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Abstract: The enhancement of physical activity is highly correlated with the conditions of the built
environment. Walking is considered to be a fundamental daily physical activity, which requires an
appropriate environment. Therefore, the barriers of the built environment should be identified and
addressed. Barriers can act as external stimuli for pedestrians, so pedestrians may diversely respond
to them. Based on this consideration, this study examines the feasibility of information-entropy-based
behavioral analysis for the detection of environmental barriers. The physical responses of pedestrians
were collected using an inertial measurement unit (IMU) sensor in a smartphone. After the acquired
data were converted to behavioral probability distributions, the information entropy of each grid cell
was calculated. The grid cells whereby the participants indicated that environmental barriers were
present yielded relatively high information entropy values. The findings of this study will facilitate
the design of more pedestrian-friendly environments and the development of diverse approaches
that utilize citizens for monitoring the built environment.

Keywords: walkability; environmental barrier; inertial measurement unit (imu); information entropy;
wearable sensing; built environment

1. Introduction

The promotion of physical activity (PA) in the general population is an essential factor
that improves public health [1,2]. Numerous previous studies have shown how the built
environment influences the behavior of pedestrians [3–8]. As the most widely practiced
form of both transportation and PA, walking and the walking environment have been the
focus of many studies [9–11]. In addition to environmental benefits compared to driving,
walking has also been linked to diverse health benefits in terms of reducing obesity [12–14],
improving cardiovascular health [15,16], managing diabetes [17,18], and improving one’s
quality of life [19,20]. To date, several built environments have been identified that correlate
to PA, including walking activity. Since walking activity is usually performed in a built
environment that incorporates various elements [21], pedestrian walkability is significantly
affected by the conditions of the built environment [4,6,7].

One of the methods for improving the walkability of a neighborhood is to eliminate
environmental barriers as an individual’s mobility may be impeded by diverse environ-
mental barriers. An environmental barrier, in terms of walkability, can be defined as an
environmental feature that restricts the comfortable use of the built environment by an
individual [22,23]. Considering that an environmental barrier is the result of the interac-
tion between an individual’s physical capacity and the environmental demands, it can
be interpreted as a relative concept [24]. For example, a physically impaired person may
be uncomfortable in a built environment that is designed for a normal person. An envi-
ronmental feature that causes discomfort in a certain group of pedestrians can become an
environmental barrier [25–27].
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To identify and address environmental barriers, governmental agencies have under-
taken various approaches including inspection by experts and encouraging individuals to
self-report [8,28]. In these approaches, inspectors observe the built environment to identify
potential environmental barriers and individuals report the environmental features that can
act as environmental barriers in their daily living [8,28–32]. Although these approaches can
identify and create a list of potential environmental barriers, there may be several problems
in the process of identifying these impediments. First, the inspection and self-reporting
process is time-consuming and expensive, especially for extensive areas [8,31]. Second,
these methods may omit certain environmental barriers as some barriers are constant
objects (fixed to a specific built environment) and others are spatial-temporal objects (e.g.,
temporary obstacles on sidewalks, illegal parking around a crosswalk, etc.).

Recently, various sensing methods based on image processing (e.g., images, videos,
and lidar) have been developed to identify potential environmental barriers [33–35]. Image-
based approaches collect data related to the interaction of pedestrians with the built
environment. Although these approaches solve the problems associated with conventional
techniques in that they are not time-consuming, labor-intensive, and are not based on
discontinuous monitoring, they may not be well-suited for the detection of environmental
barriers. It can be considered that environmental barriers are determined based on the
interactions of individuals with the built environment [8]. The environmental barrier is
a relative concept as each individual has distinct characteristics, and there are various
situational contexts in the built environment [23,36]. Therefore, it may be difficult to detect
environmental barriers using one objective criterion [31]. Moreover, image-based methods
suffer from the limitation of the line of sight [28,32]. For example, an image acquired by a
camera can include more than two individuals. Given that a camera usually has one angle,
more than two individuals can be overlapped in an image. Such overlaps may cause a
problem in that it is often not possible to secure the line of sight required for the behavioral
analysis of the obstructed individual.

As environmental barriers may cause abnormal behavior of pedestrians, the ability
to capture a scene that a pedestrian interacts with to identify the environmental barrier is
important. A pedestrian’s abnormal response may be the result of the interaction between
the individual and an environmental barrier [32]. Fortunately, recent developments in
wearable sensing technologies have shown the potential to analyze the interactions between
pedestrians and the built environment [8,30–32,37]. Wearable sensing technologies have
been used to monitor the conditions of the built environment by collecting and analyzing
the physiological responses of individuals [e.g., inertial measurement unit (IMU), pho-
toplethysmogram (PPG), electrodermal activity (EDA), electrocardiography (ECG), etc.].
These methods can capture specific features associated with a scene when an environmental
barrier causes an abnormal response of a pedestrian by directly monitoring the interaction
between a pedestrian’s response and the built environment.

The abnormal responses of pedestrians have been used to detect environmental
barriers [8,28,31,38]. By focusing on the reason why abnormal responses occur when a
pedestrian encounters an environmental barrier, the detection of the associated abnormal
responses can indicate its existence. In particular, several studies have attempted to
utilize gait patterns for the detection of environmental barriers [8,28,31]. In these studies,
the authors assumed that human gait patterns are constant in the absence of external stimuli.
As such, human gait patterns may be dispersed when there is an external stimulus such as
an environmental barrier. Based on this assumption, the studies investigated whether the
location of abnormal gait patterns coincided with the location of environmental barriers.
The results of these investigations demonstrated the feasibility of utilizing gait patterns for
the detection of environmental barriers.

Though previous studies have revealed the potential use of abnormal behavior in
the detection of environmental barriers, the method of identifying this irregular response
is not optimal. In previous studies, abnormality was measured based on the intensity of
the responses of several individuals at a specific point [8,28,31,38,39]. Bisadi et al. [39]
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investigated the correlation between environmental barriers using the average of the Maxi-
mum Lyapunov Exponential (MaxLE) and heart rate values. In a study by Lee et al. [32],
hot spot analysis was used based on the average of EDA values for a specific section.
Kim et al. [28] attempted to identify environmental barriers based on segment-specific
averages of EDA, gait pattern, and heart rate. Although these studies demonstrated the
potential use of abnormal behaviors in the detection of environmental barriers, the method
for determining abnormal behavior can potentially be improved. Previously reported stud-
ies have emphasized that individual behavioral characteristics are different [8,28,38,39].
As such, different individuals may respond differently to the same environmental barrier.
For example, if there is an obstacle on a walking path, a pedestrian may avoid it, another
individual may go over it, and so on. As previously indicated, environmental barriers may
elicit different reactions depending on the individual. Thus, a measurement metric based
on the diversity of individual responses to environmental barriers is required.

The purpose of this study is to develop and test a method for the identification of
environmental barriers using data (response variability of individuals) collected using
wearable sensors. Specifically, this study aims to: (1) develop a computational model
that quantifies the various responses of individuals that can be induced by environmental
barriers; and (2) investigate the feasibility of the proposed method via experimental testing.

2. Materials and Methods
2.1. Hypothesis

According to entropy theory, if one event is more likely to occur than another,
then the amount of information that can be determined based on observations of that
event is small [40,41]. Conversely, more information can be obtained by observing rare
events [42,43]. Several approaches have been proposed to utilize the Shannon entropy
or information entropy to understand the interaction between pedestrians and external
conditions. Zhang et al. [44] attempted to analyze crowd safety based on the distribu-
tion uniformity. Li et al. [45] Shannon entropy based on data collected from pressure
sensors to measure overcrowding conditions. Procházka and Olševičová [46] quantified
emerging patterns using Shannon entropy. If we examine the amount of information
(information entropy) based on the interaction between an individual’s response and the
walking environment, the interaction can be understood based on the following concept.

In the absence of external stimuli, human gait tends to maintain homeostasis [47].
External stimuli disturb the homeostasis of one’s gait, which may be interpreted as different
responses to stimuli [37,38]. As such, human behavior is more predictable in stable physical
conditions and is less predictable when environmental barriers are present. Therefore, envi-
ronmental barriers in a built environment increase the unpredictability of responses as they
may cause disruptions in normal routines. For example, although most pedestrians (users)
perform their normal gait on a well-maintained sidewalk, they will often modify their
response in the case of a defective sidewalk. If a pedestrian recognizes an environmental
barrier, he/she may slightly modify his/her path to avoid the barrier or perhaps cautiously
walk over it (change his/her gait pattern). Even in instances wherein the individual does
not recognize the barrier, it may affect his/her gait pattern.

2.2. Development of Entropy-Based Abnormality Assessment Method

In information theory, the entropy of a random variable is the average level of informa-
tion or uncertainty [48–50]. Shannon [51] introduced the concept of information entropy to
quantify the uncertainty of a random variable. The Shannon entropy (SE) can be calculated
using Equation (1).

H(X) = −∑n
i=1 p(xi) log p(xi) log p(xi) (1)

where H(X) is the entropy, and p(xi) is the probability distribution.
To detect environmental barriers using information-entropy-based on a pedestrian’s

behavioral response, it is necessary to first calculate the distribution of the response (p(xi)
in Equation (1)) at a specific point. The pedestrian’s behavioral response can be expressed
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as a wide variety of features. In this study, the distribution of the responses was estimated
based on the strength of the responses used in previous studies [8]. The intensity of the
reaction was expressed as the sum of the three-axis acceleration acquired based on the
inertial measurement unit and can be expressed as Equation (2).

SVMij =

[
∑n

k=1

√
xk

2 + yk
2 + zk

2
]

n
(2)

where n is the total number of IMU measurements of the jth participant on the ith grid
cell, xk is the kth acceleration of the anterior-posterior axis, yk is the kth acceleration of the
horizontal axis, and zk is the kth acceleration of the vertical axis.

Although an signal vector magnitude (SVM) has the potential to capture a subtle
bodily response [52–54], an SVM range varies depending on the individual because his/her
physical characteristics and interaction with an environmental barrier are unique. This dif-
ference may lead to a difficultly in the integration of multiple behavioral responses. There-
fore, the SVM values of each pedestrian were normalized to correct for inter-individual
variance [52]. After calculating the normalized SVM values, the normalized values were
classified in the range of 0.2. The total number of sections used was 40. The normalized
values of gaits ranged from −3.0 to 5.0 (x-axis in a probability distribution) and each section
had a range of 0.2. For example, the first section ranged from −3.0 to −2.8 (in normalized
value of gait) and the last symbol ranged from 4.8 to 5.0. Moreover, to understand the
range in terms of gait, it should be noted that the closer the symbol’s range is to 0 (e.g.,
range is from −0.2 to 0.0, and range from 0.0 to 0.2), the closer it is to normal walking.
The classified values of all the subjects were sorted by location, and the sorted values were
used to establish a probability distribution by location.

Figure 1 illustrates the five steps for calculating the information entropy. First, each par-
ticipant’s SVM values for all the experiments were collected. Second, all the collected data
of each subject were calculated as SVM values, and these SVM values were normalized.
Third, the normalized SVM values were distributed to the corresponding grid cells. Fourth,
the probability distribution of each grid cell was established. Finally, the entropy of each
grid cell was calculated using Equation (1).

Figure 1. Example of the calculation process of entropy.
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2.3. Experiment Design

To confirm the feasibility of identifying environmental barriers using information
entropy values based on a pedestrian’s behavior, an experiment was performed in a
walking environment. A total of 36 participants (20 males and 16 females) were recruited
including 14 participants aged 65 years or older. None of the participants had a history of
medical problems and they each voluntarily expressed their intention to participate in the
experiment. Prior to the experiment, all participants were informed that the trial had been
approved by the institutional review board (IRB) and that all data would be anonymized
and used for research purposes only. Table 1 summarizes the demographic information of
the participants.

Table 1. Summary of participants’ information.

Statistical Parameter Age Height (cm) Weight (kg)

Mean 42.28 170.86 70.63
Median 31 171 68.94

Standard Deviation 20.87 8.07 11.51
Maximum 70 183 90.48
Minimum 20 158 48.76

All of the participants were asked to walk at a comfortable pace along a route estab-
lished for this study (total distance of approximately 1 km). Each participant attached
a smartphone to his/her waist. A fitness belt was used to affix the smartphone to the
body during the experiment. During data acquisition, the smartphone collected 3-axis
acceleration data and location information. To minimize the effect of changes in the external
temperature or humidity, the experiment was conducted for 3 groups of 12 individuals
over 3 days, from 3 September 2021 to 5 September 2021. During the experiment, the
temperature was between 26 ◦C and 28 ◦C, and the humidity was between 30 and 40%.

The details of the experiment are shown in Figure 2. First, each participant listened to
an introduction about the experiment for approximately 10 min at the Start Point (Point
S in Figure 2) and walked along the set path to the finish point. After a break of 10 min,
the experimenter and the participant walked along the path together to examine and record
the points at which the participant experience discomfort or an environmental barrier.
This information was used to analyze the correlation between the information entropy and
the environmental barriers suggested by the participants in the data analysis process.

Figure 2. Overview of the experimental site including the path and environmental barriers.
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3. Results

After the participants walked along the path, it was traversed a second time with an
experimenter to document the locations where discomfort was experienced, which were de-
termined to be environmental barriers in this study. Table 2 exhibits information regarding
the type and location of the environmental barriers. There are a total of 16 environmental
barriers. Apart from broken blocks, which were investigated in several studies [8,29],
illegal parking on sidewalks and stocked materials were also recognized as environmental
barriers. The location of the environmental barriers was used for comparison with the
information entropy value of each grid cell.

Table 2. Environmental barriers at the experimental site.

Cell # Description Figure Cell # Description Figure

3 Broken blocks

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

98 Obstacle

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

12 Parked vehicles with
narrow path

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

120 Broken blocks

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

33 Parked vehicles with
narrow path

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

123 Parked vehicles with
narrow path

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

48 Parked vehicles
(narrow path)

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

136 Parked electric scooter

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

64 Illegal smoking area

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

144 Broken and unfixed
blocks

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

69 Unfixed blocks

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

147 Illegally stocked
materials

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

70 Illegal smoking area

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 

156 Parked vehicles with
narrow path

Int. J. Environ. Res. Public Health 2021, 18, x  7 of 16 
 

 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure 
Cell 

# Description Figure 

3 Broken blocks 

 

98 Obstacle 

 

12 Parked vehicles with narrow path 

 

120 Broken blocks 

 

33 Parked vehicles with narrow path 

 

123 Parked vehicles with narrow path

 

48 
Parked vehicles 
(narrow path) 

 

136 Parked electric scooter  

 

64 Illegal smoking area 

 

144 Broken and unfixed blocks 

 

69 Unfixed blocks 

 

147 Illegally stocked materials  

 

70 Illegal smoking area 

 

156 Parked vehicles with narrow path

 



Int. J. Environ. Res. Public Health 2021, 18, 11727 7 of 14

Table 2. Cont.

Cell # Description Figure Cell # Description Figure
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The results of the experiments are presented in Figure 3. Each result was calculated
based on the information entropy and the average of the SVM values collected from all
of the participants. There are 18 grid cells marked in grey that represent the existence of
environmental barriers as determined based on surveys performed in the second phase of
the experiment. Figure 3a shows the SVM value of each grid cell. In several grey locations,
the SVM values are higher than those of the cells which do not contain an environmental
barrier. The average of the SVM values in the cells associated with environmental barriers
is 14.56, and the average of the SVM values in the cells that are not associated with
environmental barrier cells is 13.93. Similar to previous studies [8,28,39], this result shows
an increase in the intensity of the response of the pedestrians to the environmental barriers.
However, half of the 18 environmental barriers did not exhibit a significant difference in
terms of the SVM values. In particular, the SVM values of cells (48, 64, 68, 70 84, 92, 136,
161, and 172) that are associated with environmental barriers do not show clear peak points.
Although several cells with environmental barriers do not show a clear peak point in SVM
values, there is a statistical difference between cells with an environmental barrier and
cells that do not contain an environmental barrier (α < 0.05, p = 0.009). Therefore, they are
not manifest in the data in a way that could serve as crucial information for detecting an
environmental barrier in a walking environment.

Figure 3b illustrates the results for the information entropy by location. In cells that do
not contain an environmental barrier, the range of the information entropy values ranged
from 3.290 to 3.898, with an average of 3.606. Considering that human behavior during
walking follows a regular cycle [37,38,44], the probability associated with the cells that
do not contain an environmental barrier follows a normal distribution (high regularity).
However, the information entropy values associated with environmental barriers are
relatively high compared to those of cells that do not contain an environmental barrier.
In the case of environmental barriers, information entropy values range from 4.082 to
5.176, and the average is 4.588. Moreover, all the information entropy values in the cells
associated with the environmental barriers are over 4.0. In addition, a t-test was performed
to confirm the differences between the younger and elderly groups. The significance level
was set at α < 0.05, and the p-value was less than 0.001. Based on this result, it can be
confirmed that the difference between the two groups is statistically significant.

Comparing the SVM value and the information entropy value in more detail, the fol-
lowing three interesting points can be observed. First, both the peak value of the SVM
and the peak value of information entropy coincide with the environmental barrier at Box
No. 1 in Figure 3. However, in Box No. 2, the SVM values in the cell corresponding to
the environmental barrier are not represented as peak values. However, in the case of
information entropy, the peak values and the existence of environmental barriers coincide.
The SVM values do not exhibit peak values even when the behavior of pedestrians changes
due to the environmental barriers because their response is diverse. Some participants
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displayed a stronger reaction (high magnitude of the response) to an environmental barrier;
others displayed behaviors including walking cautiously in response to external stimuli.
In this case, the average SVM value at a point may not coincide with the value associated
with the existence of an environmental barrier. Although the SVM values in Box No.2 do
not coincide with the existence of environmental barriers, the peak points of information
entropy and the existence of environmental barriers coincide. As the variability of the
response increases, the irregularity increases. As such, as the amount of information in-
creases, the value of the information entropy increases. Finally, the points identified by
red rectangles for Box No. 3 in Figure 3a show higher SVM values than the average value
despite the absence of environmental barriers. Conversely, the points identified by the red
rectangles in Box No. 3 in Figure 3b are within the range of information entropy values for
cells that do not contain an environmental barrier.

Figure 3. Calculation results: (a) Average of SVM values; and (b) Information entropy values.

To confirm the feasibility of using information entropy to detect environmental barri-
ers, the relationship between each calculated value (SVM and information entropy based
on the presence or absence of environmental barriers was quantitatively compared. The
SVM and information entropy values of the cell are continuous variables, whereas the
existence of environmental barriers can be represented as a binary variable (existence
as 1 and nonexistence as 0). To investigate the relationship between the existence of an
environmental barrier and the response of the participant in a statistical manner, this study
used the point biserial correlation coefficient. The point biserial correlation coefficient is
generally used when one variable is dichotomous and the other is continuous. For this
coefficient, the values that relate to the existence of the environmental and the pedestrian’s
response were calculated using Equation (3) as follows:

rpb =
(M1 − M0)

√
(n1n0/n2)√

1
n

n
∑

i=1

(
Xi − X

)2
(3)
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where rpb is the point biserial correlation coefficient; M1 is the mean value of the contin-
uous variable X (SVM values or information entropy values) for all data points in group
1 (existence of environmental barrier); M0 is the mean value of the continuous variable
X (SVM values or information entropy values) for all data points in group 2 (nonexistence
of environmental barrier); n1 is the number of data points in group 1; n0 is the number of
data points in group 2, and n is the total sample size.

Based on the point biserial correlation, the correlation between each metric and the
existence of an environmental barrier was compared. The coefficients of each metric were
0.254 (α < 0.05, p = 0.002) for the SVM values and 0.842 (α < 0.05, p < 0.001) for the informa-
tion entropy values. According to previous studies [49,50], a correlation coefficient over
0.7 indicates a high degree of correlation. In the results, it was determined that the infor-
mation entropy (of a pedestrian’s collective response) and the existence of environmental
barriers are highly correlated. The correlation of SVM is much lower than the correlation
of information entropy. As previously mentioned, the SVM values of cells (number 48,
64, 68, 70 84, 92, 136, 161, and 172 in Figure 3a) do not match well with the existence of
environmental barriers. Upon comparing the information entropy values are well matched
with the existence of environmental barriers, the more unmatched points of the SVM
decrease the coefficient of correlation. As previously indicated, environmental barriers
can be partially identified only by the intensity of the pedestrian’s behavior (SVM value).
However, it can be experimentally confirmed that the value of the information entropy,
which considers that pedestrians have a diversity of responses owing to the characteristics
of the environmental barrier, can be more effective for detecting environmental barriers.

4. Discussion
4.1. Effectiveness of Data Collection from Diverse Groups

In this study, 22 individuals in their 20’s to 30’s (the younger group) and a second
group with members over 65 years (the elderly group) were recruited. Figure 4 shows the
information entropy values of each group according to location. Overall, the younger group
and the elderly group show similar plots. However, the average values of the 2 groups
are 3.331 (the younger group) and 4.268 (the elderly group). Apart from the similarity of
the patterns, the average values of the information entropy of these two groups show a
clear difference. In particular, several cells show different patterns of information entropy
between the two groups for the same environmental barrier, as indicated by the three
blue boxes in Figure 4. In cell no.33, motorcycles were illegally parked on the sidewalk.
The elderly group show a relatively high information entropy value although the space on
either side of the motorcycle (approximately 80 cm) was sufficiently wide for a pedestrian to
pass through. Second, there was an illegal smoking area in cell no. 64. When the experiment
was conducted, smokers were temporarily present. A smoker was in the cell when six of
the younger group passed that cell during the experiment. Although it was a temporary
situation, the six younger participants appeared to have exhibited unusual behavior in the
process of avoiding the smoking area. For this reason, it appears that a high information
entropy value was observed for this cell. Finally, in cell 144, the pavement blocks of the
pedestrian path were not fixed. Although the area of broken and unfixed blocks was not
large, it was determined that they served as an environmental barrier that could induce
significant behavioral changes in the elderly group. In addition, a t-test was performed to
confirm the differences between the younger and elderly groups. The significance level was
set at α < 0.05, and the p-value was less than 0.001. Based on this result, it can be confirmed
that the difference between the two groups is statistically significant. A comparison of the
information entropy values of the two groups indicates that the data collected from various
groups can assist in the detection of additional potential environmental barriers.
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Figure 4. Information entropy by group: (a) Younger group; and (b) Elderly group.

4.2. The Possibility of Wearable-Based Sensing Approaches for Detecting Environmental Barriers

Built environmental monitoring and assessment is usually conducted by experts or
trained inspectors from governmental agencies. Despite the importance of maintaining
sufficient functions and conditions of the built environment for citizens, the time interval
between inspections may be long depending on the availability of staff and funding. For this
reason, continuous monitoring of the built environment is rarely performed. The recent
development of wearable sensing devices and the innovation of people-centric sensing is
expected to not only solve existing problems, but also provide new opportunities. If the
users of a built environment use wearable equipment and supply data acquired during
daily activity, this can serve as the basis for monitoring. The information-entropy-based
approach proposed in this study can provide information on the interaction between
citizens and environmental barriers. In particular, this study suggests a method wherein
data can be continuously collected and utilized data to identify environmental barriers
using smartphones. The proposed approach can identify a location using an entropy value,
which facilitates identification based on continuous monitoring. Despite these advantages,
several challenges must be addressed to improve the feasibility of the approach, including
the recruitment and sampling of participants [55], and the protection of their privacy [56].

4.3. Contibutions of the Proposed Method

The information entropy-based environmental barrier detection method proposed
in this study hypothesizes that pedestrians’ responses become more irregular when envi-
ronmental barriers are present. This hypothesis was confirmed through the results of the
experiments. Information entropy is a metric used to confirm the existence of environmen-
tal barriers. When there is an environmental barrier, pedestrians exhibit various reactions
in response to the barrier. Information entropy based on the diversity of behaviors is highly
correlated with the existence of environmental barriers compared to existing intensity-
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based approaches. The reason for this result can be inferred as follows. First, responses
due to individual physical and cognitive differences are diversified, and information en-
tropy is a metric that can represent this diversity well. In addition, information entropy
is the average of all the available information. That is, various responses to the external
environment mean that the amount of information increases, which in turn implies that
even if only some of the pedestrians show irregular responses, they are included in the
information entropy calculation process. Therefore, information entropy can be used as a
metric to find the discomfort groups (e.g., the elderly, children, disables, etc.) that may be
vulnerable to environmental barriers. Therefore, it can be observed that the information
entropy of pedestrians has high utility for environmental barrier detection. In addition,
the method proposed in this study can enable citizens to play the role of data providers in
future smart cities. In other words, a citizen with a smartphone generates data during the
walking process, and the server analyzes the data to automatically identify environmental
barriers. This analysis can be performed in near-real-time if the server has sufficient data
transmission/reception and processing capabilities.

4.4. Limitations and Future Research

This study focused on investigating the feasibility of utilizing information-entropy-
based behavioral analysis for detecting environmental barriers. Although the results
indicate that the suggested approach is feasible, there may be several limitations related
to its real-world application such as diverse pedestrians and their behavior, and complex
environments. In this study, the recruited participants were healthy individuals who had
no discomfort in walking. However, some of the participants may have been more sensitive
to the conditions of the walking environment or the presence or absence of environmental
barriers than others. In particular, it was necessary to consider children or individuals who
required assistive devices (e.g., wheelchairs, canes, walkers, etc.) because their ambulatory
characteristics are different from those of normal healthy adults. Second, the walking
environment that was investigated in the study did not effectively represent a typical real-
world environment. In the real world, not only the fixed walking environment, but also the
non-fixed walking environment must be considered. For example, there are factors such as
the movement of vehicles or other pedestrians in the walking environment. In this study,
the temporary environmental barriers such as the smokers in cell No. 64 may be considered
as a time-dependent factor. Moreover, privacy issues must also be resolved for the general
application of the proposed approach. In this study, the authors collect data from people’s
daily lives and identify environmental barriers. In this process, the travel route, length
of stay, and physical activity can be examined via the individual’s daily life data, and as
a result, the potential infringement of privacy must be considered. In the investigation,
the authors manually handled and anonymized all the data collected from the participants.
Once the suggested approach is practically applied to a broad extent such as at the city
level, such a manual anonymization process may not be possible. Thus, data processing
for anonymization and encryption will be investigated in the future.

5. Conclusions

Environmental barriers in the walking environment may cause discomfort to pedestri-
ans or serve as a factor that hinders physical activity. Therefore, environmental barriers in
a built environment should be identified and addressed. However, current practices such
as surveys and inspections by experts are usually time-consuming and labor-intensive.
Moreover, they are typically not continuous. To address these issues, the feasibility of infor-
mation entropy using data obtained via wearable sensors was investigated to detect envi-
ronmental barriers. In this respect, it was hypothesized that there is a relationship between
information entropy and environmental barriers. To test this hypothesis, 36 participants
were recruited, and the participants participated in an experiment that involved the attach-
ment of a smartphone to their body. After data collection, the probability distribution of
the gait data for each grid cell was obtained and the information entropy was calculated.
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The environmental barriers and information entropy obtained at the 1 km site showed a
high correlation. The findings indicate that information entropy can be an effective metric
for the identification of environmental barriers.

The main contribution of this paper is the confirmation of the correlation between the
existence of an environmental barrier and the associated information entropy value owing
to the response of a pedestrian. In particular, an environmental barrier acts as external
stimuli that can hinder a pedestrian’s normal gait. Moreover, the wearable-sensor-based
approach utilized in this study facilitates continuous and facile monitoring of the walking
environment. This approach can be extended to serve as the basis of people-centric sensing
and participatory sensing for the improved monitoring of a built environment.
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