# Design, synthesis and evaluation of amino-3,5-dicyanopyridines and thieno[2,3-b]pyridines as ligands of adenosine $A_{1}$ receptors for the potential treatment of epilepsy 

Gaofenngwe Nkomba ${ }^{1} \cdot$ Gisella Terre'Blanche $^{1,2} \cdot$ Helena D. Janse van Rensburg ${ }^{(\mathbb{D}}{ }^{1} \cdot$ Lesetja J. Legoabe ${ }^{1}$

Received: 29 March 2022 / Accepted: 7 May 2022 / Published online: 24 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022


#### Abstract

Due to the implication of adenosine in seizure suppression, adenosine-based therapies such as adenosine receptor (AR) agonists have been investigated. This study aimed at investigating thieno[2,3-b]pyridine derivatives as non-nucleoside $\mathrm{A}_{1}$ agonists that could be used in pharmaco-resistant epilepsy (PRE). Compound 7c (thieno[2,3-b]pyridine derivative), displayed good binding affinity to the $\mathrm{rA}_{1} \mathrm{AR}\left(K_{\mathrm{i}}=61.9 \mathrm{nM}\right)$. This could be a breakthrough for further investigation of this heterocyclic scaffold as potential ligand. In silico evaluation of this compound raised bioavailability concerns but performed well on drug-likeness tests. The effect of intramolecular cyclisation that occurs during synthesis of thieno[2,3-b]pyridines from the lead compounds, amino-3,5-dicyanopyridine derivatives ( $\mathbf{6 a - s}$ ) in relation to AR binding was also evaluated. A significant loss of activity against $\mathrm{rA}_{1} / \mathrm{rA}_{2 \mathrm{~A}}$ ARs with cyclisation was revealed. Amino-3,5-dicyanopyridines exhibited greater affinity towards $\mathrm{rA}_{1}$ ARs ( $K_{\mathrm{i}}<10 \mathrm{nM}$ ) than $\mathrm{rA}_{2 \mathrm{~A}}$. Compound $\mathbf{6 c}$ had the best $\mathrm{rA}_{1}$ affinity ( $K_{\mathrm{i}}=0.076 \mathrm{nM}$ ). Novel compounds ( $\mathbf{6 d}, \mathbf{6 k}, \mathbf{6}, \mathbf{6 m}, \mathbf{6 n}, \mathbf{6 0}, \mathbf{6 p}$ ) were highly selective towards $\mathrm{rA}_{1} \mathrm{AR}\left(K_{\mathrm{i}}\right.$ between 0.179 and 21.0 nM ). Based on their high selectivity for $\mathrm{A}_{1}$ ARs, amino-3,5-dicyanopyridines may be investigated further as AR ligands in PRE with the right structural optimisations and formulations.


## Graphical Abstract

A decrease in $\mathrm{rA}_{1}$ AR affinity is observed with intramolecular cyclisation that occurs during synthesis of thieno[2,3-b] pyridines (7a, 7d, 7c) from amino-3,5-dicyanopyridine derivatives ( $\mathbf{6 a}, \mathbf{6 f}, \mathbf{6 g}$ ).

thieno[2,3-b]pyridine scaffold


7a: $\mathrm{R}^{2}=4$-methoxyphenyl ( $\mathrm{Ki}=139 \mathrm{nM}$ )
7d: $R^{2}=4$-hydroxyphenyl $(\mathrm{Ki}=48 \mathrm{nM})$


Keywords Amino-3,5-dicyanopyridines • Thieno[2,3-b]pyridines • Intramolecular cyclisation • Adenosine $\mathrm{A}_{1} / \mathrm{A}_{2 \mathrm{~A}}$ receptors $\cdot$ Epilepsy

[^0]
## Abbreviations

| $\left[{ }^{3} \mathrm{H}\right]$ | $1,3-\left[{ }^{3} \mathrm{H}\right]$-dipropyl-8-cyclopentylxanthine |
| :--- | :--- |
| DPCPX |  |
| $\left[{ }^{3} \mathrm{H}\right]$ | $\left[{ }^{3} \mathrm{H}\right]-5^{\prime}-\mathrm{N}$-ethylcarboxamidoadenosine |
| NECA |  |
| ${ }^{13} \mathrm{C}$ | carbon-13 |
| ${ }^{1} \mathrm{H}$ | hydrogen-1 $/$ protium |
| $\mathrm{A}_{1} \mathrm{AR}$ | adenosine $\mathrm{A}_{1}$ receptor substype |
| $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ | adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor subtype |
| $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$ | adenosine $\mathrm{A}_{2 \mathrm{~B}}$ receptor subtype |
| $\mathrm{A}_{3} \mathrm{AR}$ | adenosine $\mathrm{A}_{3}$ receptor subtype |


| AEDs | antiepileptic drugs |
| :---: | :---: |
| ADME | absorption, distribution, metabolism, and excretion |
| AMPA | $\alpha$-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid |
| APCI | atmospheric pressure chemical ionisation |
| AR | adenosine receptor |
| BBB | blood-brain barrier |
| BOILED- | Brain Or IntestinaL EstimateD permeation |
| Egg |  |
| $\mathrm{C}=\mathrm{O}$ | carbonyl |
| $\mathrm{Ca}^{2+}$ | calcium ion |
| CADO | 2-chloroadenosine |
| CCPA | 2-chloro- ${ }^{6}$-cyclopentyladenosine |
| Ci | curie |
| Cl | chlorine |
| CNS | central nervous system |
| CPA | $\mathrm{N}^{6}$-cyclopentyladenosine |
| CCPA | 2-chloro-N6-cyclopentyladenosine |
| Csp ${ }^{3}$ | Fraction of carbon atoms in the sp3 hybridization |
| CYP | cytochrome P450 enzyme system |
| d | doublet |
| DCM | dichloromethane |
| dd | doublet of doublets |
| ddd | double double doublet |
| DMF | dimethylformamide |
| DMSO-d ${ }_{6}$ | deuterated dimethyl sulfoxide |
| DPCPX | 8-cyclopentyl-1,3-dipropylxanthine |
| DSC | differential scanning calorimetry |
| EtOAc | ethyl acetate |
| EtOH | ethanol |
| $\mathrm{Et}_{3} \mathrm{~N}$ | triethylamine |
| F | fluorine |
| FeS | iron sulphide |
| GI | gastrointestinal |
| GPCR | G protein-coupled receptor |
| GTP | guanosine 5'-triphosphate |
| H | hydrogen |
| HCl | hydrochloric acid |
| HPLC | high-performance liquid chromatography |
| HRMS | high-resolution mass spectrometry |
| Hz | hertz |
| $\mathrm{IC}_{50}$ | half maximal inhibitory concentration |
| J | coupling constant |
| $K_{\text {i }}$ | inhibition constant |
| KOH | potassium hydroxide |
| LogP | partition coefficient |
| m | multiplet |
| MeOH | methanol |
| $\mathrm{MgCl}_{2}$ | magnesium chloride |
| MHz | megahertz |
| MN | malononitrile |


| mp | melting point |
| :---: | :---: |
| MW | molecular weight |
| m/z | mass-to-charge ratio |
| N | nitrogen |
| $\mathrm{NH}_{2}$ | amino |
| nM | nano molar |
| NMDA | N-methyl-D-aspartate |
| NMR | nuclear magnetic resonance |
| NWU | North-West University |
| $\mathrm{OCH}_{3}$ | methoxy |
| O | oxygen |
| OH | hydroxy |
| PAINS | pan assay interference compounds |
| PE | petroleum ether |
| P-gp | permeability glycoprotein |
| ppm ( $\delta$ ) | parts per million |
| PRE | pharmaco-resistant epilepsy |
| q | quartet |
| $r$ | rat |
| Rf | retention factor |
| S | singlet |
| S | sulphur |
| SANS | South African National Standard |
| SAR | structure-activity relationships |
| SEM | standard error of the mean |
| SI | selectivity index |
| t | triplet |
| td | triple of doublets |
| TLC | thin layer chromatography |
| TMS | tetramethylsilane |
| TPSA | topological polar surface area |
| XLOGP3 | $\log P$ value of a compound using a $\log P$ of a reference compound |

Adenosine receptors (ARs) are a family of G proteincoupled receptors (GPCRs) with the nucleoside adenosine as endogenous agonist [1]. There are four known types of ARs, namely $A_{1}, A_{2 A}, A_{2 B}$ and $A_{3}$ [2] which have been linked to both inhibition $\left(\mathrm{A}_{1}\right.$ and $\left.\mathrm{A}_{3}\right)$ and activation $\left(\mathrm{A}_{2 \mathrm{~A}}\right.$ and $\mathrm{A}_{2 \mathrm{~B}}$ ) of adenylyl cyclase activity [3]. These receptors are widely expressed throughout all human body tissues and organs; such as the brain, heart, lung, liver, kidney, eye, joints, and blood cells [4]. ARs also play a role in various pathological conditions such as inflammatory diseases, ischaemia-reperfusion and neurodegenerative disorders [5], due to their broad spectrum of physiological and pathophysiological functions [6, 7]. All these physiological functions imply that ARs are potential drug targets for treatment of a variety of conditions such as asthma, neurodegenerative disorders, psychosis and anxiety, cardiac
ischaemic diseases, sleep disorders, cancer and many other pathophysiological states that are believed to be associated with changes of adenosine levels [8].

The ARs are far more abundant in the brain than in any other cell type or organ in mammals [9], where it has a role in mechanisms of seizure susceptibility, sleep induction, pain perception, respiration and others [10]. Adenosine levels in the brain extracellular space increase dramatically during enhanced nerve activity conditions, such as ischaemia, seizures, or trauma to prevent neuronal injury [10]. The neuroprotective effects of adenosine may be due to stimulation of $\mathrm{A}_{1}$ receptors and blockade of $\mathrm{A}_{2 \mathrm{~A}}$ receptors [11]. Therefore, ARs are potential therapeutic targets for treatment of neurological [12] as well as neurodegenerative diseases including epilepsy [13].

Epilepsy is defined as a chronic neurological disorder characterised by recurrent, unprovoked seizures due to excessive discharge of cerebral neurons [14], which alter perception, consciousness, and motor activity. It affects about 50 million people worldwide, hence it is one of the most common neurological diseases globally [15]. Currently there is no available cure for epilepsy. The current treatment of epilepsy consists of antiepileptic drugs (AEDs) (also known as anticonvulsants). These therapies are employed to control symptoms of the disease (i.e. suppression of seizures) [16].

Approximately one-third of epileptic patients on treatment remain poorly controlled [17]. Pharmaco-resistance epilepsy can be defined as failure to control seizures after introduction of two or three anticonvulsants that are suitable for the type of epilepsy, prescribed and taken at maximum daily therapeutic doses [18]. A strategy that prevents seizures in drug-resistant epilepsy would be an important therapeutic advance and altering purinergic signalling may be a viable option [19].

Adenosine is a long-known endogenous anticonvulsant substance that effectively inhibits excitatory transmission in the brain [20] through activation of $\mathrm{A}_{1}$ ARs [3]. Firstly, the released adenosine binds to presynaptic $\mathrm{A}_{1}$ receptors, which blocks the influx of $\mathrm{Ca}^{2+}$ through voltage-dependent calcium channels leading to inhibition of glutamate release, and hence, decreased excitation of postsynaptic glutamate receptors [11, 21]. Secondly, postsynaptic activation of $\mathrm{A}_{1}$ receptors by adenosine opens potassium channels leading to $\mathrm{K}^{+}$efflux which results in resting membrane potential hyperpolarization rendering both ionotropic glutamate receptors (NMDA \& AMPA) less responsive [22-24]. Both decreased neurotransmitter release and membrane potential hyperpolarization lead to decreased excitatory synaptic transmission and lower probability of seizure generation onset and propagation [21].

Therefore, adenosine receptor-based therapy-especially through $A_{1}$ AR activation-may provide therapeutic
potential for patients who do not gain satisfactory seizure control with currently available AEDs [19, 21, 25].

Attempts have been made over the years to develop selective $\mathrm{A}_{1}$ AR agonists that may be useful as antiepileptic agents. Initially the approach for discovering AR agonists as antiepileptics has been restricted to modification of the physiological agonist adenosine [26], and justly, these adenosine derivatives represent the great majority of molecules developed and reported to date [27]. The development of these agonists has been limited by the essential requirement of the retention of the ribose moiety of adenosine for agonist activity [26, 28, 29]. Examples of adenosine derivatives include non-selective AR agonists such as 2-chloroadenosine (2-CADO) and $\mathrm{A}_{1}$ AR selective agonists such as 2-chloro-N6-cyclopentyladenosine (CCPA) [30].

However, the development of adenosine-based AR agonists as novel therapeutic agents has been limited by their pronounced peripheral side effects (mainly cardiovascular effects such as bradycardia and hypotension) and central side effects (like sedation) $[3,6,13]$ at doses that have relatively weak anticonvulsant and neuroprotective effects [3]. In addition, they exhibited low blood brain barrier permeability, and hence, limited use in the central nervous system (CNS) [6, 31]. Therefore, these drugs have not been pursued clinically [14].

The said limitations led to development of new strategies to produce potent and selective AR agonists with dominant CNS activity [14]. Non-nucleoside agonists provide an alternative set of compounds which are highly potent and selective for specific AR subtypes [28]. In this study thieno [2,3-b]pyridine derivatives were explored as alternative non-nucleoside $A_{1}$ AR agonists for the potential management of seizure disorders.

Thienopyridines as a class of heterocyclic compounds have attracted considerable interest due to their broad spectrum of biological activities [32]. The pharmacological potential of thienopyridine derivatives made these compounds a privileged scaffold in medicinal chemistry [33]. There are six isomeric thienopyridine structures, one of them being thieno[2,3-b]pyridine (Fig. 1) and its derivatives which have since attracted attention due to their antitumor, antibacterial [34], antiviral [35, 36], vasodilator and antihypertensive [37], antidiabetic [38], anti-inflammatory [39], antidermatophytic [40], antimalarial activities [41] in addition to treatment of CNS disorders [42].

Despite their aforementioned promising biological activities, the thienopyridine core has only received scanty


Fig. 1 Chemical structure of thieno[2,3-b]pyridine scaffold

Fig. 2 Synthesis of thieno[2,3-b] pyridine derivatives from lead compounds and modification on the thieno[2,3]pyridine scaffold


Scheme 1 Reaction route for preparation of target thieno[2,3-b]pyridine derivatives [44]
attention as scaffold for the design of AR ligands. 3,5Dicyanopyridine derivatives which serve as intermediates in the synthesis of thieno[2,3-b]pyridine derivatives, were themselves found to exhibit interesting affinity for ARs. Due to chemical similarity between the 3,5-dicyanopyridin core and the thieno[2,3-b]pyridine core, we envisaged that a suitably substituted thieno[2,3-b]pyridine core could lead to derivatives which may exhibit AR affinity. Notably, bicyclic scaffolds such as benzofurans [43], tetralones and indanones were previously associated with affinity for ARs.

The main aim of this research study was to design, synthesise, characterise, and evaluate novel and known amino-3,5-dicyanopyridines (intermediates) and thieno [2,3-b]pyridines (target compounds) as potent and selective $\mathrm{A}_{1}$ AR agonists for the potential treatment of neurological conditions, such as epilepsy. Modifications at $\mathrm{R}_{2}$ and the aryl position on the thieno[2,3-b]pyridines scaffold were influenced by the lead compounds amino-3,5dicyanopyridine derivatives which displayed good affinity at $A_{1}$ AR (Fig. 2). The proposed modifications included thiophene ring closure (from lead compound) resulting in a fused 5-membered (thiophene) heterocyclic ring structure. Different functional groups were substituted at the meta and para positions of the 4-phenyl ring $\left(\mathrm{R}_{2}\right)$ and different aryl groups were substituted at position 2 (Fig. 2). The structure-activity relationship (SAR) of the


3,5-Dicyanopyridine scaffold


Scheme 2 Synthesis of thieno[2,3-b]pyridines from intermediates
synthesised compounds were evaluated in relation to $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{~A}}$ AR affinity.

## Results and discussion

## Chemistry

The synthesis of the amino-3,5-dicyanopyridine derivatives (intermediates) $\mathbf{6 a - 6 p}$ was done by multicomponent condensation of malononitrile (MN) with hydrogen sulphide, a corresponding aldehyde, and a suitable halide in the presence of trimethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ as catalyst [44]. As depicted in Scheme 1, initial addition of hydrogen sulphide to MN gives cyanothioacetamide (1) which reacts with the aldehyde according to a Knoevenagel condensation reaction to yield 2. Further addition of MN results in 3 which undergoes chemoselective intramolecular cyclisation to 3,4 -substituted phenyl-2,6-diamino-3,5-dicyano-4H-thiopyran (4). Recyclisation of the latter by the action of alkali (potassium hydroxide ( KOH ), dimethylformamide (DMF)) leads to pyridine-2-thiolate (5). The subsequent regioselective alkylation of 5 at the sulphur atom with a suitable halide results in a sulphide (6). According to the method adopted from [44], the sulphide was supposed to undergo intramolecular cyclisation in the presence of an alkali ( KOH ) to yield a thienopyridine (7)—a fused pyridine and thiophene ring heterocyclic compound-but all reactions except the one that yielded compound $\mathbf{7 a}$, did not go to completion. Instead, the method produced the intermediate compounds, namely amino-3,5-dicyanopyridine derivatives. Modifications such as increasing the KOH concentration and contact time with the reaction mixture were made without success to try and bring the reactions to completion. Otherwise ring closure reactions were performed to convert the synthesised intermediate compounds to thieno[2,3-b]pyridine derivatives using Scheme 2, where either 2-3 drops of KOH were added to a solution of amino-3,5-dicyanopyridines in DMF and then the reaction was left to stand for several hours [45]
or through heating a solution of amino-3,5-dicyanopyridines in ethanol $(\mathrm{EtOH})$ containing KOH under reflux for 3 h [46]. Only 3 compounds, 7b-7d were obtained through these attempts. Details of unsuccessful attempts have been summarised (see supplementary material).

From observation, only compounds with a carbonyl group at the aryl position managed to go to completion to thieno[2,3-b]pyridine derivatives (target compounds). This seems to be in line with the adopted method from [44, 45] since they used $\alpha$-halo carbonyl compound as an alkylating agent to obtain thieno[2,3-b]pyridine derivatives in an one pot system. Most previously reported synthetic routes for thieno[2,3-b]pyridine derivatives involved the use of $\alpha$-halo carbonyl compound as well [32, 47, 48]. It seems that the presence of a carbonyl compound at the aryl position has an influence on the intramolecular cyclisation of the intermediate compounds compared to aryl halides. This may be due to the fact that $\alpha$-halo compounds are bifunctional since they can behave as both an electrophile and nucleophile in carbonyl condensation reactions. The target thieno[2,3-b] pyridines that were synthesised was based on intermediates with $\mathrm{A}_{1}$ AR activity, hence the choice of halides used. Also, ring closure may have been accomplished with these compounds ( $\mathbf{7 a}-\mathbf{7 d}$ ) due to presence of less bulky constituent $\left(-\mathrm{CONH}_{2}\right)$ at the aryl position as compared to other compounds with aromatic constituents at the same position. For Compounds $\mathbf{6 q - 6 s}$ and $\mathbf{7 a}$, readily available cyanothioacetamide was used as starting material. One of the key starting materials for compounds $\mathbf{6 q - 6 s}$, 4-(chloromethyl)-2-(4chlorophenyl)thiazole was synthesised by refluxing a mixture of 4-chlorobenzothioamide and 1,3-dichloroacetone in absolute EtOH for 2 h (Scheme 3) [49].

The test compounds were obtained in relatively poor yields ( $\mathbf{6 a}, \mathbf{6 c - 1}, \mathbf{6 n - s}$ and $\mathbf{7 a - d}: 11.8-66.4 \%$; with the exception of $\mathbf{6 b}$ and $\mathbf{6 m}:>80 \%$ ), purified by recrystallisation from a suitable solvent (either EtOH, methanol $(\mathrm{MeOH})$ or hexane). The structure, molecular mass and purity of these compounds were verified by hydrogen-1 / protium $\left({ }^{1} \mathrm{H}\right)$ and carbon-13 $\left({ }^{13} \mathrm{C}\right)$ nuclear magnetic resonance (NMR) spectra, mass spectroscopy and HPLC (see supplementary material). It should be noted that, protons on the $\mathrm{NH}_{2}$-group (e.g., 6l) and the OH -group (e.g., 6k) are not always visible on a ${ }^{1} \mathrm{H}$ NMR spectrum as protons attached to a N -atom (or O -atom) are acidic, and thus, exchangeable [50]. Halogen-carbon bonds tend to cause splitting of ${ }^{13} \mathrm{C}$ NMR chemical shifts (e.g., $\mathbf{6 p}$ and $\mathbf{7 a}$ ) due to deshielding by the F-atom on the directly bonded carbon nucleus [51] which results in multiple carbon peaks. This has the


Scheme 3 Synthesis of 4-(chloromethyl)-2-(4-chlorophenyl)thiazole
potential of causing difficulty in interpreting ${ }^{13} \mathrm{C}$ NMR spectra of fluorinated organic compounds.

## Biology

## In vitro evaluation

Radioligand binding assays A total of 23 test compounds were synthesised ( $\mathbf{6 a - s}$ and $\mathbf{7 a}-\mathbf{d}$ ); 7 of these compounds were novel ( $\mathbf{6 d}$ and $\mathbf{6 k}-\mathbf{p}$ ), while 4 compounds ( $\mathbf{7 a}-\mathbf{d}$ ) have been synthesised before but have never been tested for AR affinity. The affinities of the test compounds $\mathbf{6 a}-\mathbf{s}$ and $\mathbf{7 a - d}$ at rat (r) $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{~A}}$ ARs were determined by radioligand binding assays and are expressed as inhibition constant ( $K_{\mathrm{i}}$, nM ) values (Table 1). All test compounds displayed specific binding values $<20 \%$ at a maximum tested concentration of $100 \mu \mathrm{M}$ ( $\mathrm{rA}_{1}$ screening), and therefore, all underwent full biological assay for determination of $K i$ values (nM). Compounds 6a-j and 7a-d displayed specific binding values $<20 \%$ at a maximum tested concentration of $100 \mu \mathrm{M}$ $\left(\mathrm{rA}_{2 \mathrm{~A}}\right.$ screening) and hence qualified for full $\mathrm{rA}_{2 \mathrm{~A}}$ radioligand binding assay, unlike compounds $\mathbf{6 k}-\mathbf{s}$ with specific binding values $>20 \%$. The radioligand binding assays were validated with $\mathrm{N}_{6}$-cyclopentyladenosine (CPA) ( $\mathrm{A}_{1}$ agonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) ( $\mathrm{A}_{1}$ antagonist), istradefylline ( $\mathrm{A}_{2 \mathrm{~A}}$ antagonist) and caffeine $\left(\mathrm{A}_{1} / \mathrm{A}_{2 \mathrm{~A}}\right.$ antagonist) as reference compounds and results were compared to literature values as shown by Table 1.

Structure-activity relationships (SAR) Modifications were made at the $\mathrm{R}^{2}$ and aryl positions of the test compounds to assess how different substituents can influence both $\mathrm{rA}_{1}$ and $\mathrm{rA}_{2 \mathrm{~A}}$ ARs binding affinity as well as selectivity. As shown in Table 1, all test compounds displayed greater affinity toward the $\mathrm{rA}_{1}$ than $\mathrm{rA}_{2 \mathrm{~A}} \mathrm{AR}$. Compound $\mathbf{6 c}$ had the best $\mathrm{rA}_{1}$ AR affinity $\left(K_{\mathrm{i}}=0.076 \mathrm{nM}\right)$ of the present series. The latter compound together with $\mathbf{6 b}$ displayed better $\mathrm{rA}_{2 \mathrm{~A}} \mathrm{AR}$ affinity than the other test compounds with $K_{\mathrm{i}}$ values of 48.3 nM ( $\mathbf{6 c}$ ) and 48.0 nM ( $\mathbf{6 b}$ ), respectively, but remain selective for the $\mathrm{rA}_{1}$ AR. Comparing amino-3,5-dicyanopyridines ( $\mathbf{6 a - s}$ ) and thieno[2,3-b]pyridines ( $\mathbf{7 a}-\mathbf{d}$ ), it is evident that there was a significant decrease in both $\mathrm{rA}_{1}$ and $\mathrm{rA}_{2 \mathrm{~A}}$ AR affinity from the open ring structures to the closed ring structures. The only thieno[2,3]pyridine derivative that showed moderately good $\mathrm{rA}_{1} \mathrm{AR}$ affinity is compound 7 c $\left(\mathrm{rA}_{1} K_{\mathrm{i}}=61.9 \mathrm{nM}\right)$. The general poor activity of thieno[2,3b]pyridines relative to amino-3,5-dicyanopyridins suggest that the ring closure affects binding to the receptors, perhaps, due to steric hindrance. (This may be confirmed by molecular docking studies in the future.)

SAR for amino-3,5-dicyanopyrines (intermediates) For compounds 6a, $\mathbf{6 b}, 61$ and $\mathbf{6 s}$, the 4-methoxyphenyl group

Table $1 K_{\mathrm{i}}$ values of test compounds and reference compounds at rat $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{~A}}$ ARs


Table 1 (continued)
$\mathbf{6}$

Table 1 (continued)
(6a-6s)

Table 1 (continued)


3,5-Dicyanopyridine derivatives
$(6 \mathbf{6}-\mathbf{6 s})$
Thieno[2,3-b]pyridine derivatives
(7a-7d)

| $\mathrm{R}^{2} \quad$ aryl | $K_{\mathrm{i}} \pm$ SEM ( nM$)^{\mathrm{a}}$ (Specific binding (\%)) ${ }^{\text {b }}$ |  |  | GTP shift ${ }^{\text {e }}$ | SIf |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $r \mathrm{~A}_{1}{ }^{\mathrm{c}}$ vs 1 nM <br> $\left[{ }^{3} \mathrm{H}\right]$ DPCPX | $r \mathrm{~A}_{2 \mathrm{~A}}{ }^{\mathrm{d}} \text { vs } 4 \mathrm{nM}$ <br> $\left.{ }^{3}{ }^{3} \mathrm{H}\right]$ NECA | $\begin{aligned} & r \mathrm{~A}_{1}{ }^{\mathrm{c}}+0.1 \mathrm{mM} \text { GTP vs } 1 \mathrm{nM} \\ & {\left[{ }^{3} \mathrm{H}\right] \text { DPCPX }} \end{aligned}$ |  |  |
| Reference compounds |  |  |  |  |  |
| CPA ( $\mathrm{A}_{1}$ agonist) | $6.5 \pm 0.4^{\mathrm{a}}(15.3)^{\mathrm{k}}(7.9)^{1}$ | - | $36.5 \pm 2.28^{\text {a }}$ | 6 | - |
| DPCPX ( $\mathrm{A}_{1}$ antagonist) | $0.5 \pm 0.1^{\text {a }}(0.6)^{\mathrm{k}}(0.3)^{\mathrm{m}}$ | - | $0.4 \pm 0.032^{\text {a }}$ | 1 | - |
| Istradefylline ( $\mathrm{A}_{2 \mathrm{~A}}$ antagonist) | $-\quad$ | $3 \pm 0.9^{\mathrm{a}}(13 ; 2.2)^{\mathrm{n}}(11.1)^{\mathrm{o}}$ | - | - | - |
| Caffeine ( $\mathrm{A}_{1} / \mathrm{A}_{2 \mathrm{~A}}$ antagonist) | $\begin{aligned} & 52800 \pm 7400^{\mathrm{a}}(44000)^{\mathrm{p}} \\ & (41000)^{\mathrm{q}}(26000)^{\mathrm{r}} \end{aligned}$ | $\begin{aligned} & 27800 \pm 5100^{\mathrm{a}}(43000)^{\mathrm{a}} \\ & (22000)^{\mathrm{r}}(33000)^{\mathrm{k}} \end{aligned}$ | - | - | 0.5 |

${ }^{\text {a }}$ Inhibition constant $\left(K_{\mathrm{i}}, \mathrm{nM}\right)$ represented as the mean $\pm$ standard error of the mean (SEM), $n=3$ samples
${ }^{\mathrm{b}}$ Specific binding (\%) of the radioligand at a maximum tested concentration of $100 \mu \mathrm{M}$ is represented as the mean, $n=2$ samples
${ }^{\mathrm{c}} \mathrm{rA}_{1}$ : rat whole brain membranes expressing adenosine $\mathrm{A}_{1}$ receptor
${ }^{\mathrm{d}} \mathrm{rA}_{2 \mathrm{~A}}$ : rat striatal membranes expressing adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor
${ }^{\mathrm{e}} \mathrm{GTP}$ shift calculated by dividing the $K_{\mathrm{i}}(\mathrm{nM})$ in the presence of $0.100 \mu \mathrm{M}$ GTP by the $K_{\mathrm{i}}(\mathrm{nM})$ in the absence of $100 \mu \mathrm{M}$ GTP
${ }^{\mathrm{f}}$ Selectivity index (SI) for the adenosine $\mathrm{A}_{1}$ receptor subtype calculated by dividing the $\mathrm{rA}_{2 \mathrm{~A}} K_{\mathrm{i}}(\mathrm{nM})$ by the $r \mathrm{~A}_{1} K_{\mathrm{i}}(\mathrm{nM})$
${ }^{\text {g }}$ Literature value: human adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}$; human adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor and [ $\left.{ }^{3} \mathrm{H}\right] \mathrm{ZM} 241385$ [56]
${ }^{\mathrm{h}}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX; rat adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor and $\left[{ }^{3} \mathrm{H}\right.$ ]ZM241385 [56]
${ }^{\mathrm{i}}$ Literature value: human adenosine $\mathrm{A}_{1}$ receptor and [ $\left.{ }^{3} \mathrm{H}\right]$ DPCPX; human adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor and [ ${ }^{3} \mathrm{H}$ ]ZM241385 [79]
${ }^{\mathrm{j}}$ Literature value: human adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}$ [57]
${ }^{k}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX [26]
${ }^{1}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and [ $\left.{ }^{3} \mathrm{H}\right]$ DPCPX [75]
${ }^{m}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and [ $\left.{ }^{3} \mathrm{H}\right]$ DPCPX [52]
${ }^{\mathrm{n}}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX [80]
${ }^{\circ}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX [60]
${ }^{\mathrm{p}}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX [62]
${ }^{9}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and [ $\left.{ }^{3} \mathrm{H}\right]$ DPCPX [63]
${ }^{r}$ Literature value: rat adenosine $\mathrm{A}_{1}$ receptor and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX [81]
was maintained at position $\mathrm{R}^{2}$ and different functional groups were substituted at the aryl position. Compound $\mathbf{6 b}$ with a methylpyridine substituent at the aryl position exhibited low nanomolar activity toward the $\mathrm{rA}_{1} \mathrm{AR}\left(K_{\mathrm{i}}=\right.$ 0.213 nM ) as well as selectivity for the $\mathrm{rA}_{1} \mathrm{AR}$ over the $\mathrm{rA}_{2 \mathrm{~A}} \mathrm{AR}(\mathrm{SI}=636)$. Affinity for the $\mathrm{rA}_{1}$ and/or $\mathrm{rA}_{2 \mathrm{~A}}$ ARs decreased when introducing a 4-chlorophenylthiazole group (6s: $\mathrm{rA}_{1} K_{\mathrm{i}}=4.06 \mathrm{nM}$ ), benzoic acid substituent (6I: $\mathrm{rA}_{1} K_{\mathrm{i}}$ $=21.0 \mathrm{nM})$ and a carbonyl containing substituent ( $6 \mathbf{a}$ : $\mathrm{rA}_{1} K_{\mathrm{i}}=139 \mathrm{nM}$ ) which displayed the lowest affinity for rA1 AR. In terms of selectivity, $\mathbf{6 b}$ also showed affinity
toward the $\mathrm{rA}_{2 \mathrm{~A}} \mathrm{AR}\left(K_{\mathrm{i}}=48.0 \mathrm{nM}\right)$ while compounds $6 \mathbf{l}$ and $\mathbf{6 s}$ were more selective towards $\mathrm{rA}_{1}$ ARs, as seen from the calculated SIs.

Replacing 4-methoxyphenyl with 3-methoxyphenyl at position $\mathrm{R}^{2}$ while maintaining the same aryl functional groups as 6a, 6b and $\mathbf{6 l}$ above was also explored. Comparison of compound $\mathbf{6 d}$ to $\mathbf{6 a}$ (aryl $=-\mathrm{CONH}_{2}$ ) showed a significant increase in binding affinity towards $\mathrm{rA}_{1}$ ARs ( $\mathbf{6 d}$ : $\mathrm{rA}_{1} K_{\mathrm{i}}=10.3 \mathrm{nM}$ vs 6a: $\mathrm{rA}_{1} K_{\mathrm{i}}=139 \mathrm{nM}$ ) but had no effect on $\mathrm{rA}_{2 \mathrm{~A}}$ AR affinity. In general, the presence of the 3-methoxyphenyl substituent resulted in increased
affinity for $\mathrm{rA}_{1}$ ARs but had no influence on $\mathrm{rA}_{2 \mathrm{~A}} \mathrm{AR}$ affinity as shown by $\mathbf{6 c}$ vs $\mathbf{6 b}$ and $\mathbf{6 0}$ vs $\mathbf{6 l}$. Again, the substituents at the aryl position had a similar effect on affinity as observed with the 4-methoxyphenyl containing compounds 6a, 61 and $\mathbf{6 s}$ (in decreasing order of affinity: 6c $($ methylpyridine $)>\mathbf{6 0}$ (benzoic acid substituent) $>\mathbf{6 d}$ (carbonyl containing substituent)). From these results it is evident that 3-methoxyphenyl is favoured over 4-methoxyphenyl in terms of $\mathrm{rA}_{1}$ AR binding affinity.
For compounds $\mathbf{6 e}, \mathbf{6 m}, \mathbf{6 n}$ and $\mathbf{6 q}$, 4-hydroxyphenyl was introduced at the $\mathrm{R}^{2}$ position while maintaining almost all the same aryl groups mentioned earlier. Generally, these compounds displayed $\mathrm{rA}_{1} \mathrm{AR}$ affinity of 1 nM or smaller (except $\mathbf{6 e}$, aryl $=\mathrm{CONH}_{2}$ ), with $\mathbf{6 m}$ (aryl $=-$ methylpyridine) being the best with $\mathrm{rA}_{1} K_{\mathrm{i}}=0.179 \mathrm{nM}$ of these compounds. Comparing 4-methoxyphenyl and 4-hydroxyphenyl substitutions ( $\mathbf{6 a}$ vs $\mathbf{6 e}$ and $\mathbf{6 b}$ vs $\mathbf{6 m}$ ) showed that with the latter, $\mathrm{rA}_{1}$ AR activity increased slightly. Looking at $\mathbf{6 m}$ (aryl = methylpyridine) and $\mathbf{6 n}$ (aryl =-methylbenzene), it appears that the introduction of a N -atom in compound $\mathbf{6 m}$ had a positive influence in $\mathrm{rA}_{1}$ AR affinity.
Replacing 4-hydroxyphenyl with 3-hydroxyphenyl at position $R^{2}$ was also studied ( $\mathbf{6 e}$ vs $\mathbf{6 f}$ and $\mathbf{6 m}$ vs $\mathbf{6 j}$ ), although a definite trend could not be observed with the limited data at hand. Comparison of $\mathbf{6 f}$ (3-hydroxyphenyl) to its 4-methoxyphenyl substituted counterpart $\mathbf{6 d}$ showed a four-fold decrease in $\mathrm{rA}_{1}$ AR affinity, although $\mathrm{rA}_{1}$ selectivity was maintained.
Comparison of $\mathbf{6 a}, \mathbf{6 d}, \mathbf{6 e}$ and $\mathbf{6 f}$ showed that the meta position is preferred to the para position whether $\mathrm{OCH}_{3}-$ or OH -group substitution is incorporated, and furthermore, it seems that a $\mathrm{OCH}_{3}$-group is preferred to an OH -group.
Comparing $6 \mathbf{l}$ and $\mathbf{6 k}$ with $4-\mathrm{OCH}_{3}$ and $4-\mathrm{SCH}_{3}$ revealed that introducing a sulphur component increased binding affinity for compound $\mathbf{6 k}\left(K_{\mathrm{i}}=8.82 \mathrm{nM}\right)$ as compared to $\mathbf{6 l}$ ( 21.2 nM ).

Compounds, 6q, $\mathbf{6 r}$ and $\mathbf{6 s}$ with the same (4-chlorophenyl)thiazole aryl substituent were also explored. All these compounds displayed $\mathrm{rA}_{1}$ AR affinity but had no mentionable affinity for $\mathrm{rA}_{2 \mathrm{~A}}$ ARs. Compound $\mathbf{6 q}\left(\mathrm{R}=4-\mathrm{OCH}_{2}{ }^{-}\right.$ $\mathrm{CH}_{2} \mathrm{OH}$ ) had the best affinity of these compouns with $K_{\mathrm{i}}=$ 0.383 nM . SARs of amino-3,5-dicyanopyridines against $r \mathrm{~A}_{1} \mathrm{AR}$ are summarised in Fig. 3.

SAR for thieno[2,3-b]pyridines (target compounds) Thieno [2,3-b]pyridine derivatives 7a-d displayed poor affinity towards $\mathrm{rA}_{1}$ ARs compared to their corresponding intermediate amino-3,5-dicyanopyridines (Fig. 4). These compounds all had a $-\mathrm{CONH}_{2}$-group at the aryl position. The results indicate that ring closure from the intermediate open ring to fused ring structures decreased activity towards both $\mathrm{rA}_{1}$ and $\mathrm{rA}_{2 \mathrm{~A}}$ ARs. This corresponds with a study by [7] in
which intramolecular cyclisation of the 6-amino-3,5-dicyanopyridines, specifically BAY606583 (a potent $\mathrm{A}_{2 \mathrm{~B}}$ receptor agonist) was evaluated. The study revealed that the bicyclic compound (thieno[2,3]pyridine derivative) that resulted after intramolecular cyclisation of BAY60 6586 bind none of the ARs suggesting that molecular stiffening decreases AR binding affinity.

GTP shift assays The type of binding affinities that test compounds $\mathbf{6 c}, \mathbf{6 d}, \mathbf{6 n}, \mathbf{6 0}, \mathbf{6 q}$ and $\mathbf{7 c}$ displayed at the $\mathrm{rA}_{1}$ AR were determined through guanosine 5 -triphosphate (GTP) shift assays, as described in literature [52-54]. These test compounds were selected as they possessed the best $\mathrm{rA}_{1}$ AR affinity among the investigated test compounds (Table 1). The theory of a GTP assay is that competition curve of an antagonist will be unaffected by GTP, thus resulting in a calculated GTP shift of approximately 1 [54]. Agonists' curves, on the other hand, will be shifted towards the right in the presence of GTP [55]. GTP shifts were calculated by dividing the rAKi values of compounds reported in the presence of GTP by the rARKi values obtained in the absence of GTP and the results are summarised in Table 1. Compounds 6c, $\mathbf{6 d}$ and $\mathbf{6 o}$ behaved as antagonists (interestingly, all these compounds contained a $3-\mathrm{OCH}_{3}$ group at position $\mathrm{R}^{2}$ ), while $\mathbf{6 n}, \mathbf{6 q}$ and $\mathbf{7 c}$ behaved as agonists (Fig. 5). Contradictory to the present results, Guo et al. [56] found $\mathbf{6 c}$ to be a partial agonist and not an antagonist. Notably, Louvel and co-workers [57] also found $\mathbf{6 q}$ to be a full agonist in accordance with the present results.

## In silico evaluation

The physiochemical properties, pharmacokinetic profiles, drug-likeness and medicinal chemistry friendliness of compounds $\mathbf{6 c}, \mathbf{6 d}, \mathbf{6 n}, 6 \mathbf{0}, \mathbf{6 q}$ and $\mathbf{7 c}$ were predicted through the free online web tool SwissADME (https://sw issadme.ch). The prediction is based on the chemical structures of the compounds. The results are in the supplementary material.

The bioavailability radar (which takes in to account the physicochemical properties lipophilicity, size, polarity, solubility, flexibility and saturation) for compounds $\mathbf{6 b}, \mathbf{6 d}$, $\mathbf{6 m}, \mathbf{6 0}, \mathbf{6 q}$ and $\mathbf{7 c}$ may be seen in the supplementary material (Fig. S2). Almost all compounds fall within the optimal ranges of lipophilicity, size, solubility, and flexibility parameters except compound $\mathbf{6 q}$ which exceeded the optimal size of the molecule ( $150-500 \mathrm{~g} / \mathrm{mol}$ ) since it has a molecular weight (MW) of $520.03 \mathrm{~g} / \mathrm{mol}$. All these compounds failed the saturation parameter since all have a lower fraction of carbon atoms in the sp3 hybridization (Csp3> 0.25 ) and high polarity values (TPSA $>130 \AA^{2}$ ). These compounds are considered to be too polar with a low degree of saturation and consequently predicted not to be orally


6a $\mathrm{rA}_{1} \mathrm{Ki}=139 \mathrm{nM}$ $339.37 \mathrm{~g} / \mathrm{mol}$


6d rA $\mathrm{A}_{1} \mathrm{Ki}=10.3 \mathrm{nM}$ $339.37 \mathrm{~g} / \mathrm{mol}$


6e $\mathrm{rA}_{1} \mathrm{Ki}=60.4 \mathrm{nM}$ $325.35 \mathrm{~g} / \mathrm{mol}$
$\downarrow$ increase

$6 f \mathrm{rA}_{1} \mathrm{Ki}=48.0 \mathrm{nM}$ $325.35 \mathrm{~g} / \mathrm{mol}$

$\mathbf{6 g r A} \mathrm{r}_{1} \mathrm{Ki}=26.6 \mathrm{nM}$ $375.43 \mathrm{~g} / \mathrm{mol}$

$6 \mathbf{i r A} \mathrm{~A}_{1} \mathrm{Ki}=4.57 \mathrm{nM}$ $386.43 \mathrm{~g} / \mathrm{mol}$
decrease

$6 \mathrm{krA} \mathrm{A}_{1} \mathrm{Ki}=8.82 \mathrm{nM}$ $432.52 \mathrm{~g} / \mathrm{mol}$
slight decrease


6h rA $\mathrm{A}_{1} \mathrm{Ki}=7.54 \mathrm{nM}$
$376.39 \mathrm{~g} / \mathrm{mol}$
increase increase

increase
6 b rA $\mathrm{A}_{1} \mathrm{Ki}=0.213 \mathrm{nM}$ $387.46 \mathrm{~g} / \mathrm{mol}$

$6 \mathbf{c} \mathrm{rA}_{1} \mathrm{Ki}=0.076 \mathrm{nM}$ $387.46 \mathrm{~g} / \mathrm{mol}$
decrease



Fig. 3 Structure-activity relationship of amino-3,5-dicyanopyridines against $r \mathrm{~A}_{1} \mathrm{AR}$

Fig. 4 Structure-activity relationships of amino-3,5dicyanopyridines ( $\mathbf{6 a}, \mathbf{6 f}, \mathbf{6 g}$ ) vs thieno[2,3]pyridines (7a, 7c, 7d)


6f: $\mathrm{R}^{2}=4$-hydroxyphenyl ( $\mathrm{Ki}=48 \mathrm{nM}$ )
$\mathbf{6 g}: \mathrm{R}^{2}=$ benzo[d][1,3]dioxol-5-yl $(\mathrm{Ki}=26.6 \mathrm{nM})$

7a: $\mathrm{R}^{2}=4$-methoxyphenyl $(\mathrm{Ki}=139 \mathrm{nM})$
7d: R2 $=4$-hydroxyphenyl ( $\mathrm{Ki}=48 \mathrm{nM}$ )
$7 \mathrm{c}: \mathrm{R}^{2}=$ benzo[d][1,3]dioxol-5-yl $(\mathrm{Ki}=26.6 \mathrm{nM})$


Fig. 5 The binding curves of test compounds $\mathbf{6 d}$ and $\mathbf{6 q}$ in the presence and absence of $100 \mu \mathrm{M}$ GTP using $\left[{ }^{3} \mathrm{H}\right]$ DPCPX as radioligand in rat whole brain membranes expressing adenosine $\mathrm{A}_{1}$ receptors as representative cases for adenosine $\mathrm{A}_{1}$ receptor antagonistic and agonistic activity. A Calculated GTP shift: 1.09 (antagonist); B Calculated GTP shift: 4.74 (agonist)
bioavailable. The $\log P$ value of a compound using a $\log P$ of a reference compound (XLOGP3) ( $<5.0$ ) of compound $\mathbf{6 q}$ slightly exceeded the limit (5.1) proving to be the most lipophilic.

In terms of water solubility $(\log S)$, compound $\mathbf{6 c}, \mathbf{6 m}$, 60 and 7 c are predicted to be moderately soluble to poorly soluble in water. Compound $\mathbf{6 d}$ was predicted to be soluble to moderately soluble and compound $\mathbf{6 q}$ was classified as poorly soluble. Poor water solubility of compound $\mathbf{6 q}$ may be attributed to its high MW and the presence of lipophilic halogen $(\mathrm{Cl})$ as part of the aryl substituent. Water solubility is the most important in terms of achieving desired drug concentration in systemic circulation for pharmacological response [58]. It must be understood that poorly watersoluble drugs have slow drug absorption leading to inadequate and variable bioavailability and gastrointestinal mucosal toxicity [58]. Solubility improvement techniques need to be employed for future formulation development especially for compound $\mathbf{6 q}$ (capadenoson), since any drug to be absorbed must be present in an aqueous solution at the site of absorption.

The BOILED-Egg predictive model allows evaluation of passive gastrointestinal (GI) absorption and brain penetration (BBB). Compounds $\mathbf{6 c}, \mathbf{6 d}, \mathbf{6 m}, \mathbf{6 o}, \mathbf{6 q}$ and $\mathbf{7 c}$ are all predicted to have low GI absorption and no blood brain barrier (BBB) permeability, probably because of a high topological polar surface area (TPSA) ( $>130$ ), although some sources recommend TSPA $<140 \AA^{2}$ (e.g. 6c) to be adequate for high probability of good intestinal permeability
[59]. This may also be attributed to the high polarity of these compounds. Interestingly, a study by [60, 61] indicated that compound $\mathbf{6 q}$ (capadenoson), showed hints of CNS effects in humans. Compound $\mathbf{6 c}$ as well has been considered to possess high BBB permeability by [56, 62, 63] despite this prediction. The prediction of permeability glycoprotein ( $\mathrm{P}-\mathrm{gp}$ ) substrate indicates that only compound $\mathbf{6 q}$ can be actively effluxed by P-gp while compounds $\mathbf{6 c}, 6 \mathbf{m}, 60$ and $7 \mathbf{c}$ are not substrates of this efflux mechanism. The potential interaction of compounds $\mathbf{6 c}, \mathbf{6 d}, \mathbf{6 m}, \mathbf{6 0}, \mathbf{6 q}$ and $\mathbf{7 c}$ with cytochromes P450 (CYP) isoenzymes was also evaluated. This is important for determination of drug-drug interactions and adverse effects due to low drug clearance leading to accumulation of the drug [50,51]. Generally, all the compounds are inhibitors of CYP isoforms (CYP1A2, CYP2C19, CYP2C9, CYP3A4) with a few exceptions, but they did not affect CYP2D6 except compound $\mathbf{6 q}$.

SwissADME also provides qualitative assessment of drug-likeness which predicts a molecule's chance to be classified as an oral drug candidate [64] by implementing different rule-based filters [65-69]. Additionally, compounds $\mathbf{6 c}, 6 \mathbf{d}, \mathbf{6 m}, 6 \mathbf{0}, 6 \mathbf{q}$ and 7 c all had a bioavailability score of 0.55 (the probability that a compound will have $>0 \%$ bioavailability in rat or measurable Caco-2 permeability) [64].

The medical chemistry friendliness of compounds was assessed by identifying pan assay interference compounds (PAINS) [70] and structural alerts [71]. All compounds
passed both PAINS and Brenk tests as no alerts were raised. This means that these compounds may not affect any bioassays [72] and generally have good pharmacokinetics properties with an acceptable toxic level [73]. Interestingly, only one compound ( $\mathbf{6 d}$ ) passed the lead-likeness test, and hence, can be used as a lead compound in drug discovery processes. Compounds $\mathbf{6 c}, \mathbf{6 m}, \mathbf{6 0}, \mathbf{6 q}$ and $7 \mathbf{c}$ all had higher MW ( $>350$ ) as well as high partition coefficient $(\log P)$ values (XLOGP: >3.5). Structural optimisation for these chemical scaffolds is needed, most probably by decreasing size, polarity and/or lipophilicity.

## Conclusion

The aim of this study was to investigate use of amino-3,5dicyanopyridine and thieno[2,3-b]pyridine derivatives as potential AR agonists. A total of 23 test compounds were synthesised ( $\mathbf{6 a - s}$ and $7 \mathbf{7 a - d}$ ) and 7 of these were novel ( $\mathbf{6 d}$ and $\mathbf{6 k}-\mathbf{p}$ ), while 4 compounds ( $7 \mathbf{a}-\mathbf{d}$ ) have been synthesised before but have never been tested for AR affinity.

Overall, amino-3,5-dicyanopyridine displayed superior activity towards $\mathrm{rA}_{1}$ ARs compared to thieno[2,3]pyridines. The general poor activity of thieno[2,3-b]pyridines suggest that the intramolecular cyclisation results in molecular stiffening or rigidity which negatively affects binding to the receptors, perhaps, due to steric hindrance. On the $\mathrm{R}^{2}$ substitution, it was observed that 3- and 4-methoxyphenyl groups favoured $\mathrm{rA}_{1}$ AR binding compared to their 3- and 4-hydroxyphenyl counterparts. Looking at the aryl substitution, the methylpyridine substituent displayed the overall best $\mathrm{rA}_{1}$ AR affinity. Novel compounds ( $\mathbf{6 d}, \mathbf{6 k}, \mathbf{6 l}$, $\mathbf{6 m}, \mathbf{6 n}, 60$ and $\mathbf{6 p}$ ) proved to be highly selective with low nanomolar $\mathrm{rA}_{1}$ AR affinity ( $K_{\mathrm{i}}$ values between 0.179 nM and 21.0 nM$)$. The only thieno[2,3-b]pyridine derivative that displayed moderately good $\mathrm{rA}_{1}$ AR activity ( $K_{\mathrm{i}}=$ 61.9 nM ) has been investigated as a TGF- $\beta$ receptor kinase inhibitor for the treatment of tumours and now AR affinity may be included.

Compounds 6n, 6q and 7c acted as potent, highly selective agonists at $\mathrm{A}_{1} \mathrm{ARs}$; however, compounds 6c, $\mathbf{6 d}$ and $\mathbf{6 0}$ (notably all containing a $3-\mathrm{OCH}_{3}$ group at position $\mathrm{R}^{2}$ ) behaved as $\mathrm{rA}_{1}$ antagonists.

Upon in silico evaluation, the SwissADME profiles of the test compounds raised concern about their bioavailability; therefore, it may be advisable to confirm BBB permeation via in vitro evaluation of promising test compounds before further structure optimisation.

The high affinity and selectivity for the $\mathrm{rA}_{1}$ AR displayed by the amino-3,5-dicyanopyridine scaffold showed that, if correctly modified, it may produce highly potent AR ligands which can be used in development of treatment for epilepsy.

## Experimental

## Chemistry

## Materials and methods

Unless otherwise noted, all starting materials and solvents were purchased from commercial manufacturers (SigmaAldrich and AmBeed) and used without further purification. Thin layer chromatography (TLC) silica gel 60 F254 aluminium sheets from Merck was used to monitor reaction progress. Melting points (mp) were determined on a Buchi M-545 melting point apparatus. Mp for compounds $\mathbf{6 h}, \mathbf{6 i}$, $\mathbf{6 j}, \mathbf{7 c}$ and $\mathbf{7 b}$ were obtained through differential scanning calorimetry (DSC) analysis using Mettler Toledo analyser. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance III 600 spectrometer at frequencies of 600 and 151 megahertz (MHz) respectively, using DMSO-d6 (deuterated dimethyl sulfoxide) as solvent and tetramethylsilane (TMS - $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\right)$ as reference. Chemical shifts were reported in parts per million ( ppm ) in relation to the solvent peak (DMSO-d6: residual $\mathrm{CH}_{3}$ at 2.50 ppm for ${ }^{1} \mathrm{H}$ NMR and 39.52 ppm for ${ }^{13} \mathrm{C}$ NMR). Spin multiplicities were indicated as follows: singlet (s), doublet (d), triplet ( t ), quartet ( q ), doublet of doublets (dd), triplet of doublets (td), double double doublet (ddd) and multiplet (m). Coupling constant ( $J$ ) values were reported in Hertz (Hz). Highresolution mass spectra (HRMS) were recorded on a Bruker micrOTOF-Q II mass spectrometer in atmospheric chemical ionisation (APCI) mode. High-performance liquid chromatography (HPLC) analyses were done on Shimadzu Nexera-i LC-2040C 3D Plus HPLC system to determine the purity of test compounds.

## Synthesis of test compounds

General procedure for the synthesis of $\mathbf{6 a - 6 p}$

2-((6-amino-3,5-dicyano-4-(4-methoxyphenyl)pyridin-2-yl) thio)acetamide (6a) Three drops of trimethylamine were added to a solution of $\mathrm{MN}(0.629 \mathrm{ml}, 10 \mathrm{mmol})$ in 20 mL of EtOH , while stirring with magnetic stirrer. The reaction mixture was cooled to $10^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{~S}$ generated by reaction between iron sulphide ( FeS ) ( 12.081 g ) and hydrochloric acid $(\mathrm{HCl})(90 \mathrm{ml})$ was passed through the mixture for 24 h to produce cyanothioacetamide (1). The reaction mixture was then stirred for $15-20 \mathrm{~min}$ before adding 3-methoxybenzaldehyde $(1.217 \mathrm{ml}, 10 \mathrm{mmol})$ while stirring at room temperature to produce 2a. After obtaining a homogeneous mixture, more $\mathrm{MN}(0.629 \mathrm{ml}, 10 \mathrm{mmol})$ was added and the mixture stirred until it became homogeneous again. It was then left to stand at room temperature for $12-14 \mathrm{~h}$ to obtain 2,6-diamino-4-methoxy-4H-thiopyran-

3,5-dicarbonitrile (4a). The mixture was then diluted with an equal volume of DMF and $10 \%$ aqueous $\mathrm{KOH}(5.6 \mathrm{~mL}$, 10 mmol ) and left to stand for 24 h to produce potassium 6-amino-3,5-dicyano-4-methoxy-1,4-dihydropyridine-2-thiolate (5a). 2-bromoacetamide ( $10 \mathrm{mmol}, 1.382 \mathrm{~g}$ ) was added to the mixture and continuously stirred for 3 h , after which $10 \%$ aqueous $\mathrm{KOH}(5.6 \mathrm{~mL}, 10 \mathrm{mmol})$ was added again. After $2-4 \mathrm{~h}$, ice was added and the resulting precipitate was filtered off, washed with distilled $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$ and hexane, dried $\left(30^{\circ} \mathrm{C}\right)$ and recrystallised from MeOH to yield the title compound $\mathbf{6 a}$ as whitish powder $(0.988 \mathrm{~g}, 29.1 \%)$ : Rf: 0.77 (DCM/PE/EtOAc 10:1:1); mp: 237.2-238.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 7.93$ (s, 2H), 7.49 (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO) $\delta 168.8$ (C,-CO), 166.1 (C, C-6), 160.8 (C, C-2), 159.6 (C, C-4'), 158.0 (C, C-4), 130.1 (C, C1'), 125.7 (CH, C-2',C-6'), 115.3 (CH, C-3', C-5'), 115.3 (C, CN), 114.1 (C, $\mathrm{CN}), 93.3$ ( $\mathrm{C}, \mathrm{C}-5$ ), 85.9 (C, C-3), $55.3\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 33.3$ $\left(\mathrm{CH}_{2}, \quad \mathrm{~S}-\underline{C H}_{2}-\right)$; APCI-HRMS $\mathrm{m} / \mathrm{z}$ : calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+340.0863$, found 340.0871; Purity (HPLC, $\lambda=280$ ): $100 \%$

## 2-amino-4-(4-methoxyphenyl)-6-(((6-methylpyridin-2-yl)

 methyl)thio)pyridine-3,5-dicarbonitrile (6b) Prepared as for $\mathbf{6 a}$ from 4-methoxybenzaldehyde $(1.217 \mathrm{ml}, 10 \mathrm{mmol})$ and 2-(bromomethyl)-6-methylpyridine ( $1.862 \mathrm{~g}, 10 \mathrm{mmol}$ ) to yield $\mathbf{6 b}$ which was recrystallised from MeOH as white flakes ( $3.418 \mathrm{~g}, 88.2 \%$ ): Rf: 0.77 (PE:EtOAc 1:1); mp: $168.5-171.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO) $\delta 8.00(\mathrm{~s}, 2 \mathrm{H}$ ), $7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=24.1,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 166.1 (C, C-6), 160.8 (C, C-2), 159.6 (C, C-4'), 158.1 (C, C4), 157.7 (C, C-2"), 155.73 (C, C-6"), 137.0 (CH, C-4"), 130.1 (C, C-1'), 125.8 (CH, C-2', C-6'), 121.8 (CH, C-5"), 120.6 (CH, C-3'), 115.4 (CH, C-3', C-5'), 115.4 (C, CN), 114.0 (C, CN), 93.2 (C, C-5), 85.9(C. C-3), $55.3\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{OCH}_{3}\right), 35.3\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right), 23.9\left(\mathrm{CH}_{3}\right.$, -methylpyridine); APCI- HRMS m/z: calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]+$ 388.1227, found 388.1208; Purity (HPLC, $\lambda=254$ ): $100 \%$
## 2-amino-4-(3-methoxyphenyl)-6-(((6-methylpyridin-2-yl)

 methyl)thio)pyridine-3,5-dicarbonitrile (6c) Prepared as for 6a from MN ( $0.315 \mathrm{ml}, 5 \mathrm{mmol}$ ), 3-methoxybenzaldehyde ( $5 \mathrm{mmol}, 0.608 \mathrm{ml}$ ) and 2-(bromomethyl)-6-methylpyridine ( $0.933 \mathrm{~g}, 5 \mathrm{mmol}$ ) to yield $\mathbf{6 c}$ which was recrystallised from MeOH as white solid ( $0.505 \mathrm{~g}, 26.1 \%$ ): Rf: 0.64 (DCM/PE/ EtOAc 10:1:1); mp: $175.5-176.7^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 600 MHz , DMSO) $\delta 8.05(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 166.1 (C, C-6), 159.5 (C, C-2), 159.0 (C, C-3'), 158.1 (C,C-4), 157.7 (C, C-2"), 155.7 (C, C-6"), 137.0 (C, C-1'), 135.1 (CH, C-4"), 129.9 (CH, C-5'), $121.8\left(\mathrm{CH}, \mathrm{C}-3^{\prime \prime}\right), 120.6(\mathrm{CH}$, C-5'), 120.4 (CH, C-6'), 115.8 (CH, C-4'), 115.1 (CH, C-2'), $115.0(\mathrm{C}, \mathrm{CN}), 114.0(\mathrm{C}, \mathrm{CN}), 93.2(\mathrm{C}, \mathrm{C}-5), 86.0(\mathrm{C}, \mathrm{C}-3)$, $55.3\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 35.3\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right), 23.9\left(\mathrm{CH}_{3}\right.$, methylpyridine). APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]+388.1227$, found 388.1208; Purity (HPLC, $\lambda=254$ ): $100 \%$

2-((6-amino-3,5-dicyano-4-(3-methoxyphenyl)pyridin-2-yl) thio)acetamide (6d) Prepared as for $\mathbf{6 c}$ from 3-methoxybenzaldehyde ( $5 \mathrm{mmol}, 0.608 \mathrm{ml}$ ) and 2-bromoacetamide ( $0.691 \mathrm{~g}, 5 \mathrm{mmol}$ ) to yield $\mathbf{6 d}$ which was recrystallised from MeOH as yellowish powder $(0.537 \mathrm{~g}$, 31.6\%): Rf: 0.78 (DCM/PE/EtOAc 10:1:1); mp: 232.3-237.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 7.98$ (s, $2 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H})$, 7.08-7.04 (m, 1H), $3.89(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 168.8(\mathrm{C}, \mathrm{CO}), 166.0(\mathrm{C}, \mathrm{C}-6), 159.4$ (C-C2), 159.0 (C, C-3'), 158.1 (C, C-4), 135.1 (C, C-1'), 129.9 (CH, C-5'), 120.4 (CH, C-6'), 115.8 (C, C-4'), 115.1 (C, CN), 115.0 (CH, C-2'), 114.0, (C, CN) 93.3 (C, C-5), $86.0(\mathrm{C}, \mathrm{C}-5), 55.3\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 33.3\left(\mathrm{CH}_{2},-\mathrm{S}_{-} \mathrm{CH}_{2}-\right)$; APCI-HRMS $m / z:$ calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$ 340.0863, found 340.0844; Purity (HPLC, $\lambda=254$ ): $100 \%$

## 2-((6-amino-3,5-dicyano-4-(4-hydroxyphenyl)pyridin-2-yl) thio)acetamide (6e) Prepared as for $\mathbf{6 c}$ from

 4-hydroxybenzaldehyde $\quad(0.614 \mathrm{~g}, \quad 5 \mathrm{mmol})$ and 2-bromoacetamide ( $0.692 \mathrm{~g}, 5 \mathrm{mmol}$ ) to yield compound $\mathbf{6 e}$ which was recrystallised from MeOH as cream white powder ( $0.650 \mathrm{~g}, 40.0 \%$ ): Rf: 0.15 (EtAOc only); mp: 267.6-268.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, ~ D M S O$ ) $\delta 10.03$ (s, $1 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}$, 1H), 6.95-6.89 (m, 2H), $3.88(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO) $\delta 168.9$ (C, CO), 166.1 (C, C-6), 159.7 (C, C-2), 159.4 (C, C-4), 158.3 (C, C-4'), 130.1 (C, C-1'), 124.1 (CH, C-2', C-6'), 115.4 (CH, C-3', C-5'), 115.4 (C, CN, 115.4 (C, CN ), 93.2 ( $\mathrm{C}, \mathrm{C}-5$ ), 85.8 ( $\mathrm{C}, \mathrm{C}-3$ ), $33.3\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}\right)$ ); APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$ 326.0706, found 326.0688; Purity (HPLC, $\lambda=254$ ): $100 \%$2-((6-amino-3,5-dicyano-4-(3-hydroxyphenyl)pyridin-2-yl) thio)acetamide (6f) Prepared as for $\mathbf{6 c}$ from 3-hydroxybenzaldehyde $\quad(0.612 \mathrm{~g}, \quad 5 \mathrm{mmol})$ and 2-bromoacetamide ( $0.690 \mathrm{~g}, 5 \mathrm{mmol}$ ) to yield $\mathbf{6 f}$ which was recrystallised from ethanol as light brown solid ( $0.735 \mathrm{~g}, 45.2 \%$ ): Rf: 0.28 (DCM/MeOH: 10:1); mp: $248.1-248.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, ~ D M S O$ ) $\delta 9.83$ ( s , $1 \mathrm{H}), 7.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{ddd}, J=8.2,2.4,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 168.8$ (C, CO), 166.1 (C,

C-6), 159.5 (C, C-2), 158.3 (C, C-4), 157.3 (C, C-3'), 135.0 (C, C-1'), 129.9 (CH, C-5'), 118.8 (CH, C-6'), 117.2 (CH, C-4'), $115.1(\mathrm{CH}, \mathrm{C}-2 '), 115.0(\mathrm{C}, \mathrm{CN}), 115.0(\mathrm{C}, \mathrm{CN}), 93.2$ (C, C-5), $85.9(\mathrm{C}, \mathrm{C}-3), 33.3\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right)$; APCI-HRMS $\mathrm{m} / \mathrm{z}$ : calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S} \quad[\mathrm{M}+\mathrm{H}]+326.0706$, found 326.0689; Purity (HPLC, $\lambda=254$ ): $100 \%$

## 2-((6-amino-4-(benzo[d][1,3]dioxol-5-yl)-3,5-dicyanopyri-

 din-2-yl)thio)acetamide ( 6 g ) Prepared as for $\mathbf{6 c}$ from piperonaldehyde $(0.752 \mathrm{~g}, 5 \mathrm{mmol})$ and 2-bromoacetamide $(0.690 \mathrm{~g}, 5 \mathrm{mmol})$ to yield $\mathbf{6 g}$ which was recrystallised from MeOH as light orange solid $(0.682 \mathrm{~g}, 38.6 \%)$ : Rf: 0.40 (DCM/MeOH: 10:1); mp: 244.5-245.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}$, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ $(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO) $\delta 168.8$ (C, CO), $166.0(\mathrm{C}, \mathrm{C}-6)$, 159.5 (C, C-2), 157.9 (C, C-4), 148.9 (C, C-3', C-4'), 147.3 (C, C-1'), 127.2 (C, C-6'), 122.9 (CH, C-2'), 115.2 (CH, C$\left.5^{\prime}\right), 108.8,(\mathrm{C}, \mathrm{CN}) 108.5(\mathrm{C}, \mathrm{CN}), 101.7\left(\mathrm{CH}_{2}, \mathrm{C}\right.$ at dioxol), 93.4 (C, C-5), 86.1 (C, C-3), $33.3\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right)$; APCIHRMS $m / z$ : calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S} \quad[\mathrm{M}+\mathrm{H}]+$ 354.0655, found 354.0635; Purity (HPLC, $\lambda=254$ ): $100 \%$
## 3-(((6-amino-3,5-dicyano-4-(furan-2-yl)pyridin-2-yl)thio)

methyl)benzoic acid (6h) Prepared as for $\mathbf{6 c}$ from furan-2carbaldehyde ( $0.414 \mathrm{~g}, 5 \mathrm{mmol}$ ) and 3-(bromomethyl)benzoic acid ( $1.081 \mathrm{~g}, 5 \mathrm{mmol}$ ) to yield $\mathbf{6 h}$ which was recrystallised from acetone as cream white powder $(0.341 \mathrm{~g}$, 18.1\%):Rf: 0.38 (DCM:MeOH 10:1); mp: $279.59{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 8.10-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=3.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 167.4 (C, COOH), 160.1 (C, C-6), 146.5 (C, C-2), 145.1 (C, C-4, C-2'), 143.7 9CH, C-5', 136.5 (C-3'), 127.7 (C, C-4", $\left.\mathrm{C}-1^{\prime \prime}\right), 116.3$ (CH, C-5", C-6", C-2"), 115.7 (C, CN), $115.7 \mathrm{C}, \mathrm{CN}$ ), 112.8 (CH, C-3', C-4'), 89.2 (C, C-5), 81.6 (C, C-3), $33.4\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}\right)$; APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+377.0703$, found 377.0687; Purity (HPLC, $\lambda=254$ ): $100 \%$

3-(((6-amino-3,5-dicyano-4-phenylpyridin-2-yl)thio)methyl) benzoic acid (6i) Prepared as for $\mathbf{6 c}$ from benzaldehyde ( $0.460 \mathrm{ml}, \quad 5 \mathrm{mmol}$ ) and 3-(bromomethyl)benzoic acid $(1.083 \mathrm{~g}, 5 \mathrm{mmol})$ to yield $\mathbf{6 i}$ which was recrystallised from hexane as white fluffy solid $(0.601 \mathrm{~g}, 31.1 \%)$ : Rf: 0.89 (DCM:MeOH 10:1); mp: $200^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz , DMSO) $\delta 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49$ $(\mathrm{m}, 5 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.51 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 166.4$ (CCOOH), 159.5 (C, C-6), 158.3 (C, C-2), 135.7 (C, C-4), 133.9 (C, C-3"), 130.3 (C, C-1'), 130.2 (CH, C-4"), 128.6
(C, C-1"), 128.3 (CH, C-3', C-5', C-4', C2') 128.0 (CH, C$\left.5^{\prime \prime}, \mathrm{C}^{\prime \prime} 6^{\prime \prime}\right), 127.1\left(\mathrm{CH}, \mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}\right), 115.1$ (C, CN$), 115.1$ (CCN), $93.2(\mathrm{C}, \mathrm{C}-5), 85.9(\mathrm{C}, \mathrm{C}-3), 33.6\left(\mathrm{C},-\mathrm{SCH}_{2}\right)$; APCIHRMS $m / z$ : calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \quad[\mathrm{M}+\mathrm{H}]+$ 354.0655, found 354.0635; Purity (HPLC, $\lambda=254$ ): $100 \%$

2-amino-4-(3-hydroxyphenyl)-6-(((6-methylpyridin-2-yl) methyl)thio)pyridine-3,5-dicarbonitrile (6j) Prepared as for $\mathbf{6 c}$ from 3-hydroxybenzaldehyde $(0.610 \mathrm{~g}, 5 \mathrm{mmol})$ and 2-(bromomethyl)-6-methylpyridine $(0.933 \mathrm{~g}, 5 \mathrm{mmol})$ to yield $\mathbf{6 j}$ which was recrystallised from MeOH as light yellow powder ( $0.580 \mathrm{~g}, 31.1 \%$ ): Rf: 0.73 (DCM/MeOH 10:1); mp: $231.22{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H})$, $8.04(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (ddd, $J=8.2,2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~s}$, 2H), $2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 166.1$ (C, C-6), 159.5 (C, C-2), 158.4 (C, C-4), 157.7 (C, C-2"), 157.3 (C, C-6"), 155.7 (C, C-3'), 137.0 (C, C-1'), 135.0 (CH, C$\left.4^{\prime \prime}\right), 129.8$ (CH, C-5'), 121.8 (CH, C-3"), 120.6 (CH, C-5"), 118.8 (C, C-6'), 117.2 (CH,C-4'), 115.1 (CH, C-2'), 115.0 (C, CN), 115.0 (C, CN), 93.1, (C, C-5) 85.8 (C, C-3), 35.4 $\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right), 23.9\left(\mathrm{CH}_{3}\right.$, Methylpyridine); APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]+374.1070$, found 354.1063; Purity (HPLC, $\lambda=254$ ): $100 \%$

3-(((6-amino-3,5-dicyano-4-(4-(methylthio)phenyl)pyridin-2-yl)thio)methyl)benzoic acid (6k) Prepared as for $\mathbf{6 c}$ from 4-(methylthio)benzaldehyde ( $0.664 \mathrm{ml}, 5 \mathrm{mmol}$ ) and 3(bromomethyl)benzoic acid $(1.080 \mathrm{~g}, 5 \mathrm{mmol})$ to yield $\mathbf{6 k}$ which was recrystallised from MeOH as yellowish powder ( $0.580 \mathrm{~g}, 31.1 \%$ ): Rf: 0.69 (DCM/PE/EtOAc 10:1:1); mp: $193.2-193.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 8.05(\mathrm{~s}$, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, $J=6.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$, 2.53 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 166.01(\mathrm{C}$, COOH), 163.8 (C, C-6), 159.6 (C, C-2), 157.9 (C, C-4), 141.7 (C, C-3", C-4'), 130.1 (C, C-4'), 129.8 (C, C-4"), 129.1 (C, C-1"), 128.3 (CH, C-2"), 128.2 (CH, C-5", C-6"), 125.2 (CH, C-2', C-3', C-5', C-6'), 115.4 (C, CN, CN), 93.1 (C, C-5), $85.9(\mathrm{C}, \mathrm{C}-3), 32.9\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right), 14.0\left(\mathrm{CH}_{3}\right.$, $\mathrm{SCH}_{3}$ ). APCI-HRMS m/z: calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]+3433.0787$, found 433.0784; Purity (HPLC, $\lambda=$ 254): $100 \%$

3-(((6-amino-3,5-dicyano-4-(4-methoxyphenyl)pyridin-2-yl) thio)methyl)benzoic acid (6I) Prepared as for $\mathbf{6 c}$ from 4-methoxybenzaldehyde ( $0.608 \mathrm{ml}, 5 \mathrm{mmol}$ ) and 3-(bromomethyl)benzoic acid $(1.080 \mathrm{~g}, 5 \mathrm{mmol})$ to yield 61 which was recrystallised from MeOH as white solid $(0.311 \mathrm{~g}$, 14.9\%): Rf: 0.97 (DCM/PE/EtOAc 10:1:1); mp: 226.5-226.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 8.07$ (s, $1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$
$(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ ( $151 \mathrm{MHz}, \mathrm{DMSO}) \delta 166.3$ (C, COOH ), 160.8 (C, C-6), 159.7 (C, C-2), 158.1 (C, C-4'), 136.6 (C, C-4), 130.4, (C, C-3") 130.3 (CH, C-4'), 128.4 (C, C-1", C-1'), (128.4 (CH, C-2', C-6'), $127.7\left(\mathrm{CH}, \mathrm{C}-2^{\prime \prime}\right), 125.8\left(\mathrm{CH}, \mathrm{C}-5^{\prime \prime}, \mathrm{C}-6^{\prime \prime}\right)$, 115.6 (CH, C-3', C-5'), 115.5 (C, CN), 114.1, (C, CN), 93.2 (C, C-5), $\left.85.9(\mathrm{C}, \mathrm{C}-3), 55.4\left(\mathrm{CH}_{3}, \mathrm{OCH}\right)_{3}\right), 33.3\left(\mathrm{CH}_{2}\right.$, $-\mathrm{SCH}_{2}-$ ); APCI-HRMS m/z: calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ $[\overline{\mathrm{M}}+\mathrm{H}]+417.1016$, found 417.1009; Purity (HPLC, $\lambda=$ 254): $100 \%$

## 2-amino-4-(4-hydroxyphenyl)-6-(((6-methylpyridin-2-yl)

 methyl)thio)pyridine-3,5-dicarbonitrile ( 6 m ) Prepared as for $6 \mathbf{c}$ from 4-hydroxybenzaldehyde $(0.611 \mathrm{~g}, 5 \mathrm{mmol})$ and 2-(bromomethyl)-6-methylpyridine $(0.932 \mathrm{~g}, 5 \mathrm{mmol})$ to yield $\mathbf{6 m}$ which was recrystallised from MeOH as creamy white powder ( $1.611 \mathrm{~g}, 86.3 \%$ ): Rf: 0.68 (PE:EtOAC 1:1); mp: 190.8-191.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO) $\delta 10.09$ $(\mathrm{s}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}$, $2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO) $\delta 166.2$ (C, C-6), 159.8 (C, C-2), 159.5 (C, C-4), 158.4 (C, C-4'), 157.8 (C, C-2"), 155.9 (C, C-6"), 137.1 ( $\mathrm{CH}, \mathrm{C}-4^{\prime \prime}$ ), 130.3 (C, C-1'), 124.1 (CH, C-2', C-6'), 121.9 (CH, C-3"), 120.8 (CH, C-5'), 115.7 (CH, C-3', C-5'), 115.6 (C, CN), 115.4 (C, CN), 93.1 (C, C-5), 85.8 (C, C-3), 35.4 $\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right), 24.0\left(\mathrm{CH}_{3}\right.$, Methylpyridine); APCI-HRMS $\mathrm{m} / \mathrm{z}$ : calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]+374.1070$, found 374.1061; Purity (HPLC, $\lambda=254$ ): $100 \%$
## 2-amino-4-(4-hydroxyphenyl)-6-((3-methylbenzyl)thio)pyri-

 dine-3,5-dicarbonitrile (6n) Prepared as for $\mathbf{6 c}$ from 4-hydroxybenzaldehyde ( $0.612 \mathrm{~g}, 5 \mathrm{mmol}$ ) and 1-(bromo-methyl)-3-methylbenzene ( $0.678 \mathrm{ml}, 5 \mathrm{mmol}$ ) to yield $\mathbf{6 n}$ which was recrystallised from MeOH as light yellowish powder ( $0.532 \mathrm{~g}, 28.6 \%$ ): Rf: 0.75 (PE/EtOAC 1:1); mp: $224.9-226.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 10.06(\mathrm{~s}$, $1 \mathrm{H}), 7.39-7.33$ (m, 2H), 7.33-7.26 (m, 2H), $7.20(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 2 \mathrm{H})$, $4.45(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta$ 166.3 (C, C-6), 159.7 (C, C-2), 159.4 (C, C-4), 158.4 (C, C$\left.4^{\prime}\right), 137.6$ (C, C-1"), 137.3 (C, C-3'), 130.3 (C, C-1'), 129.9 (CH, C-2', C-6'), 128.3 (CH, C-5"), 127.9 (CH, C-4"), 126.4 (CH, C-2"), 124.2 (CH, C-6"), 115.6 (CH,C-3', C-5'), 115.6 (C, CN), 115.4 (C, CN), 93.1 (C, C-5), 85.7 (C, C-3), 33.2 $\left(\mathrm{CH}_{2},-\mathrm{S}-\mathrm{CH}_{2}-\right), 20.9\left(\mathrm{CH}_{3}\right.$, Methylbenzyl); APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]+373.1118$, found 373.1111; Purity (HPLC, $\lambda=254$ ): $100 \%$[^1](bromomethyl)benzoic acid ( $1.083 \mathrm{~g}, 5 \mathrm{mmol}$ ) to yield $\mathbf{6 o}$ which was recrystallised from MeOH as cream white powder ( $0.490 \mathrm{~g}, 23.5 \%$ ):Rf: 0.70 (DCM/PE/EtOAc 10:1:1); mp: 240.0-241.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 8.04$ ( s , $1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}$, $3 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO) $\delta 166.0(\mathrm{C}, \mathrm{COOH}), 159.5(\mathrm{C}, \mathrm{C}-6), 159.0(\mathrm{C}, \mathrm{C}-2)$, 158.2 (C, C-3'), 137.5 (C, C-4), 135.2 (C, C-1', C-3"), 132.5 (C,C-4"), 130.1 (C, C-5', C-1"), 130.0 (CH, C-2"), 128.2 (CH, C-5", C6"), 120.5 (CH, C-6'), 115.9 (CH, C-4'), 115.2 (C, CN), $115.2(\mathrm{C}, \mathrm{CN}), 114.0(\mathrm{CH}, \mathrm{C}-2$ ), $93.3(\mathrm{C}, \mathrm{C}-5)$, $86.1(\mathrm{C}, \mathrm{C}-3), 55.3\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 32.9\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}\right)$; APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$ 417.1016, found 417.1012; Purity (HPLC, $\lambda=254$ ): $100 \%$

2-amino-4-(4-fluorophenyl)-6-(((6-methylpyridin-2-yl) methyl)thio)pyridine-3,5-dicarbonitrile (6p) Prepared as for $\mathbf{6 c}$ from 4-fluorobenzaldehyde ( $0.536 \mathrm{ml}, 5 \mathrm{mmol}$ ) and 2-(bromomethyl)-6-methylpyridine $(0.932 \mathrm{~g}, 5 \mathrm{mmol})$ to yield 60 which was recrystallised from MeOH as white powder ( $0.222 \mathrm{~g}, 11.8 \%$ ): Rf: 0.84 (PE:EtOAC 1:1); mp: $216.8-216.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 8.33$ (s, $2 \mathrm{H}), 7.62(\mathrm{dt}, J=8.9,6.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.14$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{DMSO}) \delta 166.2 \mathrm{C}, \mathrm{C}-6$ ), 164.0 (C, C-2), 162.3 (C, C-4), 159.5 (C, C-2"), 157.8 (C, C-6"), 157.5 (CH, C$\left.5^{\prime \prime}\right), 155.8$ ( $\left.\mathrm{CH}, \mathrm{C}-3^{\prime \prime}\right)$, 137.1 ( $\mathrm{CH}, \mathrm{C}-4^{\prime \prime}$ ), 131.1 (d, $J=$ $8.8 \mathrm{~Hz}, \mathrm{C}, \mathrm{C}-1$ '), 131.1 (C, C-6'), 130.3 (d, $J=3.0 \mathrm{~Hz}, \mathrm{CH}$, C-2', C-6'), 121.9 (C, CN), 120.8 (C, CN), 115.8 (d, $J=$ $\left.22.0 \mathrm{~Hz}, \mathrm{C}, \mathrm{C}-4^{\prime}\right), 115.2$ (d, $\left.J=11.2 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}\right)$, 93.3 (C, C-5), 86.1 (C, C-5), $35.4\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right), 24.0$ $\left(\mathrm{CH}_{3}\right.$, Methylpyridine); APCI-HRMS m/z: calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+376.1027$, found 376.1039; Purity (HPLC, $\lambda=254$ ): $100 \%$ General procedure for the synthesis of $\mathbf{6 q - 6 s}$ and 7a:

## 2-amino-6-(((2-(4-chlorophenyl)thiazol-4-yl)methyl)thio)-4-(4-(2-hydroxyethoxy)phenyl)pyridine-3,5-dicarbonitrile

(6q) Cyanothioacetamide ( $0.503 \mathrm{~g}, 5 \mathrm{mmol}$ ) was dissolved in 10 ml EtOH . The reaction mixture was then stirred for $15-20 \mathrm{~min}$ before adding 4-(2-hydroxyethoxy)benzaldehyde ( $0.696 \mathrm{ml}, 5 \mathrm{mmol}$ ) while stirring at room temperature. After obtaining a homogeneous mixture, MN ( 0.315 ml , 5 mmol ) was added and the mixture stirred until it became homogeneous again, then left to stand at room temperature for $12-14 \mathrm{~h}$. The mixture was then diluted with an equal volume of DMF and $10 \%$ aqueous $\mathrm{KOH}(2.8 \mathrm{ml}, 5 \mathrm{mmol})$ and left to stand for 24 h . 4-(Chloromethyl)-2-(4-chlorophenyl)thiazole ( $1.221 \mathrm{~g}, 5 \mathrm{mmol}$ ) was added to the mixture and continuously stirred for 3 h , after which $10 \%$ aqueous $\mathrm{KOH}(5.6 \mathrm{~mL}, 10 \mathrm{mmol})$ was added again. After $2-4 \mathrm{~h}$, ice was added and the resulting precipitate was
filtered off, washed with distilled $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$ and hexane, dried $\left(30^{\circ} \mathrm{C}\right)$ and recrystallised from MeOH to yield the title compound $\mathbf{6 q}$ as light brown powder ( $1.355 \mathrm{~g}, 52.1 \%$ ): Rf: 0.82 (DCM/PE/EtOAc 10:1:1); mp: 162.1-163.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~s}$, $1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.02(\mathrm{~m}$, $2 \mathrm{H}), 4.86(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ (dd, $J=10.1,5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{DMSO}) \delta 165.8$ (C, C-2"), 165.6 (C, C-6), 160.3 (C, C-2), 159.7 (C, C-4'), 158.1 (C, C-4), 152.4 (C, C-4"), 134.8 (C, C-1"'), 131.6 (C, C-4"'), 130.1 (C, C-1'), 129.2 (CH, C-3'", C5"'), 127.7 (CH, C-2', C-6'), 125.7 (CH, C-2"', C-6"'), 118.7 (CH, C-5"), 115.3 (CH, C-3', C-5'), $115.3(\mathrm{C}, \mathrm{CN}), 114.5(\mathrm{C}, \mathrm{CN}), 93.4(\mathrm{C}, \mathrm{C}-5), 85.9(\mathrm{C}, \mathrm{C}-3)$, $69.7\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 59.4\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 29.2$ $\left(\mathrm{CH}_{2}, \quad-\mathrm{SCH}_{2}-\right)$; APCI-HRMS $\mathrm{m} / \mathrm{z}:$ calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{~S}_{2} \quad[\mathrm{M}+\mathrm{H}]+520.0663$, found 520.0651; Purity (HPLC, $\lambda=254$ ): $100 \%$

## 2-amino-6-(((2-(4-chlorophenyl)thiazol-4-yl)methyl)thio)-4-

 (4-hydroxyphenyl)pyridine-3,5-dicarbonitrile (6r) Prepared as for $\mathbf{6 q}$ from 4-hydroxybenzaldehyde $(0.612 \mathrm{~g}, 5 \mathrm{mmol})$ and 4-(chloromethyl)-2-(4-chlorophenyl)thiazole ( 1.220 g , 5 mmol ) to yield $\mathbf{6 r}$ which was recrystallised from MeOH as light pink powder $(1.203 \mathrm{~g}, 50.6 \%)$ : Rf: 0.81 (DCM/PE/ EtOAc 10:1:1); mp: 233.8-234.6 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( 600 MHz , DMSO) $\delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H})$, 7.58-7.52 (m, 2H), 7.39-7.33 (m, 2H), 6.92-6.87 (m, 2H), 4.63 (s, 2H); ${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO) $\delta 165.9$ (C, C$2^{\prime \prime}$ ), 165.6 (C, C-6), 159.8 (C, C-2), 159.4 (C, C-4), 158.4 (C, C-4'), 152.5 (C, C-4"), 134.8 (C, C-1"'), 131.6 (C, C$\left.4^{\prime \prime \prime}\right), 130.2$ (C, C-1'), 129.3 (CH, C-2', C-6'), 127.8 (CH, C$2^{\prime \prime \prime}$, C-6"'), 124.1 (CH, C-3"', C-5"'), 118.8 (CH, C-3', C-5'), 115.6 (CH, C-5"), 115.5 (C, CN), 115.4 (C, CN), 93.3 (C, C-5), $85.8(\mathrm{C}, \mathrm{C}-3), 29.3\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right)$; APCI-HRMS $m / z:$ calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClN}_{5} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]+476.0401$, found 476.0386; Purity (HPLC, $\lambda=254$ ): $100 \%$
## 2-amino-6-(((2-(4-chlorophenyl)thiazol-4-yl)methyl)thio)-4-

 (4-methoxyphenyl)pyridine-3,5-dicarbonitrile (6s) Prepared as for $\mathbf{6 q}$ from 4-methoxybenzaldehyde $(0.608 \mathrm{ml}$, 5 mmol ) and 4-(chloromethyl)-2-(4-chlorophenyl)thiazole $(1.222 \mathrm{~g}, 5 \mathrm{mmol})$ to yield $\mathbf{6 s}$ which was recrystallised from MeOH as cream white solid $(0.850 \mathrm{~g}, 34.9 \%)$ : Rf: 0.72 (DCM/PE/EtOAc 10:1:1); mp: 238.2-240.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO) $\delta 8.06(\mathrm{~s}, 2 \mathrm{H}), 7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.89$ (s, 1H), 7.58-7.53 (m, 2H), 7.50-7.46 (m, 2H), 7.13-7.08 (m, 2H), $4.64(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO) $\delta 165.8$ (C, C-2"), 165.6 (C, C-6), 160.8 (C, C-2), 159.7 (C, C-4'), 158.0 (C, C-4), 152.4 (C, C-4"), 134.8 (C, C-1"'), 131.6 (C, C-4"'), 130.1 (C, C-1'), 129.2 (CH, C-2', C-6'), 127.7 (CH, C-"'3, C-5 ${ }^{\prime \prime \prime}$ ), 125.7 (CH, C- $\left.2^{\prime \prime \prime}, \mathrm{C}-6^{\prime \prime \prime}\right)$, 118.7 (CH, C-5'), 115.4 (CH, C-3', C-5'), 115.3 (C, CN),114.0 (C, CN), 93.4 (C, C-5), 85.9 (C, C-3), $55.3\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{OCH}_{3}\right), 29.3\left(\mathrm{CH}_{2},-\mathrm{SCH}_{2}-\right)$; APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{5} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]+490.0558$, found 490.0538; Purity (HPLC, $\lambda=254$ ): $100 \%$

3,6-diamino-5-cyano-4-(4-fluorophenyl)thieno[2,3-b]pyri-dine-2-carboxamide (7a) Prepared as for $\mathbf{6 q}$ from 4-fluorobenzaldehyde $\quad(0.536 \mathrm{ml}, 5 \mathrm{mmol})$ and 2-bromoacetamide ( $0.693 \mathrm{~g}, 5 \mathrm{mmol}$ ) to yield compound 7a which was recrystallised from MeOH as yellow to greenish solid ( $0.687 \mathrm{~g}, 42.0 \%$ ): Rf: 0.77 (DCM/PE/EtOAc 10:1:1); mp: 257.5-260.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz , DMSO) $\delta$ $7.72-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~s}$, 2H), $5.63(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 166.7(\mathrm{C}$, CO ), 163.6 (C, C-6), 163.4 (C, between position $1 \& 7$ of thienopyridine), 162.0 (C, C-4), 158.3 (C, C-3), 151.3 (C, C-2), 146.1 (C, C-1'), 130.60 (d, $\left.J=8.5 \mathrm{~Hz}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}\right)$, 129.91 (d, $J=3.1 \mathrm{~Hz}$ ), C-3', C-5'), 116.22-115.68 ((m), C4'), 114.2 ( C , between position $3 \& 4$ of thienopyridine), 93.3 (C, CN), 90.4 (C-C5); APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FN}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]+328.0663$, found 328.0652; Purity (HPLC, $\lambda=254$ ): $100 \%$ General procedure for synthesis of 7b and 7c

## 3,6-diamino-5-cyano-4-(4-methoxyphenyl)thieno[2,3-b]pyr-

 idine-2-carboxamide (7b) Prepared by dissolving 2-((6-amino-3,5-dicyano-4-(4-methoxyphenyl)pyridin-2-yl)thio) acetamid ( $6 \mathbf{a}$ ) ( $0.203 \mathrm{~g}, 0.598 \mathrm{mmol})$ in 10 ml DMF. Two or three drops of $10 \%$ aqueous KOH was then added to the solution. The reaction mixture was maintained at room temperature for 24 h . Product was precipitated by adding ice. The resulting precipitate was filtered off, washed with distilled $\mathrm{H}_{2} \mathrm{O}$, EtOH and hexane, dried $\left(30^{\circ} \mathrm{C}\right)$ and recrystallised from MeOH to yield 7 b as yellow powder $(0.054 \mathrm{~g}$, 31.8\%): Rf: 0.75 (DCM/PE/EtOAc 10:1:1); mp: 263.9-264.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO) $\delta 7.42$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99$ (s, 2H), $5.70(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO) $\delta 166.8$ (C, CO), 163.4 (C, C-6), 160.2 (C, C-4'), 158.5 (C, between position $1 \& 7$ of thienopyridine), 152.3 (C, C-4), 146.3 (C, C-3), 129.7 (CH, C-2', C-6'), 125.5 (C, C-2), 116.0 (C, C-1'), 114.4 (C, between position $3 \& 4$ of thienopyridine), 114.3 (CH, C-3',C-5'), 92.9 (C, CN), 90.5 (C, C-5), $55.3\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right)$; APCI-HRMS m/z: calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+340.0863$, found 340.0853; Purity (HPLC, $\lambda=254$ ): $93.8 \%$3,6-diamino-4-(benzo[d][1,3]dioxol-5-yl)-5-cyanothieno[2,3-b]pyridine-2-carboxamide (7c) Prepared as for 7b from 2-((6-amino-4-(benzo[d][1,3]dioxol-5-yl)-3,5-dicyanopyridin-2-yl)thio)acetamide ( $\mathbf{6 g}$ ) $(0.134 \mathrm{~g}, 0.379 \mathrm{mmol})$ to yield 7 c which was washed with distilled $\mathrm{H}_{2} \mathrm{O}$ and hexane and dried without further purification to yield an orange solid
( $0.034 \mathrm{~g}, 19.3 \%$ ): Rf: 0.56 (DCM/PE/EtOAc 10:1:1); mp: $296.82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 7.28(\mathrm{~s}, 1 \mathrm{H})$, $7.15-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=118.5$, $114.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 166.8(\mathrm{C}$, $\mathrm{CO}), 158.4$ (C, C-6), 152.0 (C, between position $1 \& 7$ of thienopyridine), 148.5 (C, C-4), 147.5 (C, C3', C4'), 146.3 (C, C-3), 126.8 (C, C-1'), 122.0 (C, C-2), 115.9 (C, between position $3 \& 4$ of thienopyridine), 114.4 (CH, C-6'), 108.8 ( $\mathrm{CH}, \mathrm{C}-2$ '), 108.7 (C, CN), $101.7\left(\mathrm{CH}, \mathrm{C}-5{ }^{\prime}\right), 92.8\left(\mathrm{CH}_{2}\right.$, at dioxol), 90.5 (C, C-5); APCI-HRMS $m / z$ : calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+354.0655$, found 354.0647 ; Purity (HPLC, $\lambda=254$ ): $62.6 \%$

3,6-diamino-5-cyano-4-(4-methoxyphenyl)thieno[2,3-b]pyr-idine-2-carboxamide (7d) Prepared by refluxing a solution of 2-((6-amino-3,5-dicyano-4-(3-hydroxyphenyl)pyridin-2yl)thio)acetamide ( $\mathbf{6 f}$ ) $(0.201 \mathrm{~g}, 0.518 \mathrm{mmol})$ and KOH $(0.080 \mathrm{~g}, 1.426 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{ml})$ for 6 h . After cooling, ice-cold water was added to the reaction mixture to precipitate the product. The resulting precipitate was filtered off, washed with distilled $\mathrm{H}_{2} \mathrm{O}$, EtOH and hexane, dried $\left(30^{\circ} \mathrm{C}\right)$ and recrystallised from MeOH to yield 7 d as greenish solid ( $0.163 \mathrm{~g}, 66.4 \%$ ): Rf: 0.15 (DCM/PE/EtOAc 10:1:1); mp: $285.12{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta$ $9.97(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 6.98(\mathrm{~s}$, $3 \mathrm{H}), 6.90-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO) $\delta 166.7$ (C,Cㅡ), 163.3 (C, C-6), 158.4 (C, C, between position $1 \& 7$ of thienopyridine), 157.6 (C, C-3'), 152.2 (C, C-4), 146.0 (C, C-1'), 134.8 (C, C-3), 130.4 (CH, C-5'), 118.3 (C, C-2), 116.9 (C, C between position $3 \& 4$ of thienopyridine), 115.8 ( $\mathrm{CH}, \mathrm{C}-6 '), 114.7$ (CH, C-4'), 113.9 (CH, C-2'), 93.0 (C, CN), 89.9 (C, C-5); APCI-HRMS m/z: calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+326.0706$, found 326.0690; Purity (HPLC, $\lambda=254$ ): $100 \%$

## Biology

## In vitro evaluation

Materials and methods All reagents were commercially available and purchased from various manufacturers. Radioligands [ $\left.{ }^{3} \mathrm{H}\right]$ DPCPX ( $120 \mathrm{Ci} / \mathrm{mmol}$ ) and $\left[{ }^{3} \mathrm{H}\right]$ NECA $(27.1 \mathrm{Ci} / \mathrm{mmol})$ were obtained from PerkinElmer. Adenosine deaminase from bovine spleen ( 157 units $/ \mathrm{mg}, 5.9 \mathrm{mg} /$ ml , or 130 units $/ \mathrm{mg}, 6.8 \mathrm{mg} / \mathrm{ml}$ ), CPA, DPCPX, istradefylline, caffeine and anhydrous magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ were all obtained from Sigma-Aldrich. Radioactivity was counted by a PerkinElmer Tri-CARB 2810 TR liquid scintillation analyser.

Ethics The collection of tissue samples for the $A_{1}$ and $A_{2 A}$ AR radioligand binding assays were approved by the Health Sciences Ethics Office for Research, Training and Support,

North-West University (NWU-00418-21-A5) and were performed in accordance with the guidelines of the South African National Standard (SANS) document (The care and use of animals for scientific purposes).

Tissue samples Male Sprague-Dawley rats whole brain membranes (including striata and excluding cerebellum and brain stem) and rat striatal membranes were used for the $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ radioligand binding assays, respectively, and prepared as described in literature [53]. Upon dissection, the tissue samples were snap frozen with liquid nitrogen and stored at $-70^{\circ} \mathrm{C}$. The samples were later thawed on ice, weighed and disrupted for 90 s (whole brain) or 30 s (striata) with the aid of a Polytron homogeniser (model: Polytron PT 10-35 GT) in 10 volumes of ice-cold 50 mM Tris buffer ( pH 7.7 at $25^{\circ} \mathrm{C}$ ). The resulting homogenate was centrifuged at $20,000 \mathrm{~g}$ for 10 min at $4^{\circ} \mathrm{C}$ and the pellet was resuspended in 10 volumes of ice-cold Tris buffer, again with the aid of a Polytron homogeniser as above. The resulting suspension was recentrifuged and the pellet obtained was suspended in Tris buffer ( pH 7.7 at $25^{\circ} \mathrm{C}$ ) to a volume of $5 \mathrm{~mL} / \mathrm{g}$ original tissue weight. The whole brain and striatal membranes were aliquoted into microcentrifuge tubes and stored at $-70^{\circ} \mathrm{C}$ until needed. Protein concentration of the rat brain tissues was determined according to the Bradford protein assay, using bovine serum albumin as reference standard [74].

Adenosine $A_{1}$ and $A_{2 A}$ receptor radioligand binding assays The degree of binding affinity the test compounds showed toward $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{~A}}$ ARs were determined through radioligand binding assays, as previously described in literature [53, 74-76]. The $\mathrm{A}_{1}$ AR radioligand binding assay used rat whole brain membranes (expressing $\mathrm{A}_{1}$ ARs) and $0.1 \mathrm{nM} \quad 1,3-\left[{ }^{3} \mathrm{H}\right]$-dipropyl-8-cyclopentylxanthine $\quad\left(\left[{ }^{3} \mathrm{H}\right]\right.$ DPCPX) as radioligand while the $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ radioligand binding assay used rat striatal membranes (expressing $\mathrm{A}_{2 \mathrm{~A}}$ ARs) and $4 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-5^{\prime}-\mathrm{N}$-ethylcarboxamidoadenosine ( $\left[{ }^{3} \mathrm{H}\right]$ NECA) as radioligand. In $\mathrm{A}_{2 \mathrm{~A}}$ AR radioligand binding assays, 50 nM CPA was also added to reduce the binding of $\left[{ }^{3} \mathrm{H}\right]$ NECA to adenosine $\mathrm{A}_{1}$ receptors and $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ was also included to increase radioligand binding and decrease non-specific binding. Adenosine deaminase was included in both $\mathrm{A}_{1}$ and $\mathrm{A}_{2 \mathrm{~A}}$ binding assay to inactivate any remaining endogenous adenosine. The incubations were carried out in 4 mL polypropylene tubes that were precoated with Sigmacote (Sigma-Aldrich). All incubations were prepared with 50 mM Tris buffer ( pH 7.7 at $25^{\circ} \mathrm{C}$ ) to a volume of 1 mL . Each incubation of the $\mathrm{A}_{1}$ assay consisted of: (i) test compound $(10 \mu \mathrm{~L})$, (ii) $0.1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ DPCPX (radioligand solution, $100 \mu \mathrm{~L}$ ) and (iii) $120 \mu \mathrm{~g}$ rat whole brain membranes and 0.1 units $/ \mathrm{mL}$ adenosine deaminase (membrane suspension, $890 \mu \mathrm{~L}$ ). Whereas every incubation
of the $\mathrm{A}_{2 \mathrm{~A}}$ assay consisted of: (i) $120 \mu \mathrm{~g}$ rat striatal membranes, 0.2 units $/ \mathrm{mL}$ adenosine deaminase. $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ (membrane suspension, $790 \mu \mathrm{~L}$ ), (ii) test compound $(10 \mu \mathrm{~L})$, (iii) 50 nM CPA $(100 \mu \mathrm{~L})$ and (iv) $4 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{NECA}$ (radioligand solution, $100 \mu \mathrm{~L}$ ). The final volume of all incubations contained 1 mL of 50 mM Tris. HCl buffer ( pH 7.7 , $25^{\circ} \mathrm{C}$ ) and $1 \% \mathrm{DMSO}$. (DMSO was used to prepare all stock solutions of the test compounds.) The incubations were vortexed and incubated for 60 min at $25^{\circ} \mathrm{C}$ in a shaking waterbath. Half an hour after incubation was started, the incubations were vortexed again. The incubations were terminated via filtration through a prewetted 2.5 cm Whatman glass microfiber filter (grade GF/B) under reduced pressure using a Hoffeler vacuum system. The tubes were washed twice with 4 mL ice-cold Tris buffer and the filters were washed once more with 4 mL ice-cold Tris buffer. The damp filters were place in scintillation vials and 4 mL of scintillation fluid (Filter-Count) was added. The vials were shaken and incubated for 2 h before being counted (Packard Tri-CARB 2100 TR). Non-specific binding of $\left[{ }^{3} \mathrm{H}\right]$ DPCPX and $\left[{ }^{3} \mathrm{H}\right]$ NECA for the radioligand binding assays were defined as binding in the presence of $100 \mu \mathrm{M} \mathrm{CPA} \mathrm{or} 10 \mu \mathrm{M}$ DPCPX. Specific binding was defined as the total binding minus the non-specific binding.

GTP shift assays The type of binding affinity at the rat $\mathrm{A}_{1}$ AR displayed by test compounds was determined via a GTP shift assay, as described in literature [52-54, 77]. The membrane preparation was performed under the same conditions as described above for the adenosine A1 receptor radioligand binding assay (see Tissue samples). A GTP shift assay follows similar method as $\mathrm{A}_{1}$ AR radioligand binding assay, but additionally $100 \mu \mathrm{M}$ GTP was added. GTP is thought to act by uncoupling the receptors from their G-proteins which causes agonists of the receptor to lose binding affinity [78]. The incubations were carried out in 4 mL polypropylene tubes that were precoated with Sigmacote (Sigma-Aldrich). All incubations were prepared with 50 mM Tris buffer ( pH 7.7 at $25^{\circ} \mathrm{C}$ ) to a volume of 1 mL . Each incubation (i) test compound ( $10 \mu \mathrm{~L}$ ), (ii) $0.1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}$ (radioligand solution, $100 \mu \mathrm{~L}$ ), (iii) 0.1 mM GTP and (iv) $120 \mu \mathrm{~g}$ rat whole brain membranes and 0.1 units $/ \mathrm{mL}$ adenosine deaminase (membrane suspension, $790 \mu \mathrm{~L}$ ). Non-specific binding was defined as binding in the presence of $10 \mu \mathrm{M}$ DPCPX.

## Statistical data analyses

All statistical data analyses were carried out with Microsoft Excel and GraphPad Prism Software. Sigmoidal dose response curves, from which $\mathrm{IC}_{50}$ (half maximal inhibitory concentration) values were calculated, were obtained by plotting the specific binding against the logarithm of the test
compounds' concentrations. Subsequently, the $\mathrm{IC}_{50}$ values were used to calculate the $K \mathrm{i}$ values for the competitive inhibition of $\left[{ }^{3} \mathrm{H}\right]$ DPCPX $\left(K_{\mathrm{d}}=0.36 \mathrm{nM}\right)$ against rat whole brain membranes and $\left[{ }^{3} \mathrm{H}\right]$ NECA $\left(K_{\mathrm{d}}=15.3 \mathrm{nM}\right)$ against rat striatal membranes by the test compounds by means of the Cheng-Prusoff equation. All incubations were carried out in triplicate and the $K_{\mathrm{i}}$ values are expressed as the mean $\pm$ standard error of mean (SEM). GTP shifts were calculated by dividing the $K i$ values of compounds reported in the presence of GTP by the $K i$ values obtained in the absence of GTP.

Acknowledgements This study was funded by the North-West University (NWU). The authors wish to thank Dr. D. Otto for NMR analyses and Dr. J. Jordaan for MS analyses both from Chemical Research Beneficiation at NWU, as well as Dr R. Lemmer. for DSC analyses, Prof F. Van der Kooy for HPLC analyses and Ms S. Lowe for assistance with biological assays from the Centre of Excellence for Pharmaceutical Sciences (Pharmacen), NWU.

## Compliance with ethical standards

Conflict of interest The authors declare no competing interests.
Ethical approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## References

1. Sheth S, Brito R, Mukherjea D, Rybak LP, Ramkumar V. Adenosine receptors: expression, function and regulation. Int J Mol Sci. 2014;15:2024-52.
2. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5:247-64.
3. Abbracchio MP, Cattabeni F. Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann N. Y Acad Sci. 1999;890:79-92.
4. Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets-what are the challenges? Nat Rev Drug Discov. 2013;12:265-86.
5. Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cells. 2020;9:1-36.
6. Boison D. Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005;11:25-36.
7. Betti M. Design,Synthesis and Pharmacological evaluation of new adenosine receptor ligands. Florence: University of Florence (Thesis -PhD); 2016.
8. Klotz KN. Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharm. 2000;362:382-91.
9. Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139:1019-55.
10. Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70:231-6.
11. Wardas J. Neuroprotective role of adenosine in the CNS. Pol J Pharm. 2002;54:313-26.
12. Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharm. 2009;193:535-87.
13. Ribeiro J, Sebastiao A, De Mendonça A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol. 2002;68:377-92.
14. Masino SA, Kawamura MJ, Ruskin DN. Adenosine receptors and epilepsy: current evidence and future potential. Int Rev Neurobiol. 2014;119:233-55.
15. Epilepsy: a public health imperative. Summary. Geneva: World Health Organization; 2019 (WHO/MSD/MER/19.2).Licence: CC BY-NC-SA 3.0 IGO.
16. Sills GJ. Mechanisms of action of antiepileptic drugs. In RuggGunn FJ \& Stapley HB, eds. Epilepsy 2011: From Bench to Bedside. A Practical Guide to Epilepsy, London: International League Against Epilepsy. 2017. pp. 295-303.
17. Juge N, Gray JA, Omote H, Miyaji T, Inoue T, Hara C, et al. Metabolic control of vesicular glutamate transport and release. Neuron. 2010;68:99-112.
18. Pati S, Alexopoulos AV. Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies. Cleve Clin J Med. 2010;77:457-567.
19. Klaft ZJ, Hollnagel JO, Salar S, Caliskan G, Schulz SB, Schneider UC, et al. Adenosine A1 receptor-mediated suppression of carbamazepine-resistant seizure-like events in human neocortical slices. Epilepsia. 2016;57:746-56.
20. Rombo DM, Ribeiro JA, Sebastião AM. Role of adenosine receptors in epileptic seizures. In: Borea, P., Varani, K., Gessi, S., Merighi, S. \& Vincenzi, F., eds. The Adenosine Receptors. Cham: Humana Press. 2018. pp. 309-50.
21. Domingos CIA. Probing the synaptic target of a new putative antiepileptic drug: Modulation of the excitatory transmission in the hippocampus. Lisboa: University of Lisboa (PhD Thesis). 2016.
22. Fabera P, Parizkova M, Uttl L, Vondrakova K, Kubova H, Tsenov G, et al. Adenosine A1 Receptor Agonist 2-chloro-N6cyclopentyladenosine and Hippocampal Excitability During Brain Development in Rats. Front Pharmacol 2019;10:656.
23. Spanoghe J, Larsen LE, Craey E, Manzella S, Van Dycke A, Boon P, et al. The Signaling Pathways Involved in the Anticonvulsive Effects of the Adenosine A1 Receptor. Int J Mol Sci. 2021;22:320.
24. Tomé ÂR, Silva H, Cunha RA. Role of the purinergic neuromodulation system in epilepsy. Open Neurosci J. 2010;4:64-83.
25. Gouder N, Fritschy JM, Boison D. Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia. 2003;44:877-85.
26. Müller CE. A1 adenosine receptors and their ligands: overview and recent developments. Il Farm. 2001;56:77-80.
27. Dal Ben D, Lambertucci C, Buccioni M, Marti Navia A, Marucci G, Spinaci A, et al. Non-Nucleoside Agonists of the Adenosine Receptors: An Overview. Pharmaceuticals. 2019;12:1-22.
28. Gao ZG, Jacobson KA. Emerging adenosine receptor agonists: an update. Expert Opin Emerg Drugs. 2011;16:597-602.
29. Jacobson KA, Van Galen PJ, Williams M. Adenosine receptors: pharmacology, structure-activity relationships, and therapeutic potential. J Med Chem. 1992;35:407-22.
30. Knutsen LJS, Lau J, Sheardown MJ, Eskesen K, Thomsen C, Weis JU, et al. Anticonvulsant Actions of Novel and Reference Adenosine Agonists. In: Belardinelli L, Pelleg A, editors. Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology. Norwell, MA USA: Kluwer Academic Publishers; 1995. p. 479-87.
31. Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci. 2019;13:1-17.
32. Alinaghizadeh F, Zahedifar M, Seifi M, Sheibani H. Cascade synthesis of thieno [2, 3-b] pyridines by using intramolecular cyclization reactions of 3-cyano-2-(organylmethylthio) pyridines. J Braz Chem Soc. 2016;27:663-9.
33. Litvinov VP, Dotsenko VV, Krivokolysko SG. Thienopyridines: synthesis, properties, and biological activity. Russ Chem Bull. 2005;54:864-904.
34. Al-Trawneh SA, El-Abadelah MM, Zahra JA, Al-Taweel SA, Zani F, Incerti M, et al. Synthesis and biological evaluation of tetracyclic thienopyridones as antibacterial and antitumor agents. Bioorg Med Chem. 2011;19:2541-8.
35. Amorim R, de Meneses MDF, Borges JC, da Silva Pinheiro LC, Caldas LA, Cirne-Santos CC, et al. Thieno [2, 3-b] pyridine derivatives: a new class of antiviral drugs against Mayaro virus. Arch Virol. 2017;162:1577-87.
36. Bernardino AM, Pinheiro LC, Ferreira VF, Azevedo AR, Carneiro J, Souza TM, et al. Synthesis and antiviral activity of new 4(phenylamino) thieno [2, 3-b] pyridine derivatives. Heterocycl Commun. 2004;10:407-10.
37. Adachi I, YamamoriI T, Hiramatsu Y, SakaiI K, Mihara S-I, KawakamiI M, et al. Studies on dihydropyridines. III. Synthesis of 4, 7-dihydrothieno [2, 3-b]-pyridines with vasodilator and antihypertensive activities. Chem Pharm Bull. 1988;36:4389-402.
38. Bahekar RH, Jain MR, Jadav PA, Prajapati VM, Patel DN, Gupta AA, et al. Synthesis and antidiabetic activity of 2, 5-disubstituted-3-imidazol-2-yl-pyrrolo [2, 3-b] pyridines and thieno [2, 3-b] pyridines. Bioorg Med Chem. 2007;15:6782-95.
39. Liu H, Li Y, Wang X-Y, Wang B, He H-Y, Liu J-Y, et al. Synthesis, preliminary structure-activity relationships, and in vitro biological evaluation of 6-aryl-3-amino-thieno [2, 3-b] pyridine derivatives as potential anti-inflammatory agents. Bioorg Med Chem Lett. 2013;23:2349-52.
40. Ouf SA, Gaber HM. New fused pyridines: Synthesis of certain pyridothienopyrimidine derivatives as anti-dermatophytic agents. Afinidad: Rev de química teórica y aplicada. 2005;62:337-45.
41. Masch A, Nasereddin A, Alder A, Bird MJ, Schweda SI, Preu L, et al. Structure-activity relationships in a series of antiplasmodial thieno[2,3-b]pyridines. Malar J. 2019;18:1-10.
42. Hassan AY, Sarg MT, Said MM, El-Sebaey SA. Utility of thieno [2,3-b] pyridine derivatives in the synthesis of some condensed heterocyclic compounds with expected biological activity. Univers Org Chem. 2013;1:1-15.
43. Saku O, Saki M, Kurokawa M, Ikeda K, Takizawa T, Uesaka N. Synthetic studies on selective adenosine A2A receptor antagonists: Synthesis and structure-activity relationships of novel benzofuran derivatives. Bioorg Med Chem Lett. 2010;20:1090-3.
44. Dyachenko IV, Dyachenko VD, Dorovatovskii PV, Khrustalev VN, Nenajdenko VG. Multicomponent Synthesis of 4-Alkyl(Aryl, Hetaryl)-2-alkoxycarbonyl(aroyl, carbamoyl)- 3,6-diamino-5-cya-nothieno[2,3-b]pyridines. Russ. J Org Chem. 2018;54:1435-45.
45. Artemov V, Ivanov V, Koshkarov A, Shestopalov A, Litvinov V. Synthesis of pyrido [3', 2': 4, 5] thieno [2, 3-c] cinnolines-A new heterocyclic system. Chem Heterocycl Compd. 1998;34:96-101.
46. Gad-Elkareem MA, Elneairy MA, Taha AM. Reactions with 3, 6diaminothieno [2, 3-b]-pyridines: Synthesis and characterization of several new fused pyridine heterocycles. Heteroat Chem. 2007;18:405-13.
47. Liu H, Zaplishnyy V, Mikhaylichenko L. Facilitating Students' Review of the Chemistry of Nitrogen-Containing Heterocyclic Compounds and Their Characterization through Multistep Synthesis of Thieno [2, 3-b] Pyridine Derivatives. J Chem Educ. 2016;93:1785-7.
48. Mabkhot YN, Aladdi SS, Al-Showiman S, Al-Majid A, Barakat A, Ghabbour HA, et al. Synthesis and characterization of novel thieno-fused bicyclic compounds through new enaminone containing thieno $[2,3-b]$ pyridine scaffold. J Chem. 2015;2015:382381.
49. Li Z, Khaliq M, Zhou Z, Post CB, Kuhn RJ, Cushman M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J Med Chem. 2008;51:4660-71.
50. Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G. C3 amino-substituted chalcone derivative with selective adenosine rA1 receptor affinity in the micromolar range. Chem Pap. 2021;75:1581-605.
51. Viesser RV, Ducati LC, Tormena CF, Autschbach J. The halogen effect on the 13 C NMR chemical shift in substituted benzenes. Phys Chem Chem Phys. 2018;20:11247-59.
52. Lohse MJ, Klotz K-N, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA. 8-Cyclopentyl-1, 3-dipropylxanthine (DPCPX) -a selective high affinity antagonist radioligand for A 1 adenosine receptors. Naunyn-Schmiede Arch Pharmacol. 1987;336:204-10.
53. Van der Walt MM, Terre'Blanche G, Petzer A, Petzer JP. The adenosine receptor affinities and monoamine oxidase B inhibitory properties of sulfanylphthalimide analogues. Bioorg Chem. 2015;59:117-23.
54. Van der Werten EM, Hartog-Witte HR, Roelen HC, Künzel JKVFD, Pirovano IM, Mathôt RA, et al. 8-Substituted adenosine and theophylline-7-riboside analogues as potential partial agonists for the adenosine A1 receptor. Eur. J Pharmacol: Mol Pharmacol. 1995;290:189-99.
55. Schumacher B, Scholle S, Hölzl J, Khudeir N, Hess S, Müller CE. Lignans isolated from valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors. J Nat Prod. 2002;65:1479-85.
56. Guo M, Gao ZG, Tyler R, Stodden T, Li Y, Ramsey J, et al. Preclinical Evaluation of the First Adenosine A1 Receptor Partial Agonist Radioligand for Positron Emission Tomography Imaging. J Med Chem. 2018;61:9966-75.
57. Louvel J, Guo D, Soethoudt M, Mocking TA, Lenselink EB, Mulder-Krieger T, et al. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists. Eur J Med Chem. 2015;101:681-91.
58. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. Int Sch Res Notices. 2012;2012:195727.
59. Zakeri MP, Tajerzadeh H, Eslamboulchilar Z, Barzegar S, Valizadeh H. The relation between molecular properties of drugs and their transport across the intestinal membrane. DARU J Pharm Sci. 2006;14:164-71.
60. Robinson SJ, Petzer JP, Terre'Blanche G, Petzer A, Van der Walt MM, Bergh JJ, et al. 2-Aminopyrimidines as dual adenosine A1/ A2A antagonists. Eur J Med Chem. 2015;104:177-88.
61. Meibom D, Albrecht-Kupper B, Diedrichs N, Hubsch W, Kast R, Kramer T, et al. Neladenoson Bialanate Hydrochloride: A Prodrug of a Partial Adenosine A1 Receptor Agonist for the Chronic Treatment of Heart Diseases. ChemMedChem. 2017;12:728-37.
62. Van der Walt M, Terre'Blanche G. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine. Eur J Med Chem. 2017;125:652-6.
63. Grahner B, Winiwarter S, Lanzner W, Mueller CE. Synthesis and structure-activity relationships of deazaxanthines: analogs of potent A1-and A2-adenosine receptor antagonists. J Med Chem. 1994;37:1526-34.
64. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:1-13.
65. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43:3867-77.
66. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledgebased approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1:55-68.
67. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3-25.
68. Muegge I, Heald SL, Brittelli D. Simple selection criteria for druglike chemical matter. J Med Chem. 2001;44:1841-6.
69. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615-23.
70. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719-40.
71. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem: Chem Enabling Drug Discov. 2008;3:435-44.
72. Bolz SN, Adasme MF, Schroeder M. Toward an understanding of pan-assay interference compounds and promiscuity: A structural perspective on binding modes. J Chem Inf Model. 2021;61:2248-62.
73. Prabha B, Ezhilarasi M. Synthesis, Spectral Characterization, in Vitro and in Silico Studies of Benzodioxin Pyrazoline derivatives. Biointerface Res Appl Chem. 2020;11:9126-38.
74. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
75. Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hartman JD, et al. Binding of the A 1 -selective adenosine antagonist 8-cyclopentyl-1, 3-dipropylxanthine to rat brain membranes. Naunyn-Schmiede Arch Pharm. 1987;335:59-63.
76. Bruns RF, Lu GH, Pugsley TA. Characterization of the A2 adenosine receptor labeled by $[3 \mathrm{H}]$ NECA in rat striatal membranes. Mol Pharmacol. 1986;29:331-46.
77. Lohse M, Lenschow V, Schwabe U. Two affinity states of Ri adenosine receptors in brain membranes. Analysis of guanine nucleotide and temperature effects on radioligand binding. Mol Pharmacol. 1984;26:1-9.
78. Kull B, Svenningsson P, Hall H, Fredholm BB. GTP differentially affects antagonist radioligand binding to adenosine A1 and A2A receptors in human brain. Neuropharmacology. 2000;39:2374-80.
79. Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, et al. Modifications on the Amino-3,5-dicyanopyridine Core To Obtain Multifaceted Adenosine Receptor Ligands with Antineuropathic Activity. J Med Chem. 2019;62:6894-912.
80. Shimada J, Koike N, Nonaka H, Shiozaki S, Yanagawa K, Kanda T, et al. Adenosine A2A antagonists with potent anti-cataleptic activity. Bioorg Med Chem Lett. 1997;7:2349-52.
81. Müller CE, Geis U, Hipp J, Schobert U, Frobenius W, Pawłowski M, et al. Synthesis and structure- activity relationships of 3, 7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem. 1997;40:4396-405.

[^0]:    Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00044-022-02908-9.

    Helena D. Janse van Rensburg
    heleenvanrens@gmail.com
    1 Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
    2 Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa

[^1]:    3-(((6-amino-3,5-dicyano-4-(3-methoxyphenyl)pyridin-2-yl) thio)methyl)benzoic acid (60) Prepared as for $\mathbf{6 c}$ from 3-methoxybenzaldehyde $(0.608 \mathrm{ml}, 5 \mathrm{mmol})$ and 3-

