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Abstract

Background and objective

The distribution of the newly developed vaccines presents a great challenge in the ongoing

SARS-CoV-2 pandemic. Policy makers must decide which subgroups should be vaccinated

first to minimize the negative consequences of the pandemic. These decisions must be

made upfront and under uncertainty regarding the amount of vaccine doses available at a

given time. The objective of the present work was to develop an iterative optimization algo-

rithm, which provides a prioritization order of predefined subgroups. The results of this algo-

rithm should be optimal but also robust with respect to potentially limited vaccine supply.

Methods

We present an optimization meta-heuristic which can be used in a classic simulation-optimi-

zation setting with a simulation model in a feedback loop. The meta-heuristic can be applied

in combination with any epidemiological simulation model capable of depicting the effects of

vaccine distribution to the modeled population, accepts a vaccine prioritization plan in a cer-

tain notation as input, and generates decision making relevant variables such as COVID-19

caused deaths or hospitalizations as output. We finally demonstrate the mechanics of the

algorithm presenting the results of a case study performed with an epidemiological agent-

based model.

Results

We show that the developed method generates a highly robust vaccination prioritization

plan which is proven to fulfill an elegant supremacy criterion: the plan is equally optimal for
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any quantity of vaccine doses available. The algorithm was tested on a case study in the

Austrian context and it generated a vaccination plan prioritization favoring individuals age

65+, followed by vulnerable groups, to minimize COVID-19 related burden.

Discussion

The results of the case study coincide with the international policy recommendations which

strengthen the applicability of the approach. We conclude that the path-dependent optimum

optimum provided by the algorithm is well suited for real world applications, in which deci-

sion makers need to develop strategies upfront under high levels of uncertainty.

1 Introduction

By summer 2020, medical trials showed that the first candidates for vaccines are effective

against COVID-19. At this time, countries worldwide needed to prepare the start and logistics

of the vaccination process, requiring many decisions under uncertainty. A key decision at that

time was to define which population groups should be vaccinated first under limited supply in

order to be most efficient in terms of reducing the COVID-19 related burden.

The key element of this decision is that different person groups play different roles in the

epidemic: While, for example, young adults can be considered as driving forces of the disease

spread due to their increased number of daily contacts (see [1]), elderly are more vulnerable to

suffer severe disease progressions. Consequently, prioritization of either of the groups would

reduce the burden of disease in a direct (i.e. vaccination of risk groups) or indirect (i.e. reduc-

ing the disease prevalence) way.

Considering the complexity of the dynamics between vaccinations, transmissions, and

severe, critical, and fatal cases, modeling and simulation is the only possibility to evaluate and

compare different vaccination prioritization strategies upfront. Therefore, it is necessary to

develop and validate a simulation model that validly depicts these nonlinear dynamics and fur-

thermore apply the model to compare different vaccination strategies.

Since we cannot simply try out every possible vaccination strategy—the “parameter space”

is too large—a heuristic must be defined, which systematically generates and evaluates plans,

given a certain optimization target measure, e.g. deceased COVID-19 cases. Defining such an

algorithm is challenging, since (1) the parameter space must be defined, understood, formu-

lated and intelligently searched, and (2) the result should not only try to optimize a certain tar-

get value, but should also be robust to limited vaccine supply.

There are already several studies on the subject of optimal vaccine distribution for SARS--

CoV-2 or other infectious diseases such as influenza. While some of them limit their findings

on evaluating several previously fixed strategies [2], others use different optimization algo-

rithms to find the best solution in a given parameter space [3, 4]. In [5], the vaccination priori-

tization problem is tackled with a network-approach and a Mixed Linear Integer Problem, yet

the outcomes are complicated to interpret in a policy context, since the focus is to determine

super-spreaders. In [6], prioritization concepts from influenza are re-highlighted in the

COVID-19 context.

Anyway, neither of the cited approaches, nor any of those reviewed in [7], explicitly incor-

porated the uncertainty regarding the stream of doses available over time. In [8], the authors

consider limited supply since the question is tackled from an economical point of view, yet no
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epidemiological concepts are included. In [9], epidemiological aspects are considered, yet no

prioritization of subgroups are discussed.

Our team has developed an optimization algorithm which satisfies the stated requirements.

To underline the real-world applicability of the concept, the strategy has already been applied

for counseling the Austrian vaccination strategy planners in Autumn 2020. The results of this

case study have already been published in [10]. In this work, we present the methodological

details of the optimization algorithm, which by itself develops a SARS-CoV-2 vaccination

strategy using a simulation model in a simulation-optimization feedback loop:

1. The algorithm specifies the input to a simulation model in the form of an abstract vaccina-

tion-plan.

2. The model is executed and the output of the model is fed back to the algorithm.

3. According to the simulation results, the algorithm adapts the input with the goal to opti-

mize a target function. The process continues with step 1 until a termination criterion is

met.

We show that our algorithm is not only comprehensible, flexible and efficient, but also pro-

vides a path-dependent optimum of the solution which guarantees that the prioritization is

robust against interruptions, for example if vaccine shortages occur. Finally, we will present

results from analyses performed in the Austrian context.

2 Methods

In the following, we will explain the optimization meta-heuristic formally in several steps.

First, we specify the necessary requirements on the simulation model and discuss suitable tar-

get variables. In a second step, we define, how a vaccine prioritization strategy is defined for-

mally and introduce a specific notation for it. Furthermore, we properly present the developed

meta-heuristic and how it is used in the simulation-optimization setup. Finally, potentially

occurring problems and corresponding solutions are discussed. In the last section of the Meth-

ods part, we give a brief summary of the case study and of the applied simulation model.

2.1 Simulation model, target variables and baseline scenario

In order to evaluate vaccination prioritization strategies, a simulation model must be provided,

which is capable of estimating the impact of the strategy. The model must be able to depict the

spread of the disease, the vaccination processes as well as the impact of the latter on the prior.

Thus, the model must be capable of distributing a certain number of vaccine doses to a specific

sub population at a given point in time—we will furthermore call these Vaccination Events.
Each event is specified by an event-time, a number of available doses d and a target group G
that specifies, which persons are entitled to get one of the doses. We term the combined infor-

mation (d, G) of doses and target group batch.

A sequence of batches and event-times must serve as the model’s input. The model output

must be suitable as target variable of the optimization algorithm (see below). In principle, any

scalar outcome variable of the model that quantifies the burden of morbidity would be a suit-

able target for the optimization algorithm, for example the cumulative number of infections,

hospitalizations or deaths.

Finally, a proper definition of a baseline scenario of the simulation is crucial. Although the

vaccinations themselves will influence the epidemic spread, the effect of the vaccinations will

be influenced by the underlying epidemic situation as well. This includes, in particular,

whether or not any policies besides vaccination are active to contain the disease, and the value
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of Reff by the time of the first vaccinations. The choice of the baseline scenario strongly depends

on the research question of the case study.

2.2 Prioritization strategy concept

Before a prioritization strategy can be established, it is necessary to define target groups. There

are various ways how such groups can be defined. The most common ones include

• grouping by age,

• grouping by vulnerability (hypertension, obesity, . . .),

• grouping by environmental setting (household member of school children, household mem-

ber of a pregnant person, . . .)

• grouping by profession (health care worker, teacher, police officer,. . .),

as well as combinations of these properties. The rationales for defining these groups typi-

cally depend on the vaccination strategy goal but can also be politically or logistically

motivated.

To tackle this concept technically, we define

�G≔fGj; j 2 f1; . . . ; ngg

as the set of groups we want to consider in our vaccination plan. Each group Gj is a subset of

the population and consists of those individuals that share a certain property pj. Note, that
S
j

Gj can also be a real subset of the population, since there might also be persons who are not eli-

gible to be vaccinated (e.g. the vaccine is not approved for them). Moreover, the individual

groups must not necessarily be disjoint.

2.3 Batch-notation and iterative optimization algorithm

In any classic simulation-optimization procedure, two interfaces between optimization routine

and simulation model are necessary, one for the output of the optimization algorithm and the

input to the simulation, and one for the output of the model and the input of the optimization

algorithm. In the present case, the prior is more challenging since the algorithm must “tell” the

simulation model, how to vaccinate the agents.

Our solution to this problem is based on the concept of vaccination batches, characterized

by size d and target group G (see Section 2.1). Goal of the iterative strategy is to find a sequence

of batches, which minimizes the output variable in a precise sense, which we will discuss later.

To properly describe the algorithm, we will use a specific notation, furthermore called

batch-notation:

xk ¼ ððd1;Gj1Þ; ðd2;Gj2Þ; . . . ; ðdk;GjkÞÞ ð1Þ

where (di)i2{1,. . .,k} denotes a vector of batch sizes and ðGjiÞji2f1;...;ng a vector of target groups.

We will use the introduced batch-notation for three purposes:

• Any xk can directly be interpreted as a vaccination prioritization plan with k batches and
Pk

i¼1
di total doses.

• Second, the model is adjusted to use elements xk as model input. The simulator creates k
Vaccination Events at predefined times ti, i = 0 . . . k. In general, t1� t2� . . .� tk makes

sense, indicating that batches are delivered bit by bit.
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• Third, we are able to formulate the optimization goal and the iterative algorithm.

To simplify the formal specification, we define f(x) as the function that maps the vaccina-

tion prioritization strategy x, given in batch-notation, onto the investigated target variable of

the simulation f ðxÞ 2 Rþ. That means,

f ¼ ðevaluate target variableÞ � ðinterpret x as inputÞ:

A strategy x is furthermore said to be superior to a competing strategy x0 if f(x) < f(x0).
Thus, the iterative algorithm results as follows:

1. We initialize the algorithm with an empty state x0 = ().

2. Given a total of ktot batches with ðdjÞj¼1...ktot
doses for each batch, the optimization algorithm

performs ktot steps. In each step k:

1. For the current state xk, we create n different enhancements ðx0kÞ
j
for j 2 1, . . ., n by add-

ing a new batch assigned to Gj to xk. Thus

ðx0kÞ
j
¼ ððd1;Gj1Þ; ðd2;Gj2Þ; . . . ; ðdk;GjkÞ; ðdkþ1;GjÞÞ

2. For each of the n new states created, we evaluate f ðx0kÞ using the corresponding state x0k
as model input.

3. We compare the n outcomes and assign xkþ1  ðx0kÞ
l
with l ¼ arg mini¼1...nðf ðx

0
kÞ
i
Þ as

the new state of the algorithm.

This algorithm, also shown schematically in Fig 1, is simple and has many useful features,

which we will elaborate in the Discussion. Its final state xktot is the output of the algorithm and

can be interpreted as optimized prioritization strategy.

2.4 Invalid plans and parts of batches

Both, in reality and in the model, the batch-notationmight create unfeasible vaccination plans

because an assigned batch is too large for its target group. Usually, this is the case if many

members of the group are already vaccinated in previous batches.

To apply the algorithm, the simulation model is required to feedback this information. Say,

~d defines the number of entitled persons in the target group in the model and dk is the origi-

nally scheduled size of the batch. In case ~d < dk, the model will feedback ~d instead of generat-

ing a result. Moreover, two cases will be distinguished:

• In case ~d ¼ 0, the vaccination plan is considered invalid. The corresponding batch tuple is

not regarded any further.

• In case 0 < ~d < dk, the batch is split to ensure that no doses are wasted.

For the second case, two possible strategies can be applied in the optimization algorithm:

For the first strategy, all computations for the k-th batch are stopped immediately. The total

number of batches ktot is increased by one and the vector of batch sizes is redefined to

ðdjÞj¼1...ktot
¼ d1; . . . ; dk� 1;

~d; ~d � dk; dkþ1; . . . ; dktot :

Furthermore, iteration k is restarted with the adapted batch size.

For the second strategy, only the simulation which produced the invalid outcome is

restarted with a different setup. For this setup, ~d doses are distributed as planned while the
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remaining ðdk � ~dÞ doses are assigned to a predefined alternative group. Therefore, it is most

convenient to define a fixed a-priori order, say, G1 > G2 > . . .Gn, and choose the first group in

this list that leads to a valid vaccination plan.

Clearly, strategy two comes with smaller computation times, but has flaws with respect to

producing the expected optimal algorithm outcome. Nevertheless, errors can be expected to be

comparably small, if batch sizes are a-priori chosen small as well.

2.5 Case study

The algorithm was developed in the context of counseling Austrian decision makers in mid

2020 during the COVID-19 pandemic. We will briefly describe the underlying simulation

model, as well as the setup of the optimization algorithm, such as target groups, batch sizes,

target variables and the epidemiological baseline scenario of the simulation. A comprehensive

description of the case study can be found in [10].

2.5.1 Disease model. We use an agent-based model mainly developed in spring 2020 to

simulate the spread of SARS-CoV-2 in Austria. This model has been subject to multiple studies

(see [11, 12]) and is actively used as a decision support tool for the Austrian COVID-19 con-

tainment policies [13].

In this model, every member of the Austrian population is modeled by a statistical repre-

sentative based on age, sex and place of residence. The agents form a contact network con-

sisting of household-, work-, school-, and leisure-time-contacts, representing the social

behavior of the Austrian population [1]. Furthermore, person-to-person-contacts in this

network spread the virus. Once an agent is infected, a detailed case/patient pathway is ini-

tialized, based on events. After a sampled latency period, the agent becomes infectious and

has the potential to develop symptoms of COVID-19 and might require treatment. People

with mild or no symptoms can recover at home, whereas people with severe or critical symp-

toms require admission to a hospital or an intensive care unit (ICU), respectively. All risk

factors, including the risk for subsequent death from COVID-19, depend on age and medical

history of a person.

The vaccination of an individual is modeled as a single event with immediate effect on the

person’s susceptibility. The effectiveness of the vaccine is modeled by a Bernoulli process with

an age-dependent probability that decides whether the vaccination was effective or not. At

each vaccination event, the list of all model agents is first filtered for entitlement: Agents must

neither be actively confirmed SARS-CoV-2 cases nor have already received a vaccine dose

before and they must be part of the selected target group G. In a second step, a subset with the

size of the batch is randomly selected and vaccinated, according to the model logic explained

Fig 1. Iterative algorithm to optimize the distribution of the batches. The algorithm is started with an empty state

and is terminated as soon as the sum of all state-exponents matches a predefined maximum iteration number.

https://doi.org/10.1371/journal.pone.0265957.g001
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above:

agents � non � confirmed; non � vaccinated � member of G � d randomly chosen

The agent-based disease transmission model allows to observe a multitude of different out-

comes. The ones most relevant to this study are confirmed infected, hospitalized, ICU-hospi-

talized and deceased agents. These numbers are carried out for each time step (daily) and are

available via different counting methods: active, new and cumulative.

A comprehensive model description including a list of all parameter values used can be

found in the supplemental material of [14].

2.5.2 Target variables and baseline scenario. We defined the cumulative number of

COVID-19 caused deaths as our main target variable. We accumulated the cases in a simulated

time frame of six months after vaccination start, taking the average of 10 Monte-Carlo runs.

As the baseline scenario, we investigated a scenario informally called “fictional wave”: the

outbreak of the disease is only damped by the performed vaccinations and, of course, natural

herd immunity. Although this scenario is entirely fictional—it does not regard any policies

against the spread or changed human behavior—it is easy to explain and free of bias. Even

though this scenario cannot directly be compared to the real development, a comparison

between different vaccination strategies is well possible.

A simulated time span of six months from January 1st to July 1st was found sufficient to

cover a full epidemic wave from outbreak to (disease induced) herd immunity.

2.5.3 Target groups and vaccination batches. In total, five different target groups were

defined in the case study after workshops with clinical experts and decision makers. Three of

these groups are age-based, classifying persons as young (Y, 15—44 years),middle-aged (M, 45

—64 years) or elderly (E, 65+ years). The fourth group consists of vulnerable (V) people with a

higher risk for a severe or critical course of COVID-19 due to comorbidity. Finally, the last tar-

get group in our case study consists of health care workers (H), that is, medical staff in hospitals

and outpatient care, medical practitioners, mobile care, long-term care facilities, etc. Agents

are classified as health care workers according to the age-distribution of these professions in

Austria. We will refer to these groups as GY, GM, GE, GV and GH accordingly. Since by the time

of the study, no COVID-19 vaccine has been licensed for children, most children below 15 are

not part of any of the groups. Moreover, groups GE and GV are strong overlapping.

Since the simulation model comes with long computation times and involved decision

makers needed quick results, we chose strategy two with respect to dealing with invalid vacci-

nation plans (see Section 2.4). In collaboration with the experts, we defined the a-priori priori-

tization GE> GV> GH> GM> GY, which would be used if a vaccination plan results in

leftover doses.

Four batches—the first with size 250 000, the others with size 750 000—were considered.

Since no information about vaccine deliveries has been available by the time of the study, we

used t0 = t1 = t2 = t3 = January 1st. It is plausible to assume, that different choices for ti would

only change the magnitude of the outcome variables, but would lead to the same priorities,

since the baseline scenario is a homogeneous epidemic wave.

3 Results

By definition of the strategy, the iterative optimization algorithm provides a dynamic opti-

mum. Formally this is interpreted as follows: given the final result xktot ¼ i
k1
1 . . . ikmm of the algo-

rithm, any sub-vector of this result xk, k� ktot is chosen optimal w.r.t. a given xk−1:

xk ¼ argminf ðykÞ:yk� 1¼xk� 1
ðf ðykÞÞ
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That means, if the actual numbers of vaccine batches is not precisely known in advance, this

strategy provides the most robust solution. Nevertheless, a global optimum

argminyktot ðf ðyktotÞÞ;

is not necessarily provided.

To better illustrate the iterative nature of the optimization algorithm, we show selected

interim simulation results which have not been presented in the case study [10].

Fig 2 gives an overview of the timeline of the COVID-19 caused deaths after each of the 4

steps of the optimization algorithm. Clearly, every additional batch reduces this optimization

target variable. To update the state, another 5 simulations are executed at each step, one for

each person group. Fig 3 shows the corresponding five results within the second step of the

optimization algorithm. After the first step, it holds that x1 = (d1, GE) = E. In the simulations

performed during the second step of the optimization algorithm, the lowest number of

COVID-19 caused deaths is achieved if the second vaccination batch is distributed to the

elderly and thus x2 = ((d1, GE), (d2, GE)) = EE will be the next state of the algorithm. Fig 4

finally displays the development of the target variable (cumulated COVID-19 caused deaths)

over all 4 � 5 = 20 simulated strategies. The black lines indicate how the algorithm enhanced

the vaccination strategy iteratively.

The source data is available online under https://git.dwh.at/mlandsiedl/Vaccination-

Strategy-Optimizer-Data

4 Discussion

In this work, we presented an algorithm for early stage development of a vaccination prioriti-

zation plan. The algorithm applies a dynamic simulation model in the loop and converges to a

vaccination strategy, which can be recommended to decision makers. The result of the algo-

rithm fulfills a path-dependent optimum, which is well suited for being applied in early stage

planning, if the expected number of available vaccination doses is not well known in advance

or shortages are to be expected. In this particular research question, this version of optimum is

Fig 2. Model results for daily COVID-19 caused deaths after every step of the iterative optimization algorithm. In

each step, one additional batch has been distributed. The target variable for the optimization algorithm is the number

of cumulative COVID-19 caused deaths.

https://doi.org/10.1371/journal.pone.0265957.g002
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usually superior to a global optimum, since vaccine production and deliveries are associated

with a high level of uncertainty.

This superiority can be shown using a simple thought experiment: Considering a sterilizing

vaccine and a base reproduction rate of about three, which corresponds to standard estimates

for the original SARS-CoV-2 virus, it is plausible that vaccinating all inhabitants between 16

and 55 (about 55% of the Austrian population) will cause Reff to drop below 1, since these pop-

ulation groups are responsible for most (infectious) contacts. In this scenario, also the elderly,

which are most endangered to have severe disease progressions, are well protected by declining

case numbers. In case of a shortage with only half of these doses available, the spread of the dis-

ease cannot be stopped by the vaccines and the numbers stay high. In this scenario, elderly per-

sons are not protected at all—neither by vaccination nor by dropping case numbers. The

vaccine plan was a failure and thousands of lives were put at risk.

Consequently, the algorithm provides a stable vaccination plan that is equally optimal, if

interrupted in the middle.

Moreover, the algorithm executes with linear increasing computational effort—that is ktot �
n simulation runs (Monte Carlo simulations excluded). Finding a global maximum, in the

worst case, would require nktot simulation runs.

The performed case study in summer 2020 demonstrated, that the strategy works well and

is flexible. Note, that even in this deliberately simplified case study, which was coordinated

with important health care experts and stake holders in Austria, many of the carefully

described “special cases” occurred: First, the person groups are not disjoint since GH, GV and

GE/M/Y overlap. Moreover, the union of all groups does not cover the whole population, since

children were not included in the vaccination program by this time. Finally, batches had to be

differently sized (forced prioritization of health-care workers) and sometimes needed to be

split and distributed on two groups.

Due to the proper definition of the algorithm, the results of the analysis could be used for

counseling the Austrian vaccination strategy planners [10]. Moreover, the results have been

Fig 3. Model results for daily COVID-19 caused deaths for simulations performed during the second step of the

optimization algorithm. Each line represents one of the enhancements ðx0
1
Þ
i
; i 2 fY;M; E;V;Hg with x1 = E. The

target variable for the optimization algorithm is the number of cumulative COVID-19 caused deaths.

https://doi.org/10.1371/journal.pone.0265957.g003
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strengthened by recommendations of many other institutions including WHO [15], CDC [16]

and ECDC [17], which come to similar conclusions.

In addition to COVID-19 caused deaths, we also investigated cumulative SARS-CoV-2 con-

firmed cases and intensive care (ICU) patients as target variables of the algorithm. Interest-

ingly, different target measures led to different prioritization plans. The main reason for this

lies in the model mechanisms for state-transitions between case, confirmed case, hospitalized/

ICU patient and deceased case, all of which are highly age-dependent. This feature resulted in

the interesting result, that deceased and ICU patients can be reduced best directly, by vaccina-

tion of the corresponding cohorts, whereas (confirmed) cases can be reduced best indirectly,

by vaccination of the cohorts with most contacts. See [10] for more details.

One limitation of the presented optimization algorithm is the inability to provide a global

optimium at the price of escape strategies and computation time. This means, if the precise

number of doses that will become available for vaccination is well known in advance, the pro-

posed algorithm is not the best choice and a different optimization must be applied—e.g. either

a full grid-search or some metaheuristic method. Since the SARS-CoV-2 vaccination situation

has been unclear by the time of the vaccination plan design in Austria, the strategy was well

suited in our case.

In the past year, the presented method and the performed case-study played a key-role in

preparing the Austrian decision makers for the upcoming SARS-CoV-2 vaccination cam-

paign in spring 2021 [10]. By mid 2021, the campaign shows first effects on the case numbers

and even more on hospitalizations and deaths. Yet, still the danger of new mutations, com-

parable to infamous lineage B.1.617.2 for which current vaccines are estimated to have

reduced effectiveness [18], is omnipresent. As a result, pharmaceutical companies work hard

on refined vaccines for which new vaccination prioritization plans might become necessary

in near future.

Fig 4. Accumulated model results for daily COVID-19 caused deaths for all the simulations performed during the

iterative optimization. After each step / batch, the simulation enhances the batch-notation that yielded the best results

for the target variable. In the last iteration, EEEE led to an invalid plan since the corresponding group GE is already

fully vaccinated after EEE.

https://doi.org/10.1371/journal.pone.0265957.g004
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