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ABSTRACT Two decades of fast-paced innovation have improved the spatial resolution of fluorescence microscopy
to enable molecular resolution with low invasiveness and high specificity. Fluorescence microscopy also enables sci-
entists and clinicians to map and quantitate the physicochemical properties (e.g., analyte concentration, enzymatic activities,
and protein-protein interactions) of biological samples. But the biochemical resolving power of fluorescence micro-
scopy is not as well optimized as its spatial resolution. Current techniques typically observe only the individual
properties of fluorescence, thus limiting the opportunities for sensing and multiplexing. Here, we demonstrate a new,
to our knowledge, imaging paradigm, hyperdimensional imaging microscopy, which quantifies simultaneously and
efficiently all the properties of fluorescence emission (excited-state lifetime, polarization, and spectra) in biological
samples, transcending existing limitations. Such simultaneous detection of fluorescence features maximizes the
biochemical resolving power of fluorescence microscopy, thereby providing the means to enhance sensing capa-
bilities and enable heavily multiplexed assays. Just as multidimensional separation in mass-spectroscopy and multi-
dimensional spectra in NMR have empowered proteomics and structural biology, we envisage that hyperdimensional
imaging microscopy spectra of unprecedented dimensionality will catalyze advances in systems biology and medical
diagnostics.
INTRODUCTION
The biochemical environment of tissues and cells can be
probed either by analyzing the fluorescence of several
naturally occurring, often metabolic-related, biomole-
cules (e.g., various forms of nicotinamide adenine dinu-
cleotide in its oxidized or reduced forms NADþ/NADH)
and flavin adenine dinucleotide (1,2) or by analyzing
the fluorescence of environmentally sensitive fluoro-
phores (e.g., organic molecules and fluorescent proteins
sensitive to pH) introduced into the sample by chemical
or genetic means (3,4). FRET (Förster resonance energy
transfer) is also a well-established and widely used tech-
nique that enables cellular metabolism (e.g., with glucose
and ATP probes (5,6)) and signaling (e.g., with phos-
phorylation, acetylation, and methylation probes (7))
to be mapped on single living cells. Often, these
assays alter several properties of fluorescence. For
instance, the heterogeneous biochemical milieu of tissues
introduces complex optical-biochemical signatures into a
specimen’s fluorescence, or FRET alters the spectra,
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lifetime, and polarization of the FRET pair emission.
However, state-of-the-art biochemical imaging tech-
niques often rely just on the detection of simple optical
features.

We hypothesized that the simultaneous detection of
multiple characteristics of fluorescence would permit
us to extend significantly the biochemical resolving
power in fluorescence microscopy, thus supporting more
precise measurements or increased multiplexing capa-
bilities (e.g., multiple diagnostic markers or biochemical
probes). Here, we illustrate the implementation of a
novel, to our knowledge, detection paradigm that enables
the parallel detection of all properties of fluorescence
(‘‘hyperdimensional detection;’’ see Supporting Materials
and Methods, Text S1) and provide the first analytical
tools (HDIM-toolbox; see Supporting Materials and
Methods, Text S2) to handle such complex data sets.
We demonstrate how hyperdimensional imaging micro-
scopy (HDIM) maximizes the biochemical resolving
power of fluorescence microscopy and provide proof-of-
concept experiments to illustrate how its increased resolu-
tion and multiplexed capabilities could be utilized in
biomedical and clinical applications.
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MATERIALS AND METHODS

Microscopy and general principles of HDIM image
analysis

Schematics of the microscope are shown in Supporting Materials and

Methods (Fig. 1 a; Figs. S2 and S3). Briefly, two-photon excitation

(TPE) is provided by a tunable femtosecond-pulsed Ti:sapphire laser

(Chameleon Vision II; Coherent, Santa Clara, CA). TPE provides the ideal

excitation for nanosecond lived excited-state lifetime estimation and a high

dynamic range for anisotropy measurements (a maximum of 0.57 vs. 0.4 for

one-photon excitation (8)); it also permits the simple separation of the

infrared excitation light from ultraviolet-visible fluorescence emission
FIGURE 1 Sensing and unmixing by hyperdimensional imaging microscopy

analysis of biochemical signatures introduced into the photophysical properties o

of fluorophores (here R6G and FITC) can be achieved with the simultaneous det

Unmixing of different biochemical environment sensed by R6G and FITC is en

natures: spectral peak (e), spectral peak versus lifetime (f), and by PCA (g). Pea

R6G and FITC mixture, followed by ‘‘0’’ (0% glycerol, 200 mMKCl), G (65% gl

glycerol, 100 mM KCl, 100mM KI). Red and orange labels indicate nonresolve
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spectra and second harmonic signals. Care should be taken to avoid insta-

bilities of the polarization of the excitation light. The system we developed

was built around a Leica SP5 confocal/multiphoton microscope (Leica

Microsystems Ltd, Milton Keynes, UK), which uses a periscope formed

by a polarization beam splitter (PBS) and a mirror. The PBS works together

with a half-wave plate to finely tune the excitation power. The poor contrast

ratio of a PBS and nonideal performance of the reflection utilized in the

periscope introduced elliptical polarization at the entrance of the micro-

scope, which we cleaned up with a Glan-Thompson polarizer (Newport,

Irvine, CA; see Fig. S3). HDIM detection was achieved by coupling two

grating-based spectrographs (200 nm bandwidth) with a PBS. Each

spectrograph was equipped with a multianode photomultiplier tube and

electronics for multidimensional time-correlated single-photon counting.
(HDIM). HDIM relies on the controlled excitation of the sample and by the

f fluorophores within the sample (a). Sensing the biochemical environment

ection of emission spectra (b), fluorescence lifetime (c), and anisotropy (d).

hanced by the increased dimensionality of the analyzed photophysical sig-

ks are marked with the labels ‘‘F’’ for FITC, ‘‘R’’ for R6G, and ‘‘D’’ for an

ycerol, 200 mMKCl), Q (0% glycerol, 100 mMKCl, 100 mMKI), or B (65%

d and partially overlapping peaks, respectively. The excitation is 840 nm.
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All time-correlated single photon counting electronics, detectors, and spec-

trographs were purchased from Becker & Hickl (Berlin, Germany). Equip-

ment for excitation, scanning, and detection is commercially available;

hardware and software for the integration of these parts have been devel-

oped in-house. The system design is described in Figs. S2 and S3 and

can be easily replicated. The HDIM-toolbox is freely available at a

GitHub repository (http://www.github.com/alesposito/HDIM-toolbox) and

described in Supporting Materials and Methods. At any given image pixel,

this setup provides 16 spectral channels over 2 polarization states with

arrival times typically histogrammed over 64 time bins. HDIM was cali-

brated with a laser comb provided by the standard laser lines of the confocal

microscope (458, 488, 514, 561, 594, and 633 nm), back reflected by the

objective lens and with a white-light-emitting diode with which light was

scattered by a frosted glass. Typical acquisition times for images of

256 � 256 pixels were within 1–2 min (solutions or Convallaria majalis

samples). Further details about sample preparation and imaging protocols

can be found in Supporting Materials and Methods. Images were acquired

with an HCX PL APO CS 40 � 1.25 NA oil objective with a 1.93 zoom,

thus imaging a field of view of 200 mm side.
Sample preparation and analysis in solution

Fluorescent solutions were prepared from ethanol stock solutions of fluores-

cein isothiocyanate (FITC; 1 mM; Fluka Analytical, Sigma-Aldrich, St.

Louis, MO) and rhodamine 6G (R6G, 5 mM; Sigma-Aldrich) to a final con-

centration of 10 and 1 mM, respectively. Aqueous solutions were prepared

with 200 mM KCl (Sigma-Aldrich) and a constant ethanol concentration

(10% v/v). Fluorophores were quenched by equimolar substitution of

KCl for Kl (100 mM; Sigma-Aldrich), and their rotational correlation

time increased with 65% v/v glycerol (AnalaR NORMAPUR; VWR Inter-

national Ltd, Lutterworth, UK). The concentrations of the fluorophores

were selected to provide a similar brightness with TPE at 840 nm. We pre-

pared 12 different solutions. We prepared three solutions in 200 mM KCl:

FITC (F), R6G (R), FITC þ R6G (D); in 100 mM KCl and 100 mM

Kl: FITC (FQ), R6G (RQ), FITC þ R6G (DQ); in 200 mM KCl and glyc-

erol: FITC (FG), R6G (RG), FITC þ R6G (DG); in 100 mM KCl, 100 mM

Kl and glycerol: FITC (FB), R6G (RB), FITCþ R6G (DB). Solutions were

imaged sequentially in a glass-bottom microtiter plate. The characteristic

spectra, fluorescence lifetimes, and polarization anisotropies displayed in

Fig. 1, b–d and in Fig. S4 are shown after summing all photon counts of

the HDIM data sets along all the dimensions, but the spectroscopic dimen-

sion of interest. For example, one-dimensional spectra were computed by

summing the HDIM images over the x, y, and pairs of time- polarization

or spectral- bins. The distributions shown in Fig. 1, e–f and Fig. S5, a–f

were obtained by summing the HDIM images along pairs of spectroscopic

features as well, but not over space. A single spectral feature (spectral peak,

average fluorescence lifetime, and polarization anisotropy) was then evalu-

ated in each pixel of the images, and the resulting values were histo-

grammed to display the variability of the measurements, with the

resulting distributions summed to create a single plot showing their relative

separations. Principal component analysis (PCA) (9) was performed on the

full pixel ensemble of 12 HDIM data sets representative of the measured

solutions after a 4 � 4 binning procedure in the x and y spatial dimensions

for handling the large data sets. The trained PCA transform was then

applied to the original full-size data set independently, and the distribution

of individual components were then pooled together to show separations

(Fig. 1 g, Fig. S4, g–l, and Fig. 2 b) as for the physical quantities

(Fig. 1, e–f, Fig. 2 a, and Fig. S4, a–f) already described.
Sample preparation and analysis of C. majalis

C. majalis sections stained with Safranin and Fast Green and then mounted

were purchased from Leica Microsystems UK (category number: As3211;

Milton Keynes, United Kingdom).
To provide digital images resembling counterstains used typically in his-

topathology (HE and 3,30-diaminobenzidine (DAB)), we initially perform

PCA on the pixel ensemble of an HDIM image. By definition, the principal

component of PCA maximizes contrast among the pixel, hence providing a

color channel with the maximal contrast within the acquired image. The

subsequent components provide a decreasing level of contrast until they

contain just noise. The digital stains are generated with the function ‘‘if_

hdim_pca_rgb2dab’’ included in the HDIM-toolbox. Briefly, each of the

first four PCA component (n ¼ 1, 2, 3, 4) at each pixel location (i, j),

was first stretched between the extreme values, PCA(i, j)0n ¼ (PCA(i,

j)n�PCAmin
n)/(s(PCA

max
n�PCAmin

n)). PCA
min

n is the minimum of each

component within an image. However, aiming to moderate noise-dependent

variations, PCAmax
n was computed empirically as the sum of the median of

PCA(i, j)nwith three SDs. s is a value computed to reach the desired level of

saturation of the images, which is optionally left equal to one or computed

to restretch the PCA(i, j)0n values to saturate during the visualization at the

95% percentiles. All these operations are designed to achieve a good level

of robustness in the automatic visualization of the stains. The color projec-

tions are then computed on the resulting PCA(i, j)0n values. The HE-like

representations (labeled as ‘‘PCA > DAB3’’ by the HDIM-toolbox) visu-

alize the first three PCA components as the magenta, cyan, and black com-

ponents of a CMYK (magenta, cyan, yellow, and black) image composite,

where the yellow channel was left empty. The CMYK image composite was

then projected to the red-green-blue (RGB) color space for visualization.

The DAB-like representation (labeled as PCA > DAB4 by the HDIM-

toolbox) was computed in the same way but included the fourth (shown)

or the sum of additional components (data not shown) as the yellow channel

of the CMYK composite before the color transform to the RGB color space.

These transforms permitted us to visualize the first three or four PCA com-

ponents in color spaces similar to histopathological counterstains.
RESULTS

Improving biochemical resolving power

The formal description of the Fisher information for a multi-
channel, multiparametric detection demonstrates the net in-
crease in the biochemical resolving power that can be
achieved theoretically (10). In Fig. S1 and Supplemental
Materials and Methods, Text S2, we provide a brief descrip-
tion of the theory and a simple graphical interpretation of
the theoretical results. The photon partitioning theorem
(10) predicts that the detection of photons into an increasing
number of distinct ‘‘detection channels’’ tends to maximize
information from the optical-biochemical system under
investigation. Here, we test this prediction experimentally,
with the engineering and testing of a detection system em-
ploying multiple parallel detection channels, each with elec-
tronics that generate histograms containing information
about the polarization, color, and arrival time of each de-
tected photon at every position within the sample.

Fig. 1 a and Figs. S2 and S3 depict the experimental setup
and the conceptual representation of HDIM. A pulsed laser
(here, a Ti:sapphire laser for TPE) provides tightly
controlled excitation light of known timing, polarization,
and spectra, which is delivered to the sample with a laser
scanning microscope. Fluorophores and the biochemical
environment of the sample reshape the excitation signal,
introducing complex optical signatures in the emitted fluo-
rescence that are fully characterized by hyperdimensional
Biophysical Journal 116, 1815–1822, May 21, 2019 1817
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FIGURE 2 Improving biochemical resolving po-

wer by HDIM. We can build three-dimensional

spectra utilizing physical properties of fluorescence

((a) lifetime versus anisotropy versus wavelength)

or principal components (b). Each multidimensional

spectrum (either two-dimensional as in Fig. 1 and

Fig. S5 or three-dimensional in (a) and (b)) results

in different statistical confidence for separating the

tested samples. (c) shows how two-dimensional

spectra of physical quantities provide good results

but with several peaks that are less resolved. The ar-

rows indicate the worst performances for each type

of analysis. (d) Multivariate analysis improves

significantly the confidence with which the closet

objects can be separated; unsurprisingly, the first

and second principal components (red arrow) pro-

vide the highest confidence. A direct comparison

between PCA and physical quantities is shown for

the three-dimensional spectra in (e). The arrows

indicate the worst performance of the two methods

also in this representation. (f) (blue: PCA spectra;

red: physical quantities; one to three indicate the

pairs as per c and d, from top to bottom). (g) A

plot of the average separability index (Sij) as defined

in the Supporting Materials and Methods is shown.
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detection, achieved with a pair of multiwavelength time-
correlated single-photon-counting detectors (see Materials
and Methods). The photophysics (biochemistry) of the sam-
ple is thus described by 2048 values (i.e., photon counts
accumulated into 16 spectral bins) two polarization states,
and 64 time gates within each pixel of the acquired image.
With the use of HDIM-tailored analysis algorithms, it is
then possible to retrieve biochemical signatures from the
complete photophysical characterization of the sample.

To demonstrate the sensing and unmixing capabilities of
HDIM, we imaged various solutions prepared with 1 mM
R6G and 10 mM fluorescein. Glycerol was used to reduce
the rotational freedom of the fluorophores, and equimolar
substitution of potassium chloride with the quencher potas-
sium iodide was employed to reduce their fluorescence
lifetime (see Figs. S4 and S5 for the complete data set).
Fig. 1, b–d shows how the emission spectra, lifetime, and
anisotropy of a mixture of R6G and fluorescein are altered
1818 Biophysical Journal 116, 1815–1822, May 21, 2019
by their biochemical environment and how HDIM can sense
these changes. By means of spectra of increasing dimen-
sionality, HDIM can successfully separate different physi-
cochemical environments (Fig. 1, e and f). Fig. S5, a–f
further demonstrates that the 12 different mixtures of
R6G, fluorescein, glycerol, and potassium iodide can be
resolved only with spectra of higher dimensionality
compared to typical one-dimensional spectral information.
We also tested the benefits of implementing PCA as mean
of contrast enhancement for the analysis of HDIM data
sets (see Fig. 1 g; Fig. S5, g–l). Three-dimensional spectra
generated by photophysical features (Fig. 2 a) or principal
components (Fig. 2 b) further illustrate the capability to
increase the separability of different photophysical/
biochemical features with spectra of higher dimensionality.
To analyze the enhanced resolving power at increasing
dimensionality, we quantified the separability (11) of
different pixel clusters with the Euclidian distance between
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their centroids divided by the root sum of their variance
(Fig. 2, c–g; see Supporting Materials and Methods). The
separability of the pairs of pixel-clusters might either
improve or deteriorate with spectra of higher dimension-
ality. However, Fig. 2 shows that the separability of the
closest pixel cluster (i.e., the worst-resolved pair) improves
at higher dimensionalities. It is possible to enumerate tens of
different spectroscopic features (12) that could be extracted
from an HDIM data set aiming to improve the separability
of these pixel clusters. Instead, we have implemented
PCA to achieve a representation of the data that provide
the smallest possible dimensionality together with the
advantage of enhanced resolution provided by multidimen-
sional data sets. Fig. 2 shows that PCA can further improve
the separability between different pixels. This is possible
because PCA conveys all meaningful variation of spectra
across different samples into the first components. Taken
together, these experimental results and the underlying the-
ory demonstrates that HDIM (multichannel and multipara-
metric imaging more generally) enhances the capability to
sense and resolve differences in the photophysical/biochem-
ical environment of the sample in fluorescence microscopy.
Contrast enhancement during postprocessing

We then investigated whether the increased resolving power
of HDIM could reveal structures, which would otherwise be
invisible or poorly visible, when sensing individual optical
properties. To test this possibility, we acquired images of
C. majalis stained with Safranin and Fast Green, a typical
sample used to test microscopy techniques. Fig. 3 illustrates
the wealth of information that is acquired by HDIM. In this
FIGURE 3 Sensing by hyperdimensional imaging microscopy (HDIM). (a) F

emission spectra (top right) as a function of excitation wavelength measured

show excitation-dependent distributions of fluorescence lifetimes (bottom left)

features that are modulated by excitation wavelength. (b) An example of hype

is shown. Time decays are shown for its spectral and polarization components. O

spectra and anisotropy spectrum are shown, with the dashed yellow line marki

with TPE.
case, the data set is excitation resolved as well by scanning
the Ti:sapphire laser from 750 to 1000 nm in steps of 50 nm.
We demonstrate how fluorescence lifetime, anisotropy, and
emission spectra change as a function of excitation wave-
length (Fig. 3 a). The complexity of the optical signatures
acquired by HDIM is shown in Fig. 3 b as hyperdimensional
spectral signature (HDSS).

Fig. 4 a shows an intensity image of the sample excited at
800 nm. The specific optical properties of the sample can be
mapped to two-dimensional maps through simple projec-
tions of the abstract 2048-multidimensional space where
each pixel can be described. Projections can be either based
on physical quantities (e.g., fluorescence anisotropy),
statistical quantities (e.g., PCA or nonnegative matrix
factorization) or perception-based features (e.g., true color).
The latter is exemplified in Fig. 4 b, which shows an RGB
composite image of the specimen as if it were observed
through eyepieces by the naked eye. To achieve this repre-
sentation, first the 2048-dimensional HDIM data set is pro-
jected on a spectral-only space, effectively summing all
photons in each individual time- and polarization- bins. Sub-
sequently, photons from each spectral bin is weighted
accordingly to an eye-sensitivity matrix and summed up
into three color channels. Similarly, representation of phys-
ical quantities can be synthesized by projecting the HDIM
data on other dimensions without applying any weighing
factor; for instance, Fig. 4, c and d shows synthetic fluores-
cence lifetime imaging microscopy (FLIM) and fluores-
cence anisotropy imaging microscopy (FAIM) images (see
also Fig. S6) generated by projecting HDIM data sets onto
the relevant dimensions. To assess if the increased photo-
physical/biochemical resolution of HDIM translates into
luorescence lifetime decays (top left), anisotropy spectra (top center), and

on a single field of view of C. majalis are shown. The bottom panels

and anisotropies (bottom right). The arrows and star highlight correlated

rdimensional spectral signature (HDSS) at 800 nm excitation wavelength

n the back projection of the three-dimensional plot, polarization-dependent

ng the maximum of fluorescence anisotropy of 0.57 that can be measured

Biophysical Journal 116, 1815–1822, May 21, 2019 1819



FIGURE 4 Unmixing by hyperdimensional imaging microscopy (HDIM). Images ofC. majalis, shown as total photon counts (a), and projections of HDSS

values as true color representation (b), fluorescence lifetime map (c), and fluorescence anisotropy map (d) are shown. Multivariate analysis of HDSS by PCA

across the image provides a high-contrast RGB composite (e) obtained by the overlay of the first three principal components (f–h). Digital stains derived from

PCA can be projected to a color space analogous to the HE and DAB counterstainings used in histopathology: (i) a field of view used for training PCA and (j)

an independent imaged recolored with the same projection matrix are shown. Scale bar, 40 mm. The excitation is 800 nm.
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contrast enhancement (Fig. 2 b), we also project the
HDIM data set onto an RGB composite showing the first
three principal components (Fig. 4, e–h; Fig. S6). PCA is
agnostic about the composition of the sample, and it merely
enhances the contrast for each and between each compo-
nent. In fact, Fig. 4 e shows structures of C. majalis that
color; FLIM and FAIM images do not highlight. From
the inspection of the individual principal components
(Fig. 4, f–h), it is possible to establish that Safranin and
Fast Green are detected as first and second principal compo-
nents, respectively. Autofluorescence is loaded into the third
principal component thus providing an additional mean of
contrast.
1820 Biophysical Journal 116, 1815–1822, May 21, 2019
Fig. 4, i and j illustrates also how perception matrices can
be exploited for possible future applications of HDIM to tis-
sue diagnostics. Principal components can be projected to
color spaces resembling typical counterstains used in histo-
pathology, such as hematoxylin and eosin (HE; Fig. 4, i
and j, left panels, two principal components) in addition to
DAB-like stain (Fig. 4, i and j, right panels, three principal
components). The full data set from which Fig. 4 j was
computed is shown in Fig. S6 (see also HDIM-toolbox/if_
hdim_pca_rgb2dab.m in Supporting Materials and Methods
and Materials and Methods).

Taken together, these observations demonstrate that
HDIM provides unprecedented sensing capabilities that
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can be exploited for contrast enhancement and to better
resolve distinct biochemical/photophysical environments.
DISCUSSION

Previously, we introduced a generalized concept of resolu-
tion in fluorescence microscopy, through which we demon-
strated that from a theoretical perspective, it is possible to
increase information content by increasing the number of in-
dependent detection channels, thus enhancing the sensing
and unmixing capabilities of fluorescence microscopy (see
the photon partitioning theorem and its corollaries in (10),
Fig. S1 and Supplemental Materials and Methods, Text
S2). From this theoretical foundation, we hypothesized
that the simultaneous detection of orthogonal properties of
light, such as fluorescence lifetime, polarization, and
spectra, could maximize the biochemical resolving power
of fluorescence microscopy.

We report in this article the results of work that provide
proof of concept for this hypothesis. We introduce here a
new detection paradigm (HDIM), wherein a time-resolved
spectropolarimeter built with off-the-shelf components is
utilized to fully resolve the fluorescence emission of speci-
mens. We present here the first experimental evidence
that HDIM can, in the first instance, provide unprecedented
sensing capabilities. Rather than using filters or analyzers
to generate images during acquisition, HDIM data sets
store the full spectroscopic information of a specimen,
resulting in data sets that can be projected onto spectral,
lifetime, and polarization dimensions during postprocess-
ing. We have also shown that projections can be performed
not just on physical features but by using statistical tools
and performing perception-based projections. We envisage
that HDIM will be particularly valuable when the
optical signatures of a biological phenomenon are unknown
(e.g., in tumor imaging) in which HDIM sensing capabil-
ities can be utilized as an artificial means of contrast
enhancement.

Notably, our findings confirm that, as hypothesized,
HDIM significantly enhances the resolving power in micro-
scopy. HDIM exhibits spatial resolution equivalent to a laser
scanning confocal or two-photon microscope; but in
contrast, HDIM delivers enhanced resolving power to
distinguish differences in photophysical properties. There-
fore, HDIM can reveal structures that are photophysically
distinct but that might be invisible to individual techniques
(multicolor or hyperspectral imaging, FLIM, and FAIM).
Therefore, the capability to better resolve distinct emitters
should also increase the capability to multiplex a larger
number of fluorophores with known characteristics.

The analogy of a microscope as an information channel
can be instructive to better understand the results we have
presented here. When we prepare a fluorescence-based
assay, we encode one or more random variables of interest
x (e.g., the concentration of analytes, rotational diffusions,
or FRET efficiencies) into the spectroscopic features of
the fluorophores. The transmitter (the light source and fluo-
rophores) multiplexes information in the spectral, time, and
polarization domains through the process of fluorescence.
The HDSS of a sample (e.g., HDSS(x)) changes smoothly
with x, and it is often highly correlated along different spec-
troscopic features. For instance, the change in relative abun-
dance of two fluorophores exhibiting different fluorescence
spectra, lifetime, and anisotropy will result in a highly corre-
lated change across the time, spectral, and polarization
domains of the HDSS. The receiver (the optics, detectors,
and analysis algorithm) gather back information to recon-
struct the message transmitted, x. By operating on the three
orthogonal domains in which information is spread, HDIM
is an efficient receiver capable to demultiplex most of the
available information otherwise lost and to retrieve a more
precise representation of the original message (x).

We have previously described that the addition of detec-
tion channels in fluorescence microscopy might result in
practical disadvantages (10) (e.g., increased readout noise,
optical losses, or cost). However, efficient dispersive optics
provide very high collection efficiencies (>80%; see, for
example, (13)); single-photon counting provides high-
detection efficiencies limited only by intrinsic Poisson noise
of photon detection with virtually no readout noise, and the
typical speed limitations of photon-counting electronics are
now overcome by recent developments (13–15). Further-
more, technologies currently beyond state-of-the-art,
for instance, energy-resolving high-temperature supercon-
ducting single-photon detectors might provide efficient
architectures for multiparametric detectors also in fluores-
cence microscopy (16) in the future. Therefore, both with
the elimination of technological barriers and by improving
our understanding of information theory in fluorescence
detection, we can significantly improve the resolving power
of fluorescence microscopy for the benefit of multiplexed
sensing and biochemical imaging.

With faster andmore cost-effective detection technologies
being more readily available (13,17–19), multiplexed detec-
tion technologies could be employed in a range of applica-
tions beyond the specialist laboratory. The advantages of
multiparametric detection have been previously illustrated,
ranging from applications in single-molecule spectroscopy
(12) to fluorescence microscopy (20), including metabolic
imaging (21,22), quantification of interactions andmolecular
diffusion (23,24), and tumor imaging (1,25). A better under-
standing of a generalized concept of resolution in fluores-
cence microscopy and the implementation of technologies
such as HDIM may thus impact several areas of biomedical
relevance. By providing enhanced sensing and unmixing ca-
pabilities, HDIM may find utility, for instance, in contrast
enhancement for label-free tissue imaging in maximizing
the multiplexing capabilities of diagnostic markers in histo-
pathology or fluorescent probes in living cells (26). Further-
more, although we report here on imaging applications,
Biophysical Journal 116, 1815–1822, May 21, 2019 1821
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hyperdimensional detection can provide the same advantages
when applied to spectroscopy or flow cytometry. To empower
the development of such applications, we have shared the
software ‘‘HDIM-toolbox,’’ a toolbox that might facilitate
the development of advanced analytical tools by the broader
community.We suggest that heavilymultiplexed imaging ap-
plications will synergize with emerging technologies such as
smart pixels and deep learning to significantly advance cur-
rent capabilities for machine vision and a broad range of
biomedical applications.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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