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of covariance matrices
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Abstract

Background: Comparing the covariation patterns of populations or species is a basic step in the evolutionary
analysis of quantitative traits. Here I propose a new, simple method to make this comparison in two population
samples that is based on comparing the variance explained in each sample by the eigenvectors of its own
covariance matrix with that explained by the covariance matrix eigenvectors of the other sample. The rationale of
this procedure is that the matrix eigenvectors of two similar samples would explain similar amounts of variance in
the two samples. I use computer simulation and morphological covariance matrices from the two morphs in a
marine snail hybrid zone to show how the proposed procedure can be used to measure the contribution of the
matrices orientation and shape to the overall differentiation.

Results: I show how this procedure can detect even modest differences between matrices calculated with
moderately sized samples, and how it can be used as the basis for more detailed analyses of the nature of these
differences.

Conclusions: The new procedure constitutes a useful resource for the comparison of covariance matrices. It could
fill the gap between procedures resulting in a single, overall measure of differentiation, and analytical methods
based on multiple model comparison not providing such a measure.

Keywords: Eigenvectors, Principal component analysis, Littorina Saxatilis, Matrix orientation, Matrix shape,
Hybrid zone
Background
Covariance matrices are key tools in the study of the
genetics and evolution of quantitative traits. The G
matrix, containing the additive genetic variances and
covariances for a set of characters, summarizes the gen-
etic architecture of traits and determines their short-
term response to multivariate selection along with the
constraints this response will face. The more easily esti-
mated matrix of phenotypic variances and covariances P
can be used as a surrogate for G, especially in the case
of high heritability morphological characters [1-4]. Com-
parisons between covariance matrices are carried out
in the study of a wide array of evolutionary problems,
such as the stability of G in the presence of selection
and drift [5-7], the role of genetic constraints on deter-
mining evolutionary trajectories in adaptive radiations
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[8], the response of genetic architecture to environmental
heterogeneity [9], the evolution of phenotypic integration
[4,10], multi-character phenotypic plasticity [11] and sex-
ual dimorphism [12,13].
Several methods for the comparison of covariance

matrices are available (reviewed in [14]). They range
from the most mathematically sophisticated, such as
those using maximum likelihood [15] or Bayesian fra-
meworks [16], to simple methods that are useful for
exploratory analyses and are not dependent on distribu-
tional assumptions. The simplest methods [17-20] are
based on pair wise comparisons of the matrices’ ele-
ments, so that they typically ignore the lack of independ-
ence between these values, cannot detect proportionality
between matrices, and consider two matrices only. More
recent procedures, also using the matrix elements [21],
take into account these elements’ lack of independence
and permit the joint consideration of several matrices,
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making it possible to study the contribution of identified
external factors to the magnitude of the differentiation.
Other simple procedures [22,23] are based on compar-

isons between vectors resulting from the product of the
studied matrices and sets of test vectors, their rationale
being that similar matrices would produce similar results
when multiplied by the same sets of vectors. However,
most of these procedures result in a single measure of
the divergence between matrices that does not provide
information about the nature of this divergence. Such in-
formation is provided by CPCA (Common Principal
Components Analysis [24]), which uses the Flury [25]
hierarchy, a maximum likelihood-based procedure to
compare the structure of two or more matrices and se-
quentially test if the matrices are “unrelated” (have no
eigenvectors in common); if they have some number of
eigenvectors in common, if they are proportional (have
all their eigenvectors in common and their eigenvalues
keep the same proportions), and finally if they are equal
(have all eigenvectors and eigenvalues in common).
Then it determines which of these descriptions best fits
to the relationship between the matrices’ structures.
Among the limitations of CPCA are, first, that it is

based on the assumption of multivariate normality, and
second, that it results in categorical, not continuously
varying measures of matrix similarity [26]. The CPCA
consists in a series of yes/no comparisons between or-
dered eigenvectors, which allow testing a full series of
hypotheses about the relationship between matrices in a
hierarchical way, but idoes not have an associated par-
ameter measuring the degree of similarity, relying only
on the results of the significance tests. This limitation
can be serious in some situations. Two matrices are
declared as “unrelated” when that is the best fit of all
null hypotheses tested, but this result does not preclude
the existence of any similarities between them [14]. In
fact, the procedure may declare two matrices as “unre-
lated” when many data are available and there is great
power to detect differences, even if these differences are
trivial from a biological point of view [26,27]. Thus,
there is no simple relationship between matrix similar-
ities measured by CPCA and other matrix comparison
procedures [27].
In the present work I propose a new, simple and

distribution-free procedure for the exploration of differ-
ences between covariance matrices that, in addition to
providing a single and continuously varying measure of
matrix differentiation, makes it possible to analyse this
measure in terms of the contributions of differences in
matrix orientation and shape. I use both computer simu-
lation and P matrices corresponding to snail morpho-
logical measures to compare this procedure with some
widely used alternatives. I show that the new procedure
has power similar or better than that of the simpler
methods, and how it can be used as the basis for more
detailed analyses of the nature of the found differences.

Pairwise matrix comparison
The rationale for the comparison procedure is that,
when the covariance matrices of two data samples are
similar, the eigenvectors obtained in a principal compo-
nent analysis of any of them will explain similar amounts
of variation in both samples. The degree of similarity
can be measured by calculating in each sample the indi-
viduals’ values and variances for the eigenvectors ob-
tained in the other sample. Given that D1 and D2 are
the matrices with the characters’ measures in the two
samples and X1 and X2 the matrices containing in their
columns the eigenvectors of these samples’ covariance
matrices, the variances of the columns of the products
D1X1 and D2X2 are the corresponding eigenvalues, i.e.,
the amounts of variance explained by the original eigen-
vectors, and those of D1X2 and D2X1, the amounts of
variance explained by the eigenvectors from the com-
pared sample. Thus, for each of the n (number of vari-
ables measured) pairs of eigenvectors obtained in the
analysis of the two samples it is possible to calculate vi11,
vi12, vi21, and vi22, where vi11 is the amount of sample 1
total variance explained by eigenvector i from sample 1,
vi12 the amount of sample 1 total variance explained
when applying eigenvector i from sample 2, and so on.
These n sets of four values are the basic items to mea-
sure the similarity in covariance between samples. I de-
fine three sums:

S1 ¼ 2
Xn
i¼1

vi11 � vi21ð Þ2 þ vi12 � vi22ð Þ2

S2 ¼
Xn
i¼1

vi11 þ vi22ð Þ � vi12 þ vi21ð Þ½ �2

S3 ¼
Xn
i¼1

vi11 þ vi12ð Þ � vi21 þ vi22ð Þ½ �2

where S1 is a general measure of differentiation depend-
ing on the ability of the eigenvectors from each sample
to explain the variation in the other sample; S2 is a
measure of the contribution of between-matrix differ-
ences in orientation (i.e., differences in orientation be-
tween eigenvectors in the same ordinal position in the
two matrices) to S1, and S3 that of differences in shape
(i.e., differences in the proportion of total variance
explained by eigenvectors in the same ordinal position
in the two matrices). It can be shown (Appendix 1) that
S1 = S2 + S3. Figure 1 shows a graphical interpretation
of these statistics. In this figure, row A shows that S3 is
the only non-zero component of S1 when the matrices
differ in shape but not in orientation, and row B that S2



Figure 1 Contributions (S11, S21, S31) of the first eigenvectors
of two sample matrices to the three sums used to measure the
differentiation between these matrices in six hypothetical
two-variable situations differing in matrices’ shape and
orientation. The ellipse axes’ lengths in the graphics represent the
magnitude of the eigenvalues and the orientation of the
eigenvectors in the two samples. The straight lines mark the first
eigenvectors. The tables in the middle column contain the variances
explained by the first eigenvectors obtained in each sample when
calculated in the two data sets. Details about the generation of the
used matrices are given in Appendix 2.
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is the only non-zero component when the matrices differ
in orientation but not in shape. Note however that S2
and S3 do not measure changes in orientation or shape
as such. What these statistics measure are the conse-
quences of changes in orientation and shape on the
more functionally relevant proportions of variance
explained, i.e.,. on the amount of variation available in
each multidimensional direction. The effects of these
changes are not independent. The comparison between
Figure 1 rows B and C shows that the impact of changes
in orientation on the proportion of variance explained
by the eigenvectors of the reciprocal matrix depends on
the matrices’ shape. The effect is larger for more “elong-
ate” matrices. Similarly, the comparison between rows
A, D and E shows that the effect of changes in shape
depends on the matrices’ orientation, and that changes
in matrix shape become irrelevant (in this two-variables
example) when the first eigenvectors of the two matrices
are perpendicular (row D). Finally, row F shows that
there are no differences in orientation when one of the
matrices is perfectly “round” (i.e., all its eigenvectors ex-
plain the same amount of total variance). Despite this
complexity, and as shown in the practical application
made below, statistics S2 and S3 may be very useful to
analyse the nature of the differentiation between two
covariance matrices.
The S statistics are easier to compare between studies

if they are made to vary between zero and one by making
them relative to their maximum possible value. This
maximum would occur in the extreme situation in
which single eigenvectors explain all variation in each of
the compared samples, and the eigenvectors of the two
samples are orthogonal. In that case, S1 is equal to 2
times the sum of twice the square of the total variance
of the first sample and twice the square of the total var-
iance of the second sample. When the variances ex-
plained by each eigenvector are expressed as proportions
of the total variance, so that the sum of all the propor-
tions is equal to one, the maximum possible value for S1
is equal to eight. In the computer simulation and real
data example shown in this article, the explained var-
iances are expressed as proportions, and the S1, S2 and
S3 statistics divided by eight so that they could vary be-
tween zero and one.
Figure 2 shows the responses of the three S statistics

in a wide range of two-variable situations. S2 is not sens-
ible to changes affecting only matrix shape (A through
E, zero degrees case) and S3 is not sensible to changes
affecting only matrix orientation (B and C, all relative
orientations). Also, and as explained above, the influence
of changes in orientation on the proportion of variance
explained by the eigenvectors of the compared matrix is
heavily dependent on matrix shape. It is large for elong-
ate matrices and modest for rounded ones (compare the
maximum values attained by S1 and S2 in B and C).
Plots B to E show that the effect of changes in orienta-
tion is stronger in high angle ranges than in low angle
ones. Finally, plot A shows that, in the same way as the
effect of orientation depends on matrix shape, the effect
of shape depends on orientation. When matrices differ
both in shape and orientation, there is an intermediate
angle that minimizes their differences in total variance
explained. In addition, when the matrices’ first eigenvec-
tors become perpendicular to each other (far right of all
plots), any differences are detected as changes in orien-
tation. These observations emphasise the point made
above that what the S statistics measure are differences
in the variance explained by two matrices’ eigenvector
sets, and therefore in amount of variation in every direc-
tion of the multivariate space in the matrices’ original
samples. The statistics also measure the influence of
matrix shape and orientation on that differentiation, but
not differences in shape and orientation directly.



Figure 3 Examples of population samples used in the
simulations (two variables case, size = 100): (a) from the
reference population, (b) from the population resulting in a
covariance matrix with changed orientation, (c) from the
population resulting in a covariance matrix with changed
shape, and (d) from the population resulting in a covariance
matrix with both orientation and shape changed. Each axis in
the graphs corresponds to one of the two variables.

Figure 2 S1, S2 and S3 statistics values (y axis; black, grey and
white points respectively; they are slightly displaced for clarity)
in five matrix-shape differences and six relative orientations of
the matrices’ first eigenvectors, from zero to 90º (x axis). A) two
matrices with very different shape, one with eigenvalues equal to
95 and 5% of total variance and the other with eigenvalues equal
to 55 and 45% of total variance; B) two same-shape “elongate”
matrices, both with eigenvalues explaining 95 and 5% of total
variance; C) two same-shape “rounded” matrices both with
eigenvalues explaining 55 and 45% of total variance; D) two
“elongate” matrices with slightly different shapes, one with
eigenvalues explaining 95 and 5% of total variance and the other,
90 and 10% of total variance; E) two “rounded” matrices with slightly
different shapes, one with eigenvalues explaining 60 and 40% of
total variance and the other, 55 and 45% of total variance. Matrices
are schematically represented at left in a zero degrees relative
orientation, with ellipses’ axes equal to the matrices’ eigenvalues.
Note that the scale varies between plots.
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Results
I contrasted the results obtained with the proposed pro-
cedure with those from other widely used ones, namely
CPCA and two simpler procedures providing single mea-
sures of matrix differentiation: one, the Random Skewers,
based on products with test vectors, and the other, the
T method, based on the comparison of matrix elements
(see Methods). I followed two approaches. First, I studied
the procedures’ power and Type I error through com-
puter simulations that considered covariance matrices
differing in shape, orientation or both, in different
number of variables and sample size situations. Second,
I compared their ability to detect differences between
covariance matrices of shell measures from different
morphs and populations of the seashore snail Littorina
saxatilis.

Computer simulation
Figure 3 shows two-variable examples of the four kinds
of datasets used in the simulations. The simulation
results (Figure 4) show that S2, the T method and RS
tended to produce type I errors with frequencies greater
than 5% (Figure 4). The average proportions of false
positives (calculated across the first row of graphs of the
figure, in which a sample of the reference population is
compared with another sample for the same population)
for the three statistics were 0.096, 0.077 and 0.108, re-
spectively. As expected, the statistic sensitive to changes
in orientation, S2, found similar results for comparisons
involving matrices diverging only in shape and for com-
parisons involving matrices from samples of the same
population. This was also the case for S3, the statistic
sensitive to changes in shape, when applied to popula-
tions differing only in orientation. The RS procedure
tended to have at least as much power as the most
powerful S statistic for the detection of differences in
orientation. In fact, it could have been more powerful
than the S statistics in the four cases involving changes
in orientation, samples of size 100 and more than two
variables, because it was able to detect differences in all
replicates of these comparisons. In any case, RS seemed
to be relatively better for small samples (compare results
for sample size 25 with those for sample size 50).



Figure 4 Proportions (from 0 to 100%; the lower and upper dotted lines mark the 5 and 95% respectively) of simulation replicates in
which a difference between covariance matrices was found by the S1, S2, S3 (black, grey and white circles), RS (rhombs) and T method
(squares) in comparisons involving matrices of samples taken from the same reference population (reference) or one from the
reference population and another from a population resulting in matrices with altered orientation(orientation) or with altered shape
(shape) or both (orientation + shape) in situations involving 2, 4 or 7 variables and sample sizes of 25, 50 or 100 individuals. The sign
positions in each sample size were slightly displaced to improve clarity. The top of each graph shows the results of CPC-based comparisons of
two samples taken at random from each of the two populations considered in that graph (E: equal, P: proportional, C: CPC result, meaning that
all eigenvectors were common but the matrices were not proportional –i.e., same orientation but differences in shape- and U: unrelated
matrices). Note: the CPC program considers the possibility that only a subset of eigenvectors are in common, but that result was never found in
these simulations.
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However, it was worse than S1 and S3 for the detection
of changes in shape. The T method tended to be the
least powerful in all situations.
Figure 4 shows also the results obtained with CPCA.

These results cannot be directly compared with those of
the remaining methods because they were based on a
single replicate instead of an average of replicates for
each case. However, the results suggest that CPCA could
produce an excess of false positives as the number of
variables increases (it declared as not equal the matrices
from the same population in the seven variables cases).
In these simulations, CPCA should declare the matrices
as “unrelated” when they differed in orientation, because
in that case they would not share any eigenvector in
common and as “CPC”, i.e., sharing all eigenvectors but
being not proportional when the matrices differed in
shape. The procedure tended to correctly detect changes
in shape even for small sample sizes, except for the two
variables case. Its performance tended to be lower in the
detection of changes in orientation in the smaller sized
samples. Overall, CPCA tended to agree with the S and
RS procedures for the largest (100) sample size.

Littorina data
The eigenvectors and eigenvalues of the six samples’ co-
variance matrices are shown in Table 1. The first eigen-
vectors always had coefficients of the same sign, as
expected for size descriptors [28], and were similar for
all matrices. The remaining eigenvectors included co-
efficients of contrasting signs, as expected if they were
measuring variation in shell shape. The bootstrap distri-
butions of the RS, T%, S1, S2 and S3 statistics for 21
comparisons are shown in Figure 5. Not unexpectedly,
some basic common trends were observed in all these
statistics. Matrices in within-sample comparisons tended
to be found more similar than those in within morph
comparisons, and these, more than matrices in between
morph comparisons. Also, particular between-samples
comparisons resulting in large differences when applying
a procedure tended to do the same in the remaining



Table 1 Eigenvector analysis

Sample EG1 EG2 EG3 EG4 EG5 EG6 EG7

Rb loc 1

0.349 0.178 0.046 0.428 −0.049 −0.596 0.551

0.297 0.464 0.231 0.492 0.139 0.614 −0.064

0.323 0.350 0.209 −0.711 0.396 0.008 0.260

0.365 0.010 −0.033 −0.260 −0.870 0.170 0.047

0.427 −0.068 −0.867 0.011 0.219 0.107 −0.049

0.499 −0.765 0.354 0.041 0.127 0.146 0.039

0.347 0.176 0.152 0.011 0.026 −0.454 −0.790

21e-2 28e-3 62e-4 11e-4 76e-5 28e-5 18e-5

85.48 11.14 2.48 0.42 0.30 0.11 0.07

Rb loc 2

0.349 0.125 0.133 0.432 −0.335 −0.568 0.473

0.306 0.305 0.323 0.464 0.235 0.648 0.122

0.314 0.226 0.339 −0.567 0.551 −0.259 0.208

0.377 0.124 0.137 −0.490 −0.700 0.304 −0.032

0.447 0.250 −0.843 −0.020 0.154 0.050 0.027

0.471 −0.865 0.023 0.027 0.125 0.098 0.058

0.357 0.185 0.127 0.005 −0.001 −0.748 −0.512

21e-2 27e-3 91e-4 12e-4 71e-5 49e-5 11e-5

84.24 11.00 3.66 0.50 0.29 0.20 0.11

Rb loc 3

0.362 0.143 0.124 0.481 −0.094 −0.599 0.483

0.306 0.411 0.334 0.406 0.020 0.678 0.004

0.317 0.284 0.209 −0.616 0.567 −0.068 0.264

0.363 0.099 0.060 −0.464 −0.797 0.048 0.049

0.417 0.131 −0.881 0.062 0.111 0.126 −0.008

0.489 −0.828 0.152 0.037 0.124 0.180 0.050

0.360 0.129 0.161 0.060 0.085 −0.354 −0.832

18e-2 17e-3 87e-4 79e-5 49e-5 21e-5 18e-5

83.44 12.85 2.20 0.93 0.40 0.13 0.05

Su loc 1

0.325 0.176 0.147 0.272 0.196 −0.375 0.767

0.245 0.291 0.395 0.414 0.379 0.585 −0.204

0.288 0.309 0.346 −0.198 −0.788 0.178 0.100

0.360 0.120 0.063 −0.817 0.426 0.055 0.016

0.493 −0.838 0.200 0.076 −0.071 0.056 −0.037

0.523 0.154 −0.796 0.152 −0.099 0.184 −0.043

0.324 0.221 0.158 0.138 0.014 −0.668 −0.597

20e-2 25e-3 14e-3 15e-4 99e-5 27e-5 15e-5

82.97 10.07 5.76 0.62 0.40 0.11 0.06

Su loc 2

0.343 0.101 0.186 0.305 0.2812 −0.529 0.620

0.277 0.128 0.474 0.356 0.224 0.711 0.014

0.281 0.181 0.365 −0.119 −0.853 −0.059 0.100

0.365 0.108 0.145 −0.848 0.327 0.062 0.060
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Table 1 Eigenvector analysis (Continued)

0.469 −0.866 −0.126 0.039 −0.094 0.066 0.000

0.506 0.408 −0.723 0.125 −0.086 0.176 −0.001

0.343 0.114 0.217 0.170 0.144 −0.414 −0.775

16e-2 33e-3 13e-3 17e-4 11e-4 35e-5 16e-5

76.48 15.88 6.06 0.80 0.54 0.17 0.08

Su loc 3

0.338 0.124 0.204 0.308 −0.222 −0.378 −0.736

0.255 0.192 0.451 0.459 −0.202 0.634 0.202

0.282 0.200 0.356 −0.344 0.767 0.124 −0.176

0.322 0.126 0.152 −0.737 −0.555 0.070 0.035

0.425 −0.899 0.073 0.015 0.051 0.044 0.031

0.594 0.237 −0.739 0.097 0.089 0.161 0.038

0.322 0.166 0.231 0.153 0.044 −0.638 0.618

24e-2 17e-3 14e-3 16e-4 13e-4 24e-5 96e-6

87.32 6.74 5.15 0.38 0.27 0.08 0.06

The columns show each eigenvector’s coefficients for the variables measured in each sample, along with the corresponding absolute eigenvalues (cursive) and
the same eigenvalues as percentages of the total variance in the sample (bold).
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procedures. The T method was, of those shown in
Figure 5, the least sensitive to matrix differences. In the
case of the RS, S1 and S2 statistics, the bootstrap distri-
butions of the within sample and between morphs com-
parisons had little overlap, showing that these statistics
can easily detect rather modest differences (all observed
values for the S-statistics measures of differentiation
were lower than 0.02 for a range of possible values from
0 to 1, and those for the RS statistic-measures of similar-
ity were higher than 0.9 for a range of possible values
from 1 to 0) between matrices using samples of moder-
ate size. The RS method tended to provide a rather def-
inite separation among the results of four kinds of
comparisons: within samples, within Rbs, within Sus and
between morphs. The profile of the S statistics’ compari-
sons was rather different from that obtained with the RS
procedure, indicating that the two methods are not
equivalent and that they consider matrices’ properties in
different ways.
At least in the particular example analyzed here, differ-

ences related with matrix shape had the largest weight
in the overall measure of differentiation S1, as the com-
parison results profiles of S1 and S3 were the most simi-
lar. The statistic S3 found large differences both between
morphs and within the Su morph. The largest differ-
ences for S3 corresponded always to comparisons in-
volving the matrix of the Sus from location 2, i.e.,
comparisons 10, 12, 13, 18 and 20 in Figure 4. This sug-
gested that the shape of this matrix had some particular-
ities, and in fact Table 1 shows that the first and second
eigenvalues for this sample were unusually small and
large, respectively. A more detailed analysis of the S
statistics (Figure 6) was consistent with this interpret-
ation: the largest contributions to S3 were made by the
first eigenvector and occurred in comparisons involving
the Su2 sample.
The statistic S2 found the most striking contrast be-

tween kinds of comparisons in Figure 5, differences be-
tween morphs being clearly the largest. Thus, a large
proportion of the differentiation between the two
morphs’ covariance patterns was due to a change in
matrix orientation not present in the comparisons
within morphs. Figure 5 shows that the largest contribu-
tions to S2 were made by the second and third eigenvec-
tors. The examination of these eigenvectors’ coefficients
in Table 1 shows that the second eigenvector from the
Rbs was similar to the third eigenvector from the Sus,
and vice versa. The second eigenvector from the Rbs
and the third from the Sus could be roughly described
as a contrast of measure 6 against the rest, and the third
eigenvector of the Rbs and the second from the Sus as a
contrast of measure five against the rest. Thus, the two
morphs’ eigenvectors had very similar structure, but the
proportion of variance explained by these eigenvectors
was clearly different, to the extent that the ranks of the
second and third eigenvectors in one morph got
reversed in the other morph. This change in matrix
orientation introduced large differences in the propor-
tion of variance explained by the reciprocal eigenvectors.
This is illustrated in Figure 7, representing the amount
of variance explained in a sample by the eigenvectors of
the compared sample (vi12 and vi21 of the S expressions,
see above). It can be seen that the differentiation be-
tween the Rb and Su matrices is related to a reversal in



Figure 5 CPC results and bootstrap distributions for five
statistics to compare Littorina data covariance matrices in
comparisons within sample (grey-lined boxplots; 1 to 3, Rbs;
4 to 6, Sus), between locations within morph (black-lined
boxplots; 7 to 9, between Rbs; 10 to 12, between Sus) and
between morphs (grey-filled boxplots; 13 to 18, between
morphs of different locations; 19 to 21, between morphs of the
same location). The T% values were divided by 100 to make them
comparable with the other statistics. The CPC box shows the number
of common principal components; U: unrelated. No CPC analysis was
done for the comparisons within samples. Plots do not include outliers.
Circles mark the observed values for the statistics. No observed values
are printed in the case of within sample comparisons (i.e., of matrices
with themselves) because they were always equal to one for the RS
and equal to zero for the other statistics. Comparison codes: 1, Rb1-
Rb1; 2, Rb2-Rb2; 3, Rb3-Rb3; 4, Su1-Su1; 5, Su2-Su2; 6, Su3-Su3; 7, Rb1-
Rb2; 8 Rb1-Rb3; 9, Rb2-Rb3; 10, Su1-Su2; 11, Su1-Su3; 12, Su2-Su3; 13,
Rb1-Su2; 14, Rb2-Su1; 15, Rb1-Su3; 16, Rb3-Su1; 17, Rb2-Su3; 18, Rb3-
Su2; 19, Rb1-Su1; 20, Rb2-Su2; 21, Rb3-Su3.

Figure 6 Representation of the contribution (vertical axes) of
each of the seven eigenvector pairs (1 to 7 from left to right in
the horizontal axis) to the S1 (black points), S2 (solid lines) and
S3 (dashed lines) statistics in each comparison between
samples. All graphs are drawn to the same scale (minimum 0,
maximum 0.0058) to ease comparison.
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the variances explained by the second and third eigen-
vectors. In both morphs, the third eigenvector from the
reciprocal morph explains more variation than the sec-
ond reciprocal eigenvector. The figure shows also that
the lowest differentiation was in comparisons involving
sample Su3. Again, the inspection of Table 1 results in
an easy interpretation: the second and third eigenvalues
were very similar in this sample (6.74 and 5.15%), so that
reversing the order of the corresponding eigenvectors
(as done to a good extent in the comparisons with Rb
samples) had very slight effects on the proportion of
variance explained. Note in Figure 7 that one of the seg-
ments in the circles is nearly horizontal for the com-
parisons involving sample Su3. Not all results had a
straightforward interpretation in terms of eigenvector
coefficients. For example, Figure 5 shows that the S-
statistics comparisons between the Rb and Su samples
from location 3 resulted in markedly lower differenti-
ation than all the remaining between morph compari-
sons. This shows that the S procedures consider aspects
of matrix structure beyond the individual values of
eigenvector’s coefficients.
The overall agreement between CPCA and the other

procedures found in the simulations was lost in the ana-
lysis of Littorina data. (upper side of Figure 5). According
to the RS, T% and S statistics, the three Rb samples had
very similar covariance matrices, but the CPC procedure
determined that Rb2 and Rb3 were “unrelated”, and that
Rb1 and Rb2 had only one eigenvector in common. The
few comparisons finding some eigenvectors in common
did not correspond to particularly low measures of differ-
entiation by the other methods. This shows that the CPC



Figure 7 Proportions of the total variance (vertical axis;
log-transformed for clarity of representation) of each sample
explained by the eigenvectors (1 to 7 from left to right in the
horizontal axis) obtained in the analysis of the reciprocal
sample in each between-samples comparison. The gray circles
mark the increases in variance explained by higher order reciprocal
eigenvectors. The asterisks correspond to bootstrap tests of the
change in proportion of variance explained (average of the two
reciprocal comparisons) by successive eigenvectors. They mark
changes in which the 97.5 percentile of the bootstrapped
distribution was negative (i.e., the third reciprocal eigenvector
explained more variance than the second).
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analysis did not consider the matrices’ properties in the
same way.

Discussion
The S statistics constitute sensitive tools for the de-
tection of differences between covariance matrices. In
the Littorina example used here, it was found that the
local differentiation was clearly higher for the Su than
for the Rb morph. This could be due to lower genetic
connectivity for populations of the Su morph, and also
to environmental differences between localities. How-
ever, the absence of such differences between the Rbs in
the same localities would imply that any environmental
differences would exist not between whole localities but
only between the micro-habitats the Su snails use in the
mid-shore. The differences between morphs, and spe-
cially those due to changes of orientation in the covari-
ance matrices, were the largest in the analysis, and if not
of the same size, they were of the same nature in all
locations. Since shell morphology variation is adaptively
important in Littorina [29], this suggests that these dif-
ferences in covariance could be relevant for the
evolutionary dynamics of the hybrid zone. They could
simply result from the environmental differences be-
tween the two morphs’ microhabitats within the mid-
shore, but even these environmental differences could
have a genetic origin because individuals of the two
morphs, even when living within extremely short dis-
tances of each other, tend to actively choose microhabi-
tats with different physical characteristics [30].
The computer simulations shown in Figure 4 are lim-

ited to measure the power of the considered procedures
to detect the consequences of changes in matrix orienta-
tion and shape. They show that such differences can be
detected even when moderate in magnitude and when
sample sizes are not too large, but cannot be taken as
complete or definitive comparisons between the proce-
dures. Matrices may differ in many relevant aspects, and
different comparison procedures may have different aims
and take different aspects into consideration. For ex-
ample, while the S measures consider the differences in
eigenstructure between two matrices, the RS procedure
focuses on the related, but not equivalent problem of the
differences between the evolutionary responses gener-
ated by these matrices. Comparisons would be even more
difficult with procedures such as the set of evolvability
measures proposed by Hansen and Houle [31], which
consider the magnitude of the populations’ responses to
different natural selection regimes.
Since the S statistics introduced here simply measure

what proportion of variation exists in a given sample
along the axis of variation defined by the eigenvectors in
the compared sample, they are similar to the RS and T%
ones in that they do not compare and are not dependent
on the matrices’ sizes. They focus instead on the more
interesting differences in matrix shape and orientation.
In any case, S statistics-based comparisons could use
raw covariance components instead of proportions as in
the example shown, so that the results would depend on
between-matrix size differences. However, in that case
the S statistics would not be able to separate the effect
of size from those of other sources of differentiation be-
tween matrices. Similarly, the basic version of the T
method proposed in [19] reflects the differences in
matrix size, as it is based on raw variance components
instead of the proportions used by the T% statistic.
Calculating the amount of variance explained by a set

of eigenvectors in a given dataset is straightforward in
the case of datasets containing the phenotypic measures
used to obtain P matrices. In the case of G matrices, the
comparison would have to be based on additive genetic
value estimates for individuals or families.
Since the proposed procedure is limited to two-sample

comparisons, it cannot be used to make higher order
analyses of the divergence among several populations
(see [32]). However, and as shown in the Litttorina
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example, it can be useful for the study of evolutionary
relevant situations such as hybrid zones. The S measures
appear to be similar to the measure of distance between
covariance matrices used by Mitteroecker and Bookstein
[33], based on the calculation of relative eigenvalues, i.e.,
the eigenvalues of the product of one matrix premulti-
plied by the inverse of the second matrix, and therefore
on expressing the variances and covariances of one
sample relative to those of the other sample. I calculated
the correlation of this measure with S1, S2 and S3 in a
computer simulation considering the same cases as in
Figure 4 and found that, while the measures were clearly
related, they were not equivalent. For example, in the
simulation of four variables and sample size 50, the correl-
ation across replicates of the Mitteroecker and Bookstein
measure with S1, S2 and S3 were: in the comparison of
one population with itself, 0.206, 0.399 and 0.140 re-
spectively; in the case of divergence in orientation, 0.396,
0.533 and 0.040NS; in the case of divergence in matrix
shape, 0.568, 0.281 and 0.554; and in the case of diver-
gence in both orientation and shape, 0.454, 0.572 and
0.341 (all correlations, P < 0.001 except when indicated).
The Littorina example supports the view that CPCA

might lead to misleading conclusions about the overall
similarity between matrices [26], as pairs of matrices
found very similar by other procedures were declared as
“unrelated” by CPCA, and there was no clear corres-
pondence between the two sets of results. The observed
between-morphs reversal in importance of the second
and third eigenvectors could play a role in this discrep-
ancy. CPCA is based on a series of paired comparisons
between eigenvectors of the same rank. Two matrices
may share their axes of variation, but not the amount of
variance in each axis. For example, the ith eigenvector of
one matrix might be the same as the i+1 eigenvector of
the other, and the i+1 of the first, the same as the ith of
the second. In that case, the two matrices would have
the same eigenvectors, but in a reverse order. A com-
parison between their ith eigenvectors would find them
orthogonal, and this would also be the case for their i+1
eigenvectors. Thus there may be considerable similarity
between the two matrices, but this similarity is over-
looked by the comparison procedure which finds the
paired eigenvectors very different. The CPC software [34]
enables users to compare the eigenvectors in any order,
but this does not fix this particular limitation, as the
order chosen for the two samples must be the same. The
T and RS methods, based on matrices’ elements and
product vectors, would provide a more balanced measure
of similarity in this situation because the differences be-
tween these elements and these vectors would not de-
pend on the existence of reversals in eigenvector order
per se, but on the magnitude of the differences involved.
However they don’t allow further analysis of the pattern
of differentiation. The three S statistics are affected by
different patterns of divergence, so that their joint use
provided a deeper view of the differences between the
two morphs’ P matrices. The S1 statistic is not
dependent on the eigenvectors’ ordering per se because
it is based on comparisons within eigenvector, i.e., on the
difference between the amount of variance explained by
one eigenvector from one sample in the original and re-
ciprocal samples. These differences do not change with
eigenvector order. But S2 changes when the order of
eigenvectors in one of the samples is reversed (see for-
mulas) because this would be considered as a change in
matrix orientation. In case the reversal in eigenvectors’
importance was complete, so that there were no changes
in overall shape, S3 would remain unaffected (see the sec-
ond row in Figure 1). However, the reversal of the second
and third eigenvectors between morphs cannot fully ex-
plain the disagreement between CPCA and the
remaining methods because the results for S2 were not
particularly similar to those of CPCA (Figure 5). This
suggests that other aspects of covariance matrix structure
might control the degree of agreement between different
comparison procedures.

Conclusions
The S-statistics procedure provides a simple and
continuously-varying overall measure of differentiation
that is distribution free and interpretable in terms of
changes in matrix orientation and shape. In addition, it
makes it easy to study the contribution of the different
eigenvectors to the statistics values, which could provide
further details on the nature of the differentiation, as
was the case of the Littorina example used. This proced-
ure could thus fill the gap between simpler statistics
such as T% and RS, and more analytical methods like
CPCA or Bayesian MCMC. The S-statistics procedure is
not based on a formal analysis of matrices’ properties.
Instead, it could serve for a simple and fast exploration
of the magnitude and nature of the differentiation.

Methods
Compared procedures
The random skewers (RS) procedure was proposed by
Cheverud [22]. Random selection vectors are generated
by sampling selection coefficient values for each of the
measured variables from a uniform distribution between
0 and 1. Then they are assigned positive or negative
signs with 0.5 probabilities, assembled in selection vec-
tors β and the sum of their squared coefficients made
equal to one. Next, the responses corresponding to these
selection vectors are calculated by multiplying them by
each of the compared covariance matrices. If the com-
pared matrices A and B are similar, the magnitude and
direction of their responses to the same selection vector



Figure 8 Back and opercular view of shells of the lower-shore
Su (left) and upper shore Rb (right) morphs of Littorina saxatilis
form the Galician coasts. The seven measures used are shown on
the Su shell. Note: Rb snails are on average larger than Sus; shells of
similar sizes were chosen to ease comparison on the image.

Garcia BMC Evolutionary Biology 2012, 12:222 Page 11 of 17
http://www.biomedcentral.com/1471-2148/12/222
βi will be similar. The correlation between the two re-
sponse vectors Aβi and Bβi is calculated as

corr Aβi;Bβi
� � ¼ Aβi

� �
0 Bβi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aβi
� �

0 Aβi
� �� �

Bβi
� �

0 Bβi
� �� �q

and the measure of similarity between matrices as the
average correlation for all vectors.
In the T method [19] the differentiation between two

matrices is measured as the sum of the absolute differ-
ences between the two matrices’ elements. In particular, I
used the T% statistic, in which the sum is made relative to
the average size of the elements in the two matrices [20]:

T% ¼

Xc

i¼1

jMi1 �Mi2j=c

M1 �M2
� �

=2
100

where c is the number of nonredundant elements in the
matrices, Mi1 and Mi2 are such elements in the two matri-
ces, and M

―
1 and M

―
2 their averages. The proportional na-

ture of T% makes the comparison between matrices of
different sizes easier. It is unreliable when there are both
positive and negative elements in any of the two matrices
[35], but this was not the case in the examples used in this
work to compare the different methods’ performances.
Finally, I used the CPC (Common Principal Compo-

nents) software of Phillips and Arnold [34] carrying out
CPCA. I chose the “step-up” option, in which the likeli-
hood of any model is tested against the likelihood of the
next lowest model in the hierarchy, and used the Akaike
Information Criterion to select the best description.

Simulations
The simulations compared pairs of samples of indivi-
duals differing in the shape and orientation of their
covariance matrices for the measured variables. All var-
iables considered in the simulations had two normally-
distributed components, one (s) specific for that variable
and the other (c) common to all variables. The value for
variable i measured on individual j in a given sample was
generated as:

yij ¼ sij þ kicj

In each sample, matrix orientation was controlled by
the relative contribution (fixed within sample) ki of the
common component to each variable’s value, and matrix
shape, by the si variances. Four kinds of sample matrix
comparisons were made: between samples taken at ran-
dom from the same population, between samples from
populations whose covariance matrices differed in orien-
tation, whose matrices differed in shape, and whose
matrices differed in both orientation and shape. One
sample was taken at random from each of the two popu-
lations compared in each simulation case, and their co-
variance matrices and comparison statistics calculated.
The observed value of each statistic was compared with
the distribution obtained by comparing 50 pairs of
resamples of the same size taken from the first sample,
and with that obtained by comparing 50 pairs of resam-
ples of the same size taken from the second sample. If
the observed value was greater than these 100 resampled
values, I concluded that the statistic found differences
between the two samples’ matrices. This process was
repeated 1000 times for each simulation case. I consid-
ered three sample sizes, 25, 50 and 100, and three num-
bers of variables, 2, 4 and 7 (the number of variables in
the Littorina data). The particular changes in shape and
orientation considered in each simulation case were
chosen so that at least one of the three S statistics had
nearly (but not exactly) 100% power to detect differ-
ences. The list of sample parameters used in the simula-
tions is shown in Appendix 3.

Littorina data
I assayed the proposed matrix comparison method on
six sets of shell morphology data from the two morphs
(Rb and Su) of the marine snail Littorina saxatilis, taken
in the Galician (NW Iberia) shores. The two morphs oc-
cupy different shore levels but form a hybrid zone in the
midshore (see [36] for a detailed description of the hy-
brid zone). Seven shell measures were available (Figure 8,
see [37] for more information), all of them taken on
pure morph snails from the midshore (only a proportion
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of the individuals in this area are hybrids) of three loca-
tions (Centinela 42º04’N, 8º53’W; Corrubedo, 42º32’N,
9º20’W and Senin, .42º02’N, 8º53’W) and log trans-
formed. The numbers of Rb and Su individuals from
each location were 160 and 135, 150 and 112, and 123
and 111. I made three kinds of sample comparisons.
First, I compared each sample with itself by generating
pairs of pseudo-samples and their covariance matrices
by resampling with replication in that sample’s dataset.
Comparing samples with themselves provides a refer-
ence of maximum possible similarity, useful to interpret
the similarities found between different samples. This is
the “matrix repeatability” approach used in [26]. Second,
I compared matrices from the same morph and different
locations; and third, from different morphs. I obtained
confidence distributions for the RS, T% , S1, S2 and S3
statistics by bootstrapping (999 replicates) the obser-
vations within each of the compared data sets, and ob-
tained the statistics’ values for random pairs of the
corresponding covariance matrix. This procedure was
more demanding in the case of the RS statistic, because
its observed values were already averages of correlations
with randomized selection vectors (1000 vectors per
value in this work).
Appendix
Appendix 1
The vijk values in Table 2 below, representing the vari-
ance explained by the ith eigenvector from the covari-
ance matrix of sample k when applied to the data of
sample j can be used to show that twice the sum of the
squared differences across columns

S1i ¼ 2 vi11–vi21ð Þ2 þ vi12–vi22ð Þ2� �
¼ 2 vi11

2 þ vi12
2 þ vi21

2 þ vi22
2–2 vi11vi21–2vi12vi22

� �

Is the sum of the squared difference between diago-
nals:

S2i ¼ vi11 þ vi22ð Þ � vi12 þ vi21ð Þ½ �2
¼ vi11

2 þ vi12
2 þ vi21

2

þ vi22
2–2vi11vi12–2 vi11vi21–2vi22vi12–2vi22vi21

þ 2vi11vi22 þ 2vi12vi21
Table 2 Amounts of variance explained by th eith
eingeinvectors of each compared sample

A ith eigenvector B ith eigenvector

Sample A vi11 vi12

Sample B vi21 vi22
and the squared difference between rows:

S3i ¼ vi11 þ vi12ð Þ � vi21 þ vi22ð Þ½ �2
¼ vi11

2 þ vi12
2 þ vi21

2

þ vi22
2–2vi11vi21–2 vi11vi22–2vi12vi21–2vi12vi22

þ 2vi11vi12 þ 2vi21vi22

So that

S2iþS3i ¼2
�
vi11

2 þ vi12
2 þ vi21

2 þ vi22
2 � 2vi11vi21

�2vi12vi22
� ¼ S1i

and therefore

S1 ¼
Xn
i¼1

S1i ¼
Xn
i¼1

S2iþS3ið Þ ¼ S2þS3

Appendix 2
The covariance matrices used to draw plots in Figure 2
corresponded to pairs of variables yi (i = 1, 2) defined as

yi ¼ si þ sqrt zið Þc

where sqrt is the square root. Note that sqrt(z) is equiva-
lent to k in the main text. The variances of s and c were:

Case First sample Second sample
Variance Variance
s c s c

A : 0:1 0:9 0:9 0:1
B : 0:1 0:9 0:1 0:9
C : 0:9 0:1 0:9 0:1
D : 0:1 0:9 0:2 0:8
E : 0:8 0:2 0:9 0:1

The angles between eigenvector sets were determined
by the z coefficients in each sample:

Angle First sample Second sample
z1 z2 z1 z2

0
�

: 2 0 2 0
18

�
: 2 0 1:81 0:19

36
�
: 2 0 1:31 0:69

54
�
: 2 0 1:69 0:31

72
�
: 2 0 0:19 1:81

90
�
: 2 0 0 2

In this two-variables case, the variance explained by
eigenvector i from sample j on sample m was calculated as

vijk ¼ eij’e1msqrt V 1mð Þ þ eij’e2msqrt V 2mð Þ

where eij and eim are eigenvectors i from samples j and m,
Vim is eigenvalue i from sample m and the apostrophe indi-
cates transposition.
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Appendix 3
Summary of cases
The following tables show the values for the variances of
variables s and c and the values of coefficient z in the ex-
pression:

yij ¼ sij þ sqrt z; ið Þcj
used to generate the data for variable i and individual j
in the different cases considered in the simulations -sqrt:
square root; note that sqrt(z) is equivalent to k in the
main text. Two variables

Case Variance zi i ¼ 1; 2ð Þ
s c

Reference sample : 0:2 0:8 2; 0
Change Orient : 0:2 0:8 1:9; 0:1
Change shape : 0:5 0:5 2; 0
Both chages : 0:5 0:5 1:9; 0:1

Four variables

Case Variance zi 1 ¼ 1; 4ð Þ
s c

Reference sample : 0:2 0:8 1:6; 0:4; 1:6; 0:4
Change Orient : 0:2 0:8 1:9; 0:1; 1:9; 0:1
Changed shape : 0:2 0:8 1:6; 0:4; 1:6; 0:4
Both changes : 0:4 0:6 1:9; 0:1; 1:9; 0:1

Seven variables

Case Variance zi i ¼ 1; 7ð Þ
s c

Refernce sample : 0:2 0:8 1:3; 0:6; 1:3; 0:6; 1:3; 0:6; 1:3
Changed Orient : 0:2 0:8 1:6; 0:2; 1:6; 0:2; 1:6; 0:2; 1:6
Changed shape : 0:4 0:6 1:3; 0:6; 1:3; 0:6; 1:3; 0:6; 1:3
Both changes : 0:4 0:6 1:6; 0:2; 1:6; 0:2; 1:6; 0:2; 1:6

Detailed list of cases
List of parameter sets used in every simulated case and
resulting covariance matrices, eigenvectors and eigenva-
lues. The expected compositions of eigenvectors were
obtained via eigenvector analyses applying R function
eigen to random samples of size 106. Note that for four
and seven variables cases it was not possible to obtain a
constant set of eigenvector coefficients (beyond the first
eigenvector) even for such large samples. In any case,
The S statistics recognized their equivalence despite dif-
ferences in eigenvectors’ coefficients (see the S3 and S2
values in the second row and third rows respectively of
Figure 3).
In the two variables case we had:
Reference sample:

y1 ¼ s1 þ sqrt 2ð Þ � c
y1 ¼ s1 þ sqrt 2ð Þ � c
where sqrt is the square root and s1 and s2 had distribu-
tions N(0, 0.2), and c, N(0, 0.8). The expected covariance
matrix was:

1:80 0:00

0:00 0:20

The expected eigenvectors had coefficients (columns):

#1 #2

1 0
0 1

and the expected eigenvalues were: 1.8 and 0.2.
Compared sample with altered orientation:

y1 ¼ s1 þ sqrt 2ð Þc
x2 ¼ s2 þ sqrt 0:1ð Þc

where s1 and s2 had distributions N(0, 0.2), and c, N(0,
0.8). The expected covariance matrix was:

1:72 0:35

0:35 0:28

The expected eigenvectors had coefficients (columns):
#1 #2

0:98 −0:22
0:22 0:98

and the expected eigenvalues were: 1.8 and 0.2.
Compared sample with altered shape:

x1 ¼ s1 þ sqrt 2ð Þc
x1 ¼ s1 þ sqrt 2ð Þc

where s1 and s2 had distributions N(0, 0.5), and c, N(0,
0.5). The expected covariance matrix was:

1:50 0:00

0:00 0:50

The expected eigenvectors had coefficients (columns):

#1 #2

1 0

0 1

and the expected eigenvalues were: 1.5 and 0.5.
Compared sample with both orientation and shape

altered:

x1 ¼ s1 þ sqrt 1:9ð Þc

x2 ¼ s2 þ sqrt 0:1ð Þc
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where s1 and s2 had distributions N(0, 0.5), and c, N(0,
0.5). The expected covariance matrix was:

1:45 0:22

0:22 0:55
The expected eigenvectors had coefficients (columns):

#1 #2

0:98 −0:22

0:22 0:98

and the expected eigenvalues were: 1.5 and 0.5.
The expected total variance in all two variable samples

was = 2.
In the four variables case, we had:
Reference sample:

x1 ¼ s1 þ sqrt 0:1ð Þc
x2 ¼ s2 þ sqrt 0:4ð Þc
x3 ¼ s3 þ sqrt 1:6ð Þc
x4 ¼ s4 þ sqrt 0:4ð Þc

where s1, s2, s3 and s4 had distributions N(0, 0.2), and c,
N(0, 0.8). The expected covariance matrix was:

1:48 0:64 1:28 0:64

0:64 0:52 0:64 0:32

1:28 0:64 1:48 0:64

0:64 0:32 0:64 0:52

The expected eigenvectors had coefficients (columns):

#1 #2 #3 #4

0:63 0:03 −0:56 0:54

0:32 −0:39 0:75 0:43

0:63 −0:27 0:00 −0:73

0:32 0:88 0:35 −0:05

and the expected eigenvalues were: 3.4, 0.2, 0.2, 0.2.
Compared sample with altered orientation:

x1 ¼ s1 þ sqrt 1:9ð Þc

x2 ¼ s2 þ sqrt 0:1ð Þc

x3 ¼ s3 þ sqrt 1:9ð Þc

x4 ¼ s4 þ sqrt 0:1ð Þc
where s1, s2, s3 and s4 had distributions N(0, 0.2), and c,
N(0, 0.8). The expected covariance matrix was:

1:72 0:35 1:52 0:35

0:35 0:28 0:35 0:08

1:52 0:35 1:72 0:35

0:35 0:08 0:35 0:28

The expected eigenvectors had coefficients (columns):

#1 #2 #3 #4

0:69 −0:51 0:13 0:50

0:16 −0:01 −0:99 −0:04

0:69 −0:64 0:19 0:33

0:16 0:58 −0:01 0:80

and the expected eigenvalues were: 3.4, 0.2, 0.2, 0.2.
Compared sample with altered shape:

x1 ¼ s1 þ sqrt 1:6ð Þc
x2 ¼ s2 þ sqrt 0:4ð Þc
x3 ¼ s3 þ sqrt 1:6ð Þc
x4 ¼ s4 þ sqrt 0:4ð Þc

where s1, s2, s3 and s4 had distributions N(0, 0.4), and c,
N(0, 0.6). The expected covariance matrix was:

1:36 0:48 0:96 0:48

0:46 0:64 0:49 0:24

0:96 0:48 1:36 0:48

0:48 0:24 0:48 0:64

The expected eigenvectors had coefficients (columns):

#1 #2 #3 #4

0:63 0:38 0:01 −0:68

0:32 −0:01 0:91 0:25

0:63 −0:13 −0:39 0:66

0:32 −0:91 −0:15 −0:21

and the expected eigenvalues were: 2.8, 0.4, 0.4, 0.4.
Compared sample with both orientation and shape

altered:

x1 ¼ s1 þ sqrt 1:9ð Þc
x2 ¼ s2 þ sqrt 0:1ð Þc
x3 ¼ s3 þ sqrt 1:9ð Þc
x4 ¼ s4 þ sqrt 0:1ð Þc
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where s1, s2, s3 and s4 had distributions N(0, 0.4), and c,
N(0, 0.6). The expected covariance matrix was:

1:54 0:26 1:14 0:26

0:26 0:46 0:26 0:06

1:14 0:26 1:54 0:26

0:26 0:06 0:26 0:46

The expected eigenvectors had coefficients (columns):
#1 #2 #3 #4

0:69 −0:57 0:09 0:44

0:16 −0:27 −0:85 −0:42

0:69 0:49 0:21 −0:49

0:16 0:60 −0:47 0:62

and the expected eigenvalues were: 2.8, 0.4, 0.4, 0.4.
The expected total variance in all four variable samples

was = 4.
In the seven variables case, we had:
Reference sample:
x1 ¼ s1 þ sqrt 1:3ð Þc
x2 ¼ s2 þ sqrt 0:6ð Þc
x3 ¼ s3 þ sqrt 0:6ð Þc
x4 ¼ s4 þ sqrt 0:6ð Þc
x5 ¼ s5 þ sqrt 1:3ð Þc
x6 ¼ s6 þ sqrt 0:6ð Þc
x7 ¼ s7 þ sqrt 1:3ð Þc

where s1, s2, s3, s4, s5, s6, and s7 had distributions N(0,
0.2), and c, N(0, 0.8). The expected covariance matrix
was:

1:24 0:71 1:04 0:71 1:04 0:71 1:04

0:71 0:68 0:71 0:48 0:71 0:48 0:71

1:04 0:71 1:24 0:71 1:04 0:71 1:04
0:71 0:48 0:71 0:68 0:71 0:48 0:71
1:04 0:71 1:04 0:71 1:24 0:71 1:04
0:71 0:48 0:71 0:48 0:71 0:68 0:71
1:04 0:71 1:04 0:71 1:04 0:71 1:24

The expected eigenvectors had coefficients (columns):

#1 #2 #3 #4 #5 #6 #7

−0:43 0:05 −0:08 −0:68 0:08 0:00 0:58
−0:29 −0:40 0:22 0:07 0:80 0:26 0:04
−0:43 0:31 0:50 −0:13 −0:24 0:41 −0:47
−0:29 0:45 −0:73 0:16 0:23 0:27 −0:14
−0:43 −0:32 −0:20 −0:16 −0:03 −0:62 −0:51
−0:29 0:51 0:33 0:41 0:17 −0:52 0:29
−0:43 −0:42 −0:10 0:54 −0:47 0:20 0:28

and the expected eigenvalues were: 5.8, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2.
Compared sample with altered orientation:

x1 ¼ s1 þ sqrt 1:6ð Þc
x2 ¼ s2 þ sqrt 0:2ð Þc
x3 ¼ s3 þ sqrt 1:6ð Þc
x4 ¼ s4 þ sqrt 0:2ð Þc

x5 ¼ s5 þ sqrt 1:6ð Þc
x6 ¼ s6 þ sqrt 0:2ð Þc
x7 ¼ s7 þ sqrt 1:6ð Þc

where s1, s2, s3, s4, s5, s6, and s7 had distributions N(0,
0.2), and c, N(0, 0.8). The expected covariance matrix
was:

1:48 0:45 1:28 0:45 1:28 0:45 1:28

0:45 0:36 0:45 0:16 0:45 0:16 0:45

1:28 0:45 1:48 0:45 1:28 0:45 1:28
0:45 0:16 0:45 0:36 0:45 0:16 0:45
1:28 0:45 1:28 0:45 1:48 0:45 1:28
0:45 0:16 0:45 0:16 0:45 0:36 0:45
1:28 0:45 1:28 0:45 1:28 0:45 1:48

The expected eigenvectors had coefficients (columns):

#1 #2 #3 #4 #5 #6 #7

−0:5 0:47 0:52 −0:1 −0:1 0:07 0:50
−0:2 0:03 0:38 0:3 −0:5 −0:24 −0:61
−0:5 0:01 −0:70 0:2 −0:5 0:06 0:17
−0:2 0:25 −0:04 −0:1 0:1 0:81 −0:47
−0:5 −0:06 −0:10 −0:6 0:3 −0:42 −0:33
−0:2 −0:81 0:28 −0:2 −0:2 0:32 0:15

−0:5 −0:23 0:07 0:6 0:6 −0:02 −0:01

and the expected eigenvalues were: 5.8, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2.
Compared sample with altered shape:

x1 ¼ s1 þ sqrt 1:3ð Þc

x2 ¼ s2 þ sqrt 0:6ð Þc

x3 ¼ s3 þ sqrt 0:6ð Þc

x4 ¼ s4 þ sqrt 0:6ð Þc

x5 ¼ s5 þ sqrt 1:3ð Þc

x6 ¼ s6 þ sqrt 0:6ð Þc

x7 ¼ s7 þ sqrt 1:3ð Þc
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where s1, s2, s3, s4, s5, s6, and s7 had distributions N(0,
0.4), and c, N(0, 0.6). The expected covariance matrix was:

1:18 0:53 0:78 0:53 0:78 0:53 0:78

0:53 0:76 0:53 0:36 0:53 0:36 0:53

0:78 0:53 1:18 0:53 0:78 0:53 0:78
0:53 0:36 0:53 0:76 0:53 0:36 0:53
0:78 0:53 0:78 0:53 1:18 0:53 0:78
0:53 0:36 0:53 0:36 0:53 0:76 0:53
0:78 0:53 0:78 0:53 0:78 0:53 1:18

The expected eigenvectors had coefficients (columns):

#1 #2 #3 #4 #5 #6 #7

−0:43 −0:43 −0:39 −0:52 0:02 0:46 0:04
−0:29 −0:41 0:46 −0:20 0:47 −0:49 −0:20
−0:43 0:26 −0:64 0:13 0:04 −0:56 −0:08
−0:29 0:04 0:31 −0:25 −0:65 −0:29 0:50
−0:43 −0:34 0:09 0:78 −0:02 0:22 0:20
−0:29 0:14 0:20 0:02 −0:44 0:14 −0:80
−0:43 0:67 0:28 −0:10 0:40 0:31 0:18

and the expected eigenvalues were: 4.6, 0.4, 0.4, 0.4, 0.4,
0.4, 0.4.
Compared sample with both orientation and shape

altered:

x1 ¼ s1 þ sqrt 1:6ð Þc

x2 ¼ s2 þ sqrt 0:2ð Þc

x3 ¼ s3 þ sqrt 1:6ð Þc

x4 ¼ s4 þ sqrt 0:2ð Þc

x5 ¼ s5 þ sqrt 1:6ð Þc

x6 ¼ s6 þ sqrt 0:2ð Þc

x7 ¼ s7 þ sqrt 1:6ð Þc

where s1, s2, s3, s4, s5, s6, and s7 had distributions N(0,
0.4), and c, N(0, 0.6). The expected covariance matrix
was:

1:36 0:34 0:96 0:34 0:96 0:34 0:96

0:34 0:52 0:34 0:12 0:34 0:12 0:34

0:96 0:34 1:36 0:34 0:96 0:34 0:96
0:34 0:12 0:34 0:52 0:34 0:12 0:34
0:96 0:34 0:96 0:34 1:36 0:34 0:96
0:34 0:12 0:34 0:12 0:34 0:52 0:34
0:96 0:34 0:96 0:34 0:96 0:34 1:36
The expected eigenvectors had coefficients (columns):

#1 #2 #3 #4 #5 #6 #7

−0:48 −0:11 0:36 0:27 0:59 −0:25 −0:38
−0:17 0:20 −0:00 0:02 0:46 0:77 0:37
−0:48 0:37 −0:57 −0:50 0:07 −0:13 −0:21
−0:17 0:44 −0:07 0:60 −0:42 0:27 −0:39
−0:48 −0:54 0:21 −0:28 −0:43 0:37 −0:15
−0:17 0:55 0:67 −0:28 −0:22 −0:16 0:26
−0:48 −0:14 −0:22 0:39 −0:16 −0:30 0:66

and the expected eigenvalues were: 4.6, 0.4, 0.4, 0.4, 0.4,
0.4, 0.4.
The expected total variance in all seven variable sam-

ples was = 7.
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