

Figure S3 Quantification of amiE amounts in cell
lysates. (A.) AmiE was overexpressed in E. coli and purified on

a Talon metal affinity resin (Clontech). Denaturing gel electro-

phoresis shows a single band right below the 40 kDa marker on a

PagePlus MW ladder, consistent with the 39 kDa MW of AmiE.

(B.) The phenol nitroprusside method was used to determine free

ammonia liberated by amidase activity on 50 mM acetamide. The

colorimetric reaction was monitored at 35uC for 40 min by A625

measurements in a Synergy H1 Spectrophotometer until the

reaction stabilized – usually in 20 minutes. This dataset shows

lysate from E. coli MG1655rph+ expressing pJK_proB_amiE that

had been incubated with 50 mM acetamide for 10 min at rt. (C.)
A625 vs. incubation time of purified amiE at 7 nM (blue open

diamonds) and 10 nM (red open circles). Plotting reaction

velocities at different enzyme concentrations allows generation of

a standard curve. (D.) Activity measurements were taken of lysates

over 25 minutes. The reaction velocities were used to quantify

amiE amounts by comparing to the standard curve. Lysate was

diluted to fit within the linear range of the calibration curve.

Representative data is shown here of two samples: E. coli
MG1655rph+ pJK_proB_amiE (orange open diamonds) and

pJK_proK14_amiE (purple open circles).

(TIFF)

Table S1 Summary of growth rate and protein expres-
sion for E. coli TUNER harboring eGFP plasmid
variants. The reported error is one standard deviation. The

proB, pro6, and j23150* promoters sequences have been

previously described.

(DOCX)

Table S2 List of amidase sequences tested, their growth
rates, and fraction of soluble amiE expressed per
D.C.W. The reported error is one standard deviation.

(DOCX)

Table S3 Conversion factors between OD600 and dry
cell weight as a function of strain and media condition.
Errors are listed as one standard deviation.

(DOCX)

Table S4 Summary of BLA marker expression for E.
coli TUNER harboring selected eGFP plasmid variants
in M9 and LB. The reported error is one standard deviation of

two independent experiments.

(DOCX)

Note S1 DNA and protein-encoding sequences of con-
structs used for this study.

(DOCX)

Author Contributions

Conceived and designed the experiments: MSB KWY JRK EED KJT

TAW. Performed the experiments: MSB KWY JRK EED KJT TAW.

Analyzed the data: MSB KWY JRK EED KJT TAW. Wrote the paper:

MSB KWY JRK EED KJT TAW.

References

1. Hellmuth K, Korz DJ, Sanders EA, Deckwer WD (1994) Effect of growth rate

on stability and gene expression of recombinant plasmids during continuous and

high cell density cultivation of Escherichia coli TG1. Journal of Biotechnology

32: 289–298.

2. Studier FW, Moffatt BA (1986) Use of Bacteriophage-T7 Rna-Polymerase to

Direct Selective High-Level Expression of Cloned Genes. Journal of Molecular

Biology 189: 113–130.

3. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990)

Plasmid-encoded protein: the principal factor in the ‘‘metabolic burden’’

associated with recombinant bacteria. Biotechnol Bioeng 35: 668–681.

4. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control

through promoter engineering. Proc Natl Acad Sci U S A 102: 12678–12683.

5. Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in

Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol

177: 1497–1504.

6. Rang C, Galen JE, Kaper JB, Chao L (2003) Fitness cost of the green fluorescent

protein in gastrointestinal bacteria. Canadian Journal of Microbiology 49: 531–

537.

7. Scott M, Gunderson CW, Mateescu EM, Zhang ZG, Hwa T (2010)

Interdependence of Cell Growth and Gene Expression: Origins and Conse-

quences. Science 330: 1099–1102.

Promoter Strength Impacts Gene Expression and Growth Rate

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e109105



8. Cardinale S, Joachimiak MP, Arkin AP (2013) Effects of Genetic Variation on

the E-coli Host-Circuit Interface. Cell Reports 4: 231–237.

9. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-Sequence

Determinants of Gene Expression in Escherichia coli. Science 324: 255–258.

10. Klumpp S, Scott M, Pedersen S, Hwa T (2013) Molecular crowding limits

translation and cell growth. Proceedings of the National Academy of Sciences of

the United States of America 110: 16754–16759.

11. Glick BR (1995) Metabolic Load and Heterologous Gene-Expression.

Biotechnology Advances 13: 247–261.

12. Jones KL, Kim SW, Keasling JD (2000) Low-Copy Plasmids can Perform as

Well as or Better Than High-Copy Plasmids for Metabolic Engineering of

Bacteria. Metab Eng 2: 328–338.

13. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia

coli for the production of L-valine based on transcriptome analysis and in silico

gene knockout simulation. Proceedings of the National Academy of Sciences of

the United States of America 104: 7797–7802.

14. Marbach A, Bettenbrock K (2012) lac operon induction in Escherichia coli:

Systematic comparison of IPTG and TMG induction and influence of the

transacetylase LacA. Journal of Biotechnology 157: 82–88.

15. Du J, Yuan YB, Si T, Lian JZ, Zhao HM (2012) Customized optimization of

metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids

Res 40.

16. Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE (2013) Expression-level

optimization of a multi-enzyme pathway in the absence of a high-throughput

assay. Nucleic Acids Res 41: 10668–10678.

17. Tran NP, Gury J, Dartois V, Nguyen TK, Seraut H, et al. (2008) Phenolic acid-

mediated regulation of the padC gene, encoding the phenolic acid decarboxylase

of Bacillus subtilis. J Bacteriol 190: 3213–3224.

18. Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JJ (2014) Characterizing

bacterial gene circuit dynamics with optically programmed gene expression

signals. Nat Methods 11: 449–455.

19. Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization

of a set of insulated bacterial promoters. Nucleic Acids Res 39: 1131–1141.

20. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, et al. (2009)

Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat

Methods 6: 343–345.

21. Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific

mutagenesis without phenotypic selection. Methods Enzymol 154: 367–382.

22. Andrade J, Karmali A, Carrondo MA, Frazao C (2007) Structure of amidase

from Pseudomonas aeruginosa showing a trapped acyl transfer reaction

intermediate state. Journal of Biological Chemistry 282: 19598–19605.

23. Green MR, Sambrook J, Sambrook J (2012) Molecular cloning: a laboratory

manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.

24. Akhtar MK, Jones PR (2009) Construction of a synthetic YdbK-dependent

pyruvate:H-2 pathway in Escherichia coli BL21(DE3). Metab Eng 11: 139–147.

25. Leveau JH, Lindow SE (2001) Predictive and interpretive simulation of green

fluorescent protein expression in reporter bacteria. J Bacteriol 183: 6752–6762.

26. Ward WW, Prentice HJ, Roth AF, Cody CW, Reeves SC (1982) Spectral

Perturbations of the Aequorea Green-Fluorescent Protein. Photochemistry and
Photobiology 35: 803–808.

27. Searle PL (1984) The Berthelot or Indophenol Reaction and Its Use in the

Analytical-Chemistry of Nitrogen - a Review. Analyst 109: 549–568.
28. Studier FW (2005) Protein production by auto-induction in high density shaking

cultures. Protein Expr Purif 41: 207–234.
29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25

years of image analysis. Nature Methods 9: 671–675.

30. Raquet X, Lamottebrasseur J, Fonze E, Goussard S, Courvalin P, et al. (1994)
Tem Beta-Lactamase Mutants Hydrolyzing Third-Generation Cephalosporins.

Journal of Molecular Biology 244: 625–639.
31. Bremer H, Dennis PP (1996) Modulation of chemical composition and other

parameters of the cell by growth rate. Escherichia coli and Salmonella: cellular
and molecular biology 2: 1553–1569.

32. Hintsche M, Klumpp S (2013) Dilution and the theoretical description of

growth-rate dependent gene expression. J Biol Eng 7: 22.
33. Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, et al. (2013)

Promoters maintain their relative activity levels under different growth
conditions. Mol Syst Biol 9.

34. Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization

of a set of insulated bacterial promoters. Nucleic Acids Research 39: 1131–1141.
35. Mosier AC, Justice NB, Bowen BP, Baran R, Thomas BC, et al. (2013)

Metabolites associated with adaptation of microorganisms to an acidophilic,
metal-rich environment identified by stable-isotope-enabled metabolomics.

MBio 4: e00484–00412.
36. Plata G, Gottesman ME, Vitkup D (2010) The rate of the molecular clock and

the cost of gratuitous protein synthesis. Genome Biol 11: R98.

37. Klumpp S, Zhang ZG, Hwa T (2009) Growth Rate-Dependent Global Effects
on Gene Expression in Bacteria. Cell 139: 1366–1375.

38. Maier T, Schmidt A, Guell M, Kuhner S, Gavin AC, et al. (2011) Quantification
of mRNA and protein and integration with protein turnover in a bacterium. Mol

Syst Biol 7.

39. Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN (2002) Global
analysis of mRNA decay and abundance in Escherichia coli at single-gene

resolution using two-color fluorescent DNA microarrays. Proceedings of the
National Academy of Sciences of the United States of America 99: 9697–9702.

40. Milo R, Last RL (2012) Achieving diversity in the face of constraints: lessons
from metabolism. Science 336: 1663–1667.

41. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R (2013) Glycolytic

strategy as a tradeoff between energy yield and protein cost. Proc Natl Acad
Sci U S A 110: 10039–10044.

42. Karpinets TV, Greenwood DJ, Sams CE, Ammons JT (2006) RNA: protein
ratio of the unicellular organism as a characteristic of phosphorous and nitrogen

stoichiometry and of the cellular requirement of ribosomes for protein synthesis.

Bmc Biology 4.
43. Blanch HW, Clark DS (1996) Biochemical engineering. New York: M. Dekker.

xii, 702 p. p.

Promoter Strength Impacts Gene Expression and Growth Rate

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e109105


