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Thiazolidinediones (TZDs) are one of the major classes of antidiabetic drugs that are used widely. TZDs improve insulin resistance
by activating peroxisome proliferator-activated receptor gamma (PPAR𝛾) and ameliorate diabetic and other nephropathies, at least,
in experimental animals. However, TZDs have side effects, such as edema, congestive heart failure, and bone fracture, and may
increase bladder cancer risk. Edema and heart failure, which both probably originate from renal sodium retention, are of great
importance because these side effects make it difficult to continue the use of TZDs. However, the pathogenesis of edema remains a
matter of controversy. Initially, upregulation of the epithelial sodium channel (ENaC) in the collecting ducts by TZDs was thought
to be the primary cause of edema.However, the results of other studies do not support this view. Recent data suggest the involvement
of transporters in the proximal tubule, such as sodium-bicarbonate cotransporter and sodium-proton exchanger. Other studies have
suggested that sodium-potassium-chloride cotransporter 2 in the thick ascending limb of Henle and aquaporins are also possible
targets for TZDs.This paper will discuss the recent advances in the pathogenesis of TZD-induced sodium reabsorption in the renal
tubules and edema.

1. The Target of Thiazolidinediones:
Peroxisome Proliferator-Activated
Receptor Gamma (PPAR𝛾)

Peroxisome proliferator-activated receptors (PPARs) belong
to the nuclear receptor superfamily of ligand-inducible
transcription factors [1], involved in lipid metabolism and
energy homeostasis [2]. In mammals, three PPAR subtypes,
PPAR𝛼, PPAR𝛽/𝛿, and PPAR𝛾, are known to exist. PPARs
bind to PPAR-responsive regulatory elements (PRREs) in
combination with retinoid X receptor (RXR) and control the
expression of genes engaged in several biological processes,
such as lipid metabolism, adipogenesis, inflammation, and
maintenance of metabolic homeostasis [3]. PPARs consist of
an N-terminal transactivation domain, which is quite diverse
and contains the AF1, a DNA-binding domain (DBD), which
is highly conserved, and a ligand-binding domain (LBD) in
the C-terminal, which contains the AF2 [4].

PPAR𝛾 has two isoforms, PPAR𝛾1 and PPAR𝛾2 [5, 6].
PPAR𝛾2 is longer than PPAR𝛾1, with an extra 30 amino acids
at its N-terminus. PPAR𝛾1 is expressed in a wide range of
tissue types, which include white and brown adipose tissue,
cardiacmuscle, and liver tissue, whereas PPAR𝛾2 is expressed
almost exclusively in adipose tissue [7, 8]. However, the
expression of PPAR𝛾2 is induced in other tissues by a high
fat diet [9].

PPAR𝛾 is a key regulator of adipogenesis [1, 10]. It
is expressed abundantly in white and brown adipocytes
and plays important roles in regulating lipid metabolism
and insulin sensitivity. Additionally, PPAR𝛾 functions as a
multipotent modulator of inflammation, gluconeogenesis,
and fluid homeostasis.

Disruption of the PPAR𝛾 gene in mice yielded intriguing
results [11]. Homozygous PPAR𝛾 deficiency led to embryonic
lethality due to placental dysfunction. Embryonic fibroblasts
from PPAR𝛾−/− mice failed to differentiate into adipocytes,
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suggesting that PPAR𝛾 is essential for the differentiation of
embryonic fibroblasts into adipocytes. On the other hand,
heterozygous PPAR𝛾+/− mice gained little weight under a
high-fat diet. Moreover, the PPAR𝛾+/− mice had higher sen-
sitivity to endogenous insulin than wild-type mice. PPAR𝛾
may have dual roles in regulating insulin resistance, at least
in experimental mice.

2. PPAR𝛾 and Kidney

In the kidney, PPAR𝛾 is mainly expressed in the collecting
ducts. However, some studies have shown that PPAR𝛾 is also
expressed in other nephron segments, such as the proximal
tubule (PT) and distal tubule, as well as glomeruli, podocytes,
and mesangial cells [12, 19–23]. PPAR𝛾 is speculated to have
renoprotective effects. For example, PPAR𝛾 seems to attenu-
ate podocyte damage. Kanjanabuch et al. showed that PPAR𝛾
agonists prevented podocyte injury [24]. Additionally, they
showed that TZDs increased PPAR𝛾 expression and activity
in cultured puromycin-injured mouse podocytes [24]. Other
studies have shown that although PPAR𝛾 agonist treatment
cannot rescue renal function, it does raise adiponectin levels
in mice [25]. As adiponectin improves podocyte recovery
[25], PPAR𝛾, together with adiponectin, may have some
protective roles in podocytes.

The activation of PPAR𝛾 by TZDs seems to protect
mesangial cells from the development of diabetic change
via the inhibition of inflammatory cascades [26] or TGF-𝛽
signaling cascades [27]. The activation of glomerular PPAR𝛾
may have potential for the treatment of diabetic nephropathy.
However, the detailed mechanism by which PPAR𝛾 exerts
its protective effects on the kidney as a whole remains to be
clarified.

3. Thiazolidinediones (TZDs): Multipotent
Roles in Glucose Metabolism

Thiazolidinediones (TZDs) were first discovered as insulin-
sensitizing drugs [28]. In 1995, they were found to enact their
pharmacological effects by binding to and activating PPAR𝛾
[29, 30]. TZDs act as agonists for PPAR𝛾 and ameliorate
insulin sensitivity in the liver, muscle, and adipocytes [31–
35]. There are several views on the manner in which TZDs
enhance insulin sensitivity. One view is that TZDs enhance
insulin signaling by stimulating insulin receptor substrate
1 (IRS-1) and inhibiting the MAPK pathway [34]. Another
is that TZDs act in adipose tissue to increase adiponectin
secretion while inhibiting lipolysis [2, 31] and the release of
inflammatory cytokines, such as transforming growth factor-
𝛽 (TGF-𝛽). Recently Spiegelman and colleagues proposed
that TZDs inhibit the phosphorylation of PPAR𝛾 at Ser273 by
cyclin-dependent kinase (Cdk) 5, thus preventing the devel-
opment of insulin resistance [36]. They also suggested that
the phosphorylation of PPAR𝛾 is blocked by the inhibition
of MEK/ERK. In this study, Cdk5 was shown to suppress
the MEK/ERK cascade, which suggests that Cdk5 controls
PPAR𝛾 function [37].

In some animal models of diabetic nephropathy, such
as Zucker diabetic fatty rats and Wister fatty rats, TZDs
have been shown to reduce mesangial matrix volume,
decrease proteinuria, and prevent the aggravation of renal
function [38, 39]. TZDs have also been shown to inhibit
the mRNA expression of cell matrix proteins (e.g., collagen
and fibronectin) and TGF-𝛽 in mouse mesangial primary
culture cells [27], pregnant diabetic rat models [40], and a
mouse mesangial cell line [41], which indicates that TZDs
inhibit mesangial cell proliferation.These results suggest that
TZDs indirectly protect glomeruli against diabetic changes.
Moreover, TZDs have been reported to have other renopro-
tective effects, such as the lowering of blood pressure, blood
glucose, and insulin levels and the reduction of microal-
buminuria in experimental animals, such as obese Zucker
rats, streptozotocin-induced diabetic rats, and a rat model of
partial nephrectomy [42, 43]. However, TZDs do not seem to
reduce marcoalbuminuria in humans [43].

Also in humans, TZDs have been suggested to improve
glucose homeostasis, lower blood pressure, and reduce
microalbuminuria, unlike other antidiabetic drugs, such as
insulin, sulfonylureas, and 𝛼-glucosidase inhibitors [44, 45].
Recently, TZDs were shown to prevent the onset of diabetes
mellitus (DM) in persons with impaired glucose tolerance in
a randomized, double-blind, and placebo-controlled clinical
study [46]. On the other hand, some studies have shown that
the decrease in urinary albumin-creatinine ratio after TZD
treatment was comparable to that observed after gliclazide
[47] and insulin [48] treatment. The above data show that
treatment with TZDs can reduce microalbuminuria and may
prevent the onset of DM. However, currently no studies
have shown that TZDs can prevent the development and
progression of human chronic kidney disease.

4. The Side Effects of TZDs

TZDs have many beneficial effects, including preventing
the emergence and progression of DM and hypertension
and their complications and preventing vicious phenomena,
such as endothelial-mesenchymal transition (EMT), inflam-
matory responses, and fibrosis [46]. However, TZDs also
have some important side effects [49]. Troglitazone has been
withdrawn from the market because it was found to cause
fatal liver dysfunction. Clinically, renal sodium retention
and congestive heart failure (CHF) are probably the most
important and troublesome side effects of TZDs. Plasma
volume expansion and cardiac failure make the treatment
of DM complicated [50]. Additionally, cardiovascular risks
and concerns of TZDs raisingmortality by causing CHF have
been presented [51, 52].

TZDs also seem to increase vascular permeability in
several tissues, which contributes to producing peripheral
edema. Rosiglitazone was shown to enhance vascular per-
meability selectively in adipose tissues and retina, but not in
muscle [53]. Vascular endothelial growth factor (VEGF) may
be responsible for the increment of vascular permeability in
the adipocytes [54].
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TZDs might also cause bone fracture. Rosiglitazone is
suggested to decrease bonemineral density and increase bone
turnover in menopausal women; however, further investiga-
tions are required to clarify the mechanism of this effect of
rosiglitazone [55–57]. At present, the most important matter
of controversy regarding TZDs is probably the possibility that
pioglitazone can cause bladder cancer [58, 59].

5. TZDs and Congestive Heart Failure (CHF)

Sodium retention accompanied with the use of TZDs some-
times makes the continuous use of TZDs difficult or impos-
sible due to severe CHF. Approximately 5% of patients
using TZDs develop peripheral edema. However, when used
with other antidiabetic drugs, the risk of peripheral edema
increases to approximately 18% [60]. Additionally, the risk
of edema caused when 8mg rosiglitazone is taken with
insulin is 16.2%, compared to 4.7% for insulin alone [61].
However, TZDs are not thought to worsen cardiac function
by themselves [62]. In the PROactive 05 study, pioglitazone
treatment resulted in 28% reduction of fatal and nonfatal
myocardial infarctions and 37% reduction of acute coronary
syndromes compared to placebo [63]. CHF induced by TZD
administration is thought to be due to renal sodium retention.
At present, TZDs do not seem to increase mortality due
to CHF [64]; however, there are some counterarguments
regarding this point, as described above [51, 52]. According to
the American Diabetes Association and the American Heart
Association recommendation, patients suffering fromNYHA
class III or IV CHF should not take TZDs [60, 65].

6. The Mechanism of TZD-Induced Renal
Sodium and Water Retention

As mentioned above, edema and CHF caused by TZDs are
great issues clinically. In Sprague-Dawley rat models, Song
et al. first showed that renal sodium retention due to an
increase of tubular transporters and a decrease in glomerular
filtration rate is the main cause of volume expansion by
TZDs [13]. However, the detailed molecular mechanism of
renal sodium retention by the kidney is still in dispute. At
first, the epithelial sodium channel (ENaC) was thought to
be the main cause of this volume expansion. Guan and
colleagues reported that mice treated with TZDs showed
weight gainwhichwas blocked by amiloride. On the contrary,
in AQP2-Cre x Ppar𝑔flox/flox mice, with selective deletion of
Pparg from the collecting duct, TZDs did not cause volume
expansion. In primary culture of IMCD cells from AQP2-Cre
xPpar𝑔flox/flox mice, pioglitazone failed to enhance amiloride-
sensitive sodium transport, but it significantly enhanced
amiloride-sensitive sodium transport in control IMCD cells.
Additionally, as in mouse IMCD cells, pioglitazone treat-
ment increased Scnn1g mRNA, suggesting that pioglitazone
enhanced ENaC-𝛾 subunit expression [14].

Zhang and colleagues [15] also showed that mice with
collecting duct-specific knockout of the PPAR𝛾 gene were
resistant to TZD-induced weight gain and plasma volume
expansion. In primary cultured collecting tubule cells of

mice expressing PPAR𝛾, TZDs enhanced sodium transport.
However, in cells lacking PPAR𝛾, TZDs did not enhance
sodium transport.These twoworks suggest that TZDs induce
plasma volume expansion by increasing sodium transport via
ENaC in the cortical collecting duct (CCD). In particular,
PPAR𝛾 was thought to mediate the enhancement of the
expression of the ENaC-𝛾 subunit. Moreover, another study
[66] suggested that serum glucocorticoid regulated kinase 1
(SGK1) mediates the stimulatory effect of TZDs on ENaC.

However, other studies did not support the conclusion
that TZDs enhance sodium transport via the activation of
ENaC in the CCD. In well-established cell lines, such as
A6, M-1, and mpkCCDcl4, insulin is known to stimulate
ENaC activity. However, in these cells, TZDs failed to directly
augment basal or insulin-stimulated Na+ flux via ENaC
[18]. This clearly contradicts the view that TZDs enhance
ENaC activity via PPAR𝛾 regulation. Additionally, in the kid-
neys of Sprague-Dawley rats, TZDs failed to upregulate the
expression of any ENaC subunit [13]. Vallon and colleagues
showed that mice with conditionally inactivated ENaC𝛼 in
the collecting duct showed almost the same level of fluid
retention after TZD treatment as control mice. In patch
clamp studies using primary cultured collecting duct cells,
a nonselective cation channel, not ENaC, was activated by
TZDs. They also showed that TZDs repress ENaC activity
in mice, both in the acute phase (several hours) and chronic
phase (days) [16, 17]. Moreover, others showed that TZDs did
not enhance the ENaC promoter [17]. These results certainly
argue against the view that TZDs enhance ENaC in the CCD.

Some studies have suggested that renal PT transport
is stimulated by TZDs, both in animals [67] and humans
[68]. Based on these observations, we speculate that TZD-
induced volume expansion is multifactorial and that PT
could be another target segment for TZDs. Furthermore,
the “aldosterone escape” phenomenon should be considered:
even if aldosterone enhances ENaC activity in the collecting
duct, it suppresses sodium reabsorption in other nephron
segments. Therefore ENaC activation by aldosterone excess
alone does not usually inducemassive volume expansionwith
edema formation [69].

We found [12] that TZDs markedly stimulate bicarbon-
ate-coupled sodium transport in isolated PTs of rabbits, rats,
and humans. TZDs activated both a sodium-bicarbonate
cotransporter (NBCe1) and a sodium/proton exchanger
(NHE3) through the PPAR𝛾/Src/EGFR/ERK pathway. How-
ever, in mice, TZDs failed to stimulate PT transport both in
vivo and in vitro. This is consistent with a previous report
that showed that Src/EGFR/ERK is constitutively activated in
mice [70].

TZDs trigger various rapid cellular signaling events,
including the activation of kinase signaling pathways, such as
phosphatidylinositol 3-kinase (PI3K), Akt, ERK, and MAPK
pathways, in a nongenomic manner [71]. We transfected
mouse embryonic fibroblast cells fromPPAR𝛾−/−mouse with
the ligand binding domain of PPAR𝛾. This experiment con-
firmed the presence of nongenomic signaling that resulted
in the activation of ERK; this signal required PPAR𝛾 to have
ligand-binding ability but did not require the transcription
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Table 1: The proposed targets and effects of TZDs in PT and TAL.

Nephron segment Targets Species Materials Effects Citation

PT NBCe1
Rat

Rabbit
Human

Isolated proximal tubule Stimulation of transport [12]

PT NHE3 Rabbit Isolated proximal tubule Stimulation of activity [12]
PT NHE3 Sprague-Dawley rat Total kidney homogenate Enhancement of protein expression [13]
TAL NKCC2 Sprague-Dawley rat Total kidney homogenate Enhancement of protein expression [13]

Table 2: Different effects of TZDs on ENaC.

Nephron segment Species Materials Effects Citation

Collecting duct Mouse Primary cultured IMCD
cells Upregulation of ENaC-𝛾mRNA expression [14]

Collecting duct Mouse Primary cultured CD cells Increased Na transport (suppressed in CD PPAR KO) [15]
CCD Mouse Split-opened isolated CCD Channel activity not altered [16]

Cortex Mouse Kidney cortex lysate Decrease in ENaC-𝛼 and -𝛽 subunit mRNA expression
Decrease in ENaC-𝛾 subunit protein expression [17]

CCD Mouse M1 cell line Decrease in ENaC-𝛼 and -𝛾 subunit mRNA expression [17]

CCD Mouse M1 cell line
mpkCCDcl4 cell line

No direct enhancement of Na+ flux via ENaC [18]

Kidney Xenopus laevis A6 cell line No direct enhancement of Na+ flux via ENaC [18]

of PPAR𝛾 [12]. Additionally we showed that TZDs rapidly
facilitate the association of PPAR𝛾 with Src, which is also
dependent on the ligand-binding ability of PPAR𝛾. These
results, together with the rapid kinetics of responses that are
independent of transcriptional activity, indicate that PPAR𝛾
can activate the ERK pathway through nongenomic mech-
anism, similar to another nuclear receptor, estrogen [72].
The dependence on Src, the association between PPAR𝛾 and
Src, and the negative effect of constitutive Src activation in
PPAR𝛾-dependent nongenomic signaling support the central
role of Src in this signaling pathway. The magnitude of the
enhancement of PT transport by TZDs is comparable to, or
even exceeds, that of angiotensin II [73]. In PT, angiotensin
II is thought to be the strongest stimulatory hormone.
Therefore, we concluded that the stimulation of renal PT
transport via PPAR𝛾-dependent, nongenomic signaling may
play an important role in the plasma volume expansion
induced by TZDs [12].

Other channels/transporters have also been suggested
to be regulated by PPAR𝛾 and its agonists, TZDs. The
expression level of aquaporin 3 (AQP3) mRNA in the renal
outer medulla was stronger in TZD-treated Otsuka Long-
Evans Tokushima Fatty (OLETF) rats than in OLETF rats
without TZD treatment and control LETO rats [74]. Another
study showed that TZD treatment increased the expression
of AQP3 protein in diabetic db/db mice but not in wild-
type mice. Another aquaporin, AQP2, was downregulated in
lean wild-type mice but not in db/db mice [75]. Aquaporins
have 13 subtypes, and many of them are expressed widely in
nephron segments and aremainly involved inwater transport
[76, 77]. In particular, AQP2 is located in CCD and is known
as a target for vasopressin [78]. AQP3 is located in the
basolateral side of the collecting duct and is involved in water

reabsorption [79]. Additionally, in the kidney of Sprague-
Dawley rats, the protein expression ofNHE3 andNKCC2was
elevated after TZD treatment [13]. NKCC2 reabsorbs sodium
and potassium coupled with chloride, predominantly in the
apical side of the thick ascending limbofHenle (TAL) [80, 81].
These results strongly suggest that the volume expanding
effect of TZDs is multifactorial. Recently Fu and colleagues
have reported that ENaC in the connecting tubule may play
a role in the fluid retention induced by TZD [82]. Table 1
summarizes the potential targets of TZDs in the PT and TAL.
The controversial data as to the potential effects of TZDs on
ENaC are summarized in Table 2.

Thedevelopment of newTZDswith less side effects seems
to be difficult. Rivoglitazone was not released because its
effects and side effects were not significantly different from
those of pioglitazone [83]. A selective PPAR𝛾 activator with
less frequency of edema, INT131, is now being examined by a
clinical trial [84]. Such drugs may help in the therapy of DM
in the near future.

7. Conclusions

Wehave overviewedPPAR𝛾, its agonists, TZDs, and their side
effects with a focus on the mechanisms of edema and sodium
retention. TZDs are highly effective antidiabetic drugs with
unique functions, such as a renoprotective effect, ameliora-
tion of glucose homeostasis, and blood pressure lowering,
that other antidiabetic drugs do not have. However, the use
of TZDs is often associated with edema and CHF, which
make it impossible to use TZDs in case of severe CHF. The
mechanism bywhich TZDs induce volume expansionmay be
multifactorial, as shown in Table 1. At first ENaC in the CCD
was thought to play a central role in TZD-induced volume
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expansion; however, the results of other studies have not
supported this view and suggested the involvement of other
transporters in the CCD. We have found that NBCe1 and/or
NHE3 in the PT may play a significant role in TZD-induced
sodium retention through a PPAR𝛾-dependent nongenomic
mechanism. Other sodium and water transporters, such as
NKCC2, AQP2, and AQP3, have also been proposed as
targets for TZDs. The development of novel TZDs or PPAR𝛾
modulators with less side effects is expected.
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