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Abstract: Bacterial pneumonia is one of the most prevalent infectious diseases and has high
mortality in sensitive patients (children, elderly and immunocompromised). Although an infection,
the disease alters the alveolar epithelium homeostasis and hinders normal breathing, often with fatal
consequences. A special case is hospitalized aged patients, which present a high risk of infection
and death because of the community acquired version of the Streptococcus pneumoniae pneumonia.
There is evidence that early antibiotics treatment decreases the inflammatory response during
pneumonia. Here, we investigate mechanistically this strategy using a multi-level mathematical
model, which describes the 24 first hours after infection of a single alveolus from the key signaling
networks behind activation of the epithelium to the dynamics of the local immune response. With the
model, we simulated pneumonia in aged and young patients subjected to different antibiotics timing.
The results show that providing antibiotics to elderly patients 8 h in advance compared to young
patients restores in aged individuals the effective response seen in young ones. This result suggests
the use of early, probably prophylactic, antibiotics treatment in aged hospitalized people with high
risk of pneumonia.

Keywords: multi-level; mathematical model; Streptococcus pneumoniae; pneumonia; macrophages;
neutrophils; monocytes; inflammation

1. Introduction

Pneumonia is the cause of 20% of deaths in children worldwide [1], with Streptococcus pneumoniae
infection being the most common cause [2]. Pneumonia also affects other risk population groups like
elderly people or hospitalized patients [3,4]. Local and systemic inflammation in the course of the
infection is the main risk factor in these patients [5], which makes controlling inflammation in the early
phases of lung infection the most promising strategy to prevent mortality in high-risk groups [6,7].

During the first hours of the infection, passive and innate immunity lead the response against
bacteria and inflammation. Resident alveolar macrophages keep surveillance of agents entering the
alveolus together with the epithelial cells. These cells activate inflammation together with other immune
cells recruited during the activation process. In the early infection, monocytes act as phagocytes
supporting alveolar macrophages and neutrophils to produce an acute inflammatory and bactericide
response. The immune system produces and secretes several cytokines to facilitate cell recruitment
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and modulate inflammatory response. Upon bacteria sensing, the epithelial cells of the alveolus
synthesize and secrete the chemokine MCP-1, which controls phagocyte recruitment, and CXCL5,
which recruits neutrophils [8,9]. Further, phagocytes produce IL-8, a cytokine that modulates the
recruitment of neutrophils [10]. When the infection is not quickly controlled by the innate immune
response, the adaptive immunity produces a long term, specific inflammatory response against the
pathogen. However, to mount this adaptive immunity can take a period of several days and this delay
induces in many cases a systemic, overwhelming inflammation, which makes pneumonia reach a point
of no return and drastically increases clinical risk. Furthermore, the acute immune response triggered
by S. pneumoniae inside the alveoli alters the tissue homeostasis and promotes liquid accumulation
inside the alveolar tissue, thereby hindering normal breathing. Alveolar tissue regeneration to restore
the damaged epithelium is activated only when bacterial infection is controlled. However, since the
process can get delayed in time, acute, long-lasting lung infection jeopardizes tissue recovery and
patient survival.

S. pneumoniae alveolar infection is mostly controlled with antibiotics. Complications due to
the bacterial infection (for example, septicemia or secondary infections) are less frequent in patients
than those linked to lung inflammation. Although vaccines against S. pneumoniae are available,
their efficiency is low in high-risk populations due to the limited immune response triggered by the
vaccine in these patients [11,12]. Thus, the best strategy to control pneumonia in a high-risk patient is
reducing the bacterial load during the early phases of infection before producing an overwhelming
immune response. Early or prophylactic antibiotics treatment could reduce the inflammatory response
triggered in the lungs by S. pneumoniae during pneumonia. We talk about early antibiotics treatment
when the decision criteria are based on the individual patient prognosis instead of on general clinical
recommendations [13]. This strategy could benefit sensitive patients exposed to events with high
risk of pneumonia, like immunocompromised patients hospitalized due to other severe conditions.
Specifically, aged hospitalized patients under ventilation-based treatment present a high incidence of
pneumonia [13]. Early antibiotics treatment could be optimal in these conditions.

Mathematical model simulations allow testing multiple hypotheses in order to select optimal
treatments for their validation in vivo [14,15]. Calibrated computational models combined with
experimental data can be used to dissect the regulatory pathways controlling immune cells or bacteria
in the course of infection [16,17], to find new biomarkers for disease prognosis [18], to analyze the
feasibility of conventional or personalized treatments, to detect new drug targets [19,20], or to investigate
the ecological interactions between bacterial species during respiratory tract infection [21–23]. In line
with this approach, in this paper we derived and characterized with available experimental data a
multi-level mathematical model able to simulate the first 24 h of S. pneumoniae infection inside a single
lung alveolus. The objective of the present work is to use this computational model to investigate in
silico the relevance of early antibiotics treatment in elderly patients.

2. Results

We proposed a model able to simulate the first 24 h after bacterial lung alveolus infection.
This model aims to predict the most relevant cellular and molecular mechanisms driving S. pneumoniae
infection during the very first stages of pneumonia, which cannot be entirely tracked by experimentation.
The model considers both the barrier defenses and innate immune system against S. pneumoniae,
while the adaptive immune system response is assumed to play a relevant role in later phases of the
infection. To cope with all the relevant spatiotemporal features, we derived and characterized
a hybrid, multi-level mathematical model, which combines agent-based, partial and ordinary
differential equations.

2.1. Biological Scenarios Modelled

In this work, we analyze the effect of the neutrophil load on alveolar infection. Neutrophils play a
major role during the early phases of pneumonia that are controlled by the innate response [24]. It has
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been observed that there is a reduction in neutrophil load in aged mice [25]. Here, we hypothesized
that a decrease in neutrophil levels could explain the sensitivity to pneumococcal infection in elderly
patients. We implemented this observation in our model by decreasing the recruitment rate of
neutrophils during infection. Two groups of solutions were created based on this strategy, a group
named “nominal”, which accounts for the simulations obtained with the nominal parameter values
for neutrophil recruitment as in Table S1, and a group named “aged” which accounts for simulations
in which the recruitment of neutrophils was reduced in a magnitude similar to that observed in
Chen et al., 2014 [25].

We defined the nominal solution of the model as the starting point of the perturbation analysis,
which represents the average condition that happens during an infection of a lung alveolus with
S. pneumoniae in a young, healthy individual (see Material and Methods for details). The nominal
condition was obtained by combining quantitative information from the literature and calibration
of given model parameters using in vivo [26] experimental data (See Table S1 and Figure S2 in
Supplementary Material). Taken together, the nominal solution is calibrated to simulate young
specimens [26]. Model simulations accounting for the nominal solution are shown in Figure 1.
Because the model presents stochasticity in the movement of the agents representing bacteria and
immune cells, in the figure we display ten model simulations with the same parameter values and initial
conditions. Figure 1A displays the evolution over time of the populations for bacteria, monocytes,
macrophages and neutrophils as predicted by the model. The four variables are normalized with
respect to the initial amount of macrophages in the alveolus, which allows for interpreting the amount
of bacteria as MOI with respect to the number of macrophages in resting condition. Figure 1A
indicates that in nominal conditions bacteria grow during the first 20 h; after that point, bacteria
levels decrease as a consequence of the infiltration of monocytes and neutrophils. In the model
simulations, cell recruitment presents a monotonic increase corresponding to the acute inflammatory
profile observed days later in the animal model [27]. In Figure 1B chemokines show a slow growing
accumulative pattern due to the progress of the inflammatory process. Pneumolysin presents a peak of
production before the 15 h mark, which is according to the experimental evidence [28].

In our simulations we distinguish between resident alveolar macrophages and monocytes-derived
phagocytes. In physiological conditions, a single alveolar macrophage patrols several interconnected
alveoli, which leads to inclusion of a single macrophage in the alveolus at the beginning of the
simulation [29]. Interestingly, in the simulation the resident alveolar macrophage is depleted in the
course of the infection and during the first 10 h. This is due to the over-accumulation of bacteria in the
alveolus, an event that triggers programmed cell death in macrophages [30].

Next to the nominal solution, we included a second scenario in our model to simulate the effect of
aging in the fitness of the innate immune system [31,32]. To this end, we modified the value of the
model parameter that accounts for neutrophil recruitment. The experimental results in Chen et al.,
2014 [25] suggest that in the context of lung infection a relevant difference between young and aged
individuals is the levels and the recruitment rate of neutrophils, which can be reduced up to 80%
in aged mice compared to young ones. Model simulations accounting for the impaired neutrophil
recruitment are compared with the nominal solution for key model variables in Figure 1. In Figure 1 we
can see that in the nominal condition the bacterial population grows in the range of tens to hundreds as
a consequence of the proper innate immune response. In contrast and under aged-related impairment
of neutrophil recruitment, the model predicts up to thousands of bacteria by the end of the simulated
period. According to the simulations, up to few tens of neutrophils are recruited to the alveolus in the
nominal solution, while a maximum of three neutrophils reach the alveolus in the aged scenario.
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Figure 1. Simulation of the nominal solution. (A) Cellular components of the nominal solution of the
model (young mice). (B) Cytokines and virulence factors of the nominal solution of the model (young
mice). (C) Cellular components of the simulations of aged mice. (D) Cytokines and virulence factors of
the simulations of aged mice. We display 10 simulations for the parameter set of the nominal solution
(Table S1). Each solution is represented by a different color.
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2.2. The Effect of Antibiotics Administration Timing in Early Lung Infection for Aged Individuals with
Impaired Neutrophils Recruitment

In order to investigate the dynamics of lung alveoli infection by S. pneumoniae under antibiotic
administration, we simulated the continuous administration of penicillin as described in the Material
and Methods section. Next, we performed perturbation simulations in which we modified the time
after infection in which antibiotic administration starts in both the young and aged scenarios in
conjunction with changes in the initial amount of bacteria infecting the alveolus (Figure 2).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 17 
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Figure 2. Three different bacterial indicators to compare nominal versus aged conditions in the model
for different initial bacteria and antibiotic delay. The first column considers the measurement R0

(Basic reproduction number: an estimate of the potential dispersion of the infection through the lungs),
the second column uses the measurement Dif (diference: average of the increase rate of the bacteremia)
and the third one the Inc (increment: bacteremia at the last stage of infection).

The initial amount of bacteria infecting a single alveolus depends on the distribution of
S. pneumoniae on the alveolar tissue from the higher airways. In our simulations, we used this
variable to get a profile of the infection in the whole lung. With high values of initial bacteremia,
we simulated alveoli that are close to the infection loci in the lungs, while with low values we account
for alveoli far from the infection loci. The bacteremia values we tested increased gradually from 11 to
151 bacteria, 10 bacteria in each iteration.

The second model variable that we perturbed during the simulations stands for the time after
infection in which antibiotic administration starts. In the model we assumed continuous perfusion of
penicillin, which corresponds to a clinical setup of intravenous antibiotics administration [33]. We used
the equivalent to a penicillin dose used in experiments [26]. In the simulation, we iteratively modified
the time from the infection initiation until the antibiotics reach the bloodstream (τ). The values ranged
from 0 to 20 h after infection (0, 4, 8, 12, 16 and 20 h).

In order to quantify the dynamics of the infection during the simulation, we computed three
different magnitudes that account for bacteria dynamics in the course of the infection inside the alveolus
(namely, R0, Dif and Inc). Each of these metrics provides a different view of the bacteremia dynamics
during infection. R0 provides an estimate of the potential dispersion of the infection through the lungs,
Dif is the average of the increase rate of the infection and Inc measures the bacteremia increase between
the initial time and 24 h later. In Figure 2 we display the results of the simulations for the two scenarios
of neutrophil recruitment, as well as different antibiotics timing and initial bacteremia investigated.
Similar patterns were observed in all three magnitudes computed. Interestingly, the simulations
indicate a significant difference between the young and aged scenarios regarding the effect of the delay
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in the administration of antibiotics. On average, the dynamics of the infection is delayed approximately
8 h in young versus aged scenarios.

An interesting pattern is observed in the normalized integral of bacteria and the normalized
increment of bacteria in the aged situation for 111 initial bacteria in the antibiotic regimen (τ) of 20 h.
In this scenario these two measurements reach their maximum, even above the values they get for
the higher number of initial bacteria. Our analysis suggests that, since this effect is only observed in
the two measurements that normalize by the initial number of bacteria, it is linked to the interplay
between initial and maximum bacterial load in the alveolus in this scenarios and metrics.

Figure 3 further elaborates on the effect of τ and age on bacteremia. The figure shows the expected
pattern of decrease on the amount of bacteria after antibiotics administration in all the scenarios
simulated. However, only in the simulation for young individuals with τ = 12 h (Figure 3A, middle)
bacteria levels at the end of the simulation are comparable to the initial state and hence a reflection of
successful depletion of the infection. In contrast, in aged individuals and τ = 12 h the bacteremia is
decreasing from its maximum levels at the end of the simulation, but still stays very high (Figure 3B,
middle). To control the bacteremia at the end of the simulation in aged individuals, one has to
administer the antibiotics at τ = 4 h (Figure 3 panel B, left).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 17 
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(τ) for aged individuals. Additional variables are shown in Figure S1.
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3. Material and Methods

3.1. Model Description

The mathematical model presented accounts for the first 24 h of infection of a lung alveolus by
S. pneumoniae. In the model, the lung alveolus is represented as a truncated frequency two icosahedron.
Bacteria and immune cells move through the inner surface of the icosahedron and chemical signals
like chemokines and cytokines diffused on the inner surface.

Our model is built on previous models developed by our group and others describing the signaling
pathways and the cell-to-cell interactions between host and bacteria triggered during early time after
infection [27,34]. This model was calibrated using data from S. pneumoniae experiments in vitro and
in vivo. In the model, epithelial cells can recognize and react to bacteria producing chemokines (MCP-1)
that attract the resident macrophages to the point of infection. The model also considers the dynamics
of the alveolar lining liquid that can wash out bacteria from the alveolus. The model further simulates
the recruitment of immune cells to the infection site. We here focus on the innate immune system
response, which precedes the adaptive response by one or more days. In our model, monocytes appear
to support the function of resident macrophages, while neutrophils act as the main destructive agent
against the increasing infection. Both cell types are recruited following chemical signals secreted by
both local macrophages and epithelial cells in response to bacteria. Macrophages produce interleukin
8 (IL-8), which attracts neutrophils from the bloodstream to the alveolar tissue, while the epithelial
cells chemokine MCP-1 recruit monocytes. Another signal coming from the epithelial cells included in
our model is CXCL5, which also recruits neutrophils. In the model we integrated in each epithelial,
monocyte and macrophage cell agent, an NF-κB-centered intracellular network is responsible for
the triggering of cytokines and chemokines secretion. In case of the IL-8 produced by macrophages
and monocytes in response to bacteria, we assumed for IL-8 the same model parameter values than
for MCP-1 based on the fact that both ligands show similar expression profiles in relevant in vitro
experiments [35]. Further, in the model we assumed that the CXCL5 secretion is triggered in the
epithelial cells through the same NF-κB-centered network that triggers MCP-1. Finally, we calculated
the diffusion constants for each cytokine and chemokine in the alveolus using an empirical estimate
based on the molecular weight of macromolecules [36].

We also included the production of the virulence factor pneumolysin by S. pneumoniae, primarily
responsible for the bacteria-associated tissue damage. In order to fit the model to experimental
observations concerning pneumolysin [28], we set two production phases: a first one with high
pneumolysin production and after 15 h a second one with low production. An important feature
of S. pneumoniae lung infection is the existence of immunomodulatory effects promoted by proteins
and other compounds of the bacteria surface and capsule [37–39]. In our model, we assume that
these immunomodulatory processes are negligible during the very initial phase of the infection here
modelled, in which bacteria are adapting to the new environment and the rate of capsule proteins and
compounds synthesis is low (see discussion about this issue in Santos et al., 2018) [27].

Our model is a multi-level hybrid model, which utilizes agent-based modelling to represent the
movement of cells in the tissue, partial differential equations for the gradients of cytokines and ordinary
differential equations for the intracellular pathways. The agents and processes included in the model
are described in Figure 4A. In the model simulations, bacteria and immune cells move through the
inner surface of the icosahedron, while chemokines diffuse, thereby mimicking the real environment of
an alveolus infection (see Figure 4B and video of the simulation of the model with nominal conditions
in this link). All processes and parameters included in the model are included in Table S1. This table
also includes the values of the parameters in the nominal solution and the references from which the
values were taken or calculated. The nominal solution represents a condition of an animal model
of pneumonia (mouse) subjected to an infection by S. pneumoniae (MOI = 10 bacteria per resident
macrophage). This condition produces acute pneumonia that a subset of the exposed animals is able to
overcome [26].
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Figure 4. (A) Diagram of previous model. (B) Frame of the simulation of the extended model. The color
bar represents the average concentration of the chemokine MCP1 between all epithelial cells and
normalized to a sufficient high value to make it visible during the whole simulation (2.4·10−3 ng/mL).
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3.2. Simulations

3.2.1. Handling of Stochasticity

The model presents a stochastic behavior on the movement of cells through the inner surface of the
alveolus. Due to its stochasticity, the same set of parameters can produce different outcomes every time
the model is executed. In order to deal with this stochastic process, we simulated every solution 10 times.
As we can see in Figure 1, all the 10 simulations of the nominal solution follow the same qualitative
behavior. We set the seed for the simulations in order to make a proper comparison between the group
“nominal” and “aged.” In order to consider this stochastic variability, we represented the output of
the model for any set of parameters tested as the average of 10 simulations. Using this approach, we
investigated the evolution of the pneumococcal infection under different biological scenarios.

3.2.2. Modelling of Antibiotics Administration

We used data from in vitro experiments with penicillin to calculate the clearance rate of
pneumococci [24] and we introduced this parameter in the model. We performed a scenario of
antibiotics treatment in which one provides a constant supply of penicillin at a given time point after
the onset of the infection. This situation reproduces a clinical scenario of intravenous antibiotics
treatment. In the simulations, we used the time before initiating antibiotics as a tunable parameter.
This parameter was modified between 0 and 20 h after onset of infection in intervals of four hours
(τ = {0, 4, 8, 12, 16, 20} hours).

3.2.3. Modelling Variability in Bacterial Load

Another parameter that presents variability in vivo is the initial load of pneumococci that initiate
the infection inside the alveolus. To account for this, we allowed values of initial bacteria from 11 to
151 per alveolus in each group (11, 21, 31 . . . , and 151). Eleven bacteria per alveolus represent the
nominal situation of a standard primary infection, calculated from mice experiments data (see Figure 1
and S1 in Supplementary Material). We used higher amounts to simulate patients infected in highly
infectious locations like hospitals, in which we assume higher initial bacteremia are feasible.

3.2.4. Solutions

Combining modifications in both timing for antibiotics administration and bacterial load, we
obtain 48 solutions inside each group (nominal and aged). Each solution is represented by the average
of 10 simulations with the same parameter values, which produced a total amount of 480 simulations
inside each group (960 simulations in total). Each simulation is run from 0 to 24 h after infection onset.

3.2.5. Metrics for Infection Progression

To compare the evolution of the disease between the two groups, this requires considering
the variability that the simulations present in time. In order to deal with this, we computed three
measurements accounting for the infection progression defined as the following.

R0: a magnitude similar to the basic reproduction number used in epidemiology provides an
estimate of the potential dispersion of the infection through the lungs. Similar to the epidemiologic
R0 parameter, a value lower than 1 corresponds to a state in which the epidemic decreases. In order
to get a parallel estimate for the evolution of infection in the lungs, we compare the total cumulative
amount of bacteria present in the alveolus respecting a state in which the initial amount of bacteria
stays unchanged during the infection. We express this comparison by the following ratio:

R0 =

∫
Bacteria·dTime

Bacteria(Time = 0h) · Timespan
(1)
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Values of R0 higher than 1 indicate that the course of infection has produced more bacteria than
the ones existing at the moment of infection, time = 0. Any alveolus acts as an infective point for
other neighbor alveoli by spreading bacteria from it. Thus, R0 can be interpreted as an estimate of the
bacterial spread through the lungs. Values higher than 1 indicate that the total number of bacteria
present in the alveolus at any time is higher than the expected number of bacteria in the alveolus if the
initial bacteria remains unaltered inside it.

Dif : average of the increase rate of the bacteremia. It is a metric that considers the increments on
bacteremia during the course of infection and is calculated as:

Di f =
∑ dBacteria

dTime
(2)

This measurement is an estimate of the average bacteremia increase during the timespan.
The higher the value, the higher the growth rate of bacteria in vivo. If Dif is higher than 0, it indicates
a net growth of bacteria during the time of infection, while values lower than 0 indicate a net decrease
in the bacteria population.

Inc: bacteremia at the last stage of infection. It measures the bacteremia increase between the
initial time and 24 h, that is, the end point of the simulation. In contrast with other parameters, it only
considers the initial and last state of infection:

Inc =
Bacteria(Time = 24h) − Bacteria(Time = 0h)

Bacteria(Time = 0h)
(3)

This measurement ignores the dynamics during the evolution of the disease and considers only
the last stage of the infection. Values higher than 1 indicate that there has been an increase in the
amount of bacteria at the end of the infection respecting the initial state, while values lower than 1
show that the amount of bacteria has decreased with respect to the beginning.

3.3. Running Environment for Simulations and Availability of the Source Code

The model was implemented in Matlab 2012b (Natick, MA, USA). The simulations were
performed in a cluster with 32 CPUs and 128 GB RAM memory. Each solution took on average 10 h.
The files containing model equations and rules, seeds for stochastic simulations and simulations are
provided here.

4. Discussion

Controlling bacterial pneumonia in patients that have reached the acute phase is complicated
due to the involvement of an uncontrolled inflammatory response. This severity occurs often in
immunocompromised patients like those from the aged population. Moreover, aged patients in
hospitals are exposed to nosocomial infections like Streptococcus pneumonia, among others. There is a
need for finding early diagnostics and therapeutic strategies able to reduce the risk of these patients
entering the acute phase of pneumonia.

To this end, according to our simulations, during the first hours of infection the activation and
recruitment of neutrophils is one of the main agents involved in this overwhelming inflammation in
aged individuals. There is experimental evidence suggesting an improvement in patients by acting on
the antibiotics timing [40], but to our knowledge the effect on early antibiotic administration in the first
stage of the infection has not been evaluated on aged patients.

To this end, we utilized a multi-level mathematical model to predict the effect of early antibiotics
treatment on an elderly clinical model of the disease. We base our predictions on a multi-level
mathematical model calibrated with a clinically accepted mouse model of CAP pneumonia [26].
Our model has been calibrated using data from experiments with S. pneumoniae. We have focused
on S. pneumoniae because it is the most prevalent bacterial lung infection. However, the current
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implementation of our model could be used with little changes to simulate the infection dynamics
associated with similar bacterial species.

To reproduce the situation of the elderly model we modified the parameters to fit the immunological
differences observed on aged mice with pneumonia [25]. This provided us with two different instances
of the model that reproduce the first hours of S. pneumoniae infection of an alveolar tissue in both aged
and young individuals (see Figure 1). We computed three different bacteremia metrics to compare the
simulated infection profiles for young and aged individuals, the results show slight differences in the
values for the integral metrics (R0, Dif ) compared to the one accounting for the instant bacteremia
values at the end of the simulation (Inc). This suggests that the scenarios analyzed cover the saturation
on bacterial growth inside the alveolus for a high amount of initial bacteria. Our simulations also
suggest substantial differences in the dynamics of the infection between the two clinical scenarios.
Younger individuals respond better to the alveolar infection producing far better measurements
concerning bacteremia.

The maximal similarity between the simulations for young and aged individuals occurs for very
early administration of antibiotics in aged individuals (τ = 4 h) compared to mid-time administration
in young individuals (τ = 12 h). Although younger individuals respond better to the very early
administration of antibiotics, the improvement can be observed in both age groups (Figure 3).
These results suggest that antibiotic timing has the capacity to counterbalance the impairment of
the immune response linked to the smaller early recruitment of neutrophils to the infection site.
We hypothesize that early, even prophylactic antibiotics administration can reduce the risk of acute
pneumonia for elderly patients, especially during hospitalization [41]. The underlying idea of the
hypothesis is that by drastically reducing the levels of bacteria in the very early phase of the infection,
we avoid the mid-term activation of local and systemic cytokine and chemokine-mediated autocrine
loops. These loops, when activated, could render the inflammation linked to the infection unresolved,
even under (late) administration of antibiotics (Figure 5A,B).

In this sense, profiling blood levels of neutrophils could be a surrogate to decide for preventive of
early antibiotics treatment in different patients. Further clinical assays based on these results could
identify neutrophils as biomarkers to identify sensitive patients that would require early antibiotics
after symptoms first appear during hospitalization. The main limitation for an early antibiotic treatment
is the delay observed from diagnosis [42]. Our results indicate that investing in accelerating diagnosis
for elderly patients in hospitals is a promising strategy for pneumonia that could compensate for
the age factor in these patients. Based on our results we proposed a decision tree for a personalized
treatment of pneumonia (Figure 5C). This decision tree could be validated by clinical studies with
patients under different conditions. The proposed protocol would be applied as follows: patients
with a planned (surgery, dialysis, chemotherapy) or unplanned (trauma) hospitalization involving a
pneumonia high-risk intervention (intubation, tracheostomy, etc.) would be split into high-risk and
low-risk patients based on age and other immunological conditions. Neutrophils levels would be
quantified in high-risk patients to further determine pneumonia risk. Finally, patients categorized
as high-risk based on both age/immune state and low neutrophil count would receive prophylactic
antibiotics in order to reduce their risk of bacterial pneumonia during or post-intervention.

Our multi-level model only reproduces the evolution of the infection in a single alveolus.
To generate with the model a spectrum of alveoli infection based on the level of exposure to bacteria,
we systematically modified the initial amount of bacteria infecting the alveolus and simulated the
dynamics of infection. The underlying assumption is that the only difference between the lung alveoli
at the initial point of infection is the amount of bacteria that they receive during the colonization of the
alveolar tissues from the upper airways. Thus, we think our systematic simulations in which we vary
bacteremia give a picture of the initial phases at the whole lung scale. However, the model cannot
reflect the role played by other immune cell populations and branches of the immune response in
the later phases of infection, but also cannot account for systemic processes induced by the parallel



Int. J. Mol. Sci. 2020, 21, 8428 13 of 16

infection of a large fraction of the alveoli in the lung. These are features that require an extended
version of the model with more cell types, cytokines, spatial processes and interlinked alveoli.
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Figure 5. (A) Graphical representation of the effect of early antibiotic administration on bacteremia
under the two different age scenarios (purple cell: neutrophils, beige cocci: S. pneumoniae). (B) The
hypotheses derived from the simulations is that under late antibiotics administration, sustained
bacteremia levels induce concomitant long-lasting tissue damage and inflammation, which activates
later cytokine-mediated feedback loops promoting unresolved inflammation (not shown in the
simulations). Under early antibiotics administration, the bacteremia and tissue damage never reach the
levels and duration necessary to trigger the sustained feedback activation. (C). Sketch of a possible
decision tree for a personalized treatment of pneumonia based on neutrophil count.

The mouse experimental model used to build the model in the present studio can differ from
community-acquired pneumonia (CAP) in humans because mice are inoculated in the experiments
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with a much higher amount of bacteria to ensure infection. However, this experimental model of
pneumonia is considered a valid alternative to study the evolution of pneumonia in humans [26].
Also, we expect that the bacterial local infection inside at the alveoli scale will not differ between
both situations. Instead, the initial distribution of bacteria in the whole lungs can represent the main
contrast between actual CAP and the experimental model.
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