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Abstract Pharmacologic perturbation projects, such as Connectivity Map (CMap) and Library of 
Integrated Network- based Cellular Signatures (LINCS), have produced many perturbed expression 
data, providing enormous opportunities for computational therapeutic discovery. However, there 
is no consensus on which methodologies and parameters are the most optimal to conduct such 
analysis. Aiming to fill this gap, new benchmarking standards were developed to quantitatively eval-
uate drug retrieval performance. Investigations of potential factors influencing drug retrieval were 
conducted based on these standards. As a result, we determined an optimal approach for LINCS 
data- based therapeutic discovery. With this approach, homoharringtonine (HHT) was identified to be 
a candidate agent with potential therapeutic and preventive effects on liver cancer. The antitumor 
and antifibrotic activity of HHT was validated experimentally using subcutaneous xenograft tumor 
model and carbon tetrachloride (CCL4)- induced liver fibrosis model, demonstrating the reliability of 
the prediction results. In summary, our findings will not only impact the future applications of LINCS 
data but also offer new opportunities for therapeutic intervention of liver cancer.

Editor's evaluation
This paper describes a new method and experimental manipulations to identify homoharringtonine 
as a new potential therapy for liver cancer and the underlying liver disease.

Introduction
Despite the major advances in drug research and development (R&D), the cost for de novo drug 
development remains high, ranging from $3 billion to more than $30 billion. Moreover, it usually takes 
over 10 years to bring a new drug from bench to bedside, reflecting the complex challenges in this 
area (Scannell et al., 2012). Within this context, exploring new indications for existing drugs (drug- 
centric) or identifying effective drugs for certain diseases (disease- centric) represents an appealing 
concept, namely ‘drug repositioning’ (or ‘drug repurposing’), which can greatly shorten the gap 
between preclinical drug research and clinical applications (Ashburn and Thor, 2004; Liu et al., 2013). 
Leveraging big data- driven approaches, drug repositioning can be conducted computationally, which 
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has the potential to complement traditional therapeutic discovery means and further improve the 
cost- effectiveness of drug development (Li et al., 2016). The most notable data resources supporting 
the in silico- based therapeutic discovery campaigns would be the Connectivity Map (CMap) (Lamb 
et al., 2006) and its recent extension called Library of Integrated Network- Based Cellular Signatures 
(LINCS) (Subramanian et al., 2017). These two projects have generated large- scale drug- induced 
gene expression profiles on multiple cancer cell lines under different treatment conditions (CMap 
Build 2: 3 cell lines, 1309 compounds; LINCS: 77 cell lines, 19,811 compounds), representing a trea-
sure trove for in silico therapeutic exploration (Musa et al., 2018). As a 1000- fold scale- up of the 
original CMap, LINCS contained dramatic increases in both cell line types and perturbations, making 
it the focus of the present investigation.

Computational drug discovery and repurposing
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Figure 1. Overview of LINCS data- driven therapeutic discovery. The working principle of ‘signature reversion’-based computational approach. A disease 
signature representing discordant expression pattern needs first to be identified (G1, G2, and G3 stand for upregulated genes while G4, G5, and G6 
stand for down- regulated genes in disease state). With this signature, pharmacologic perturbation data sets can be queried to find compounds with the 
ability to reverse disease expression pattern (suppress expression of G1, G2, and G3 and induce expression of G4, G5, and G6). After determining the 
candidate compounds, experimental and clinical validation are required to translate computational findings to clinical applications. LINCS, Library of 
Integrated Network- based Cellular Signatures.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A summary of potential factors influencing the accuracy of signature reversion- based computational approach.

Figure supplement 2. An overview of compound- induced expression profiles in LINCS.

https://doi.org/10.7554/eLife.71880
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The computational drug discovery approach using LINCS (also CMap) data is based upon a basic 
concept called ‘signature reversion’ (Li et al., 2016). Briefly, compounds with the ability to reverse 
disease- specific gene expression pattern are considered therapeutic candidates (Figure 1). To date, 
although there have been many successful applications, many problems with this approach remain 
unsolved (Chen et al., 2017a; Chen et al., 2017b; van Noort et al., 2014). Due to the lack of appro-
priate benchmarking standards, limited studies have investigated the factors influencing the accuracy 
of this approach. Therefore, no consensus regarding the implementation details has been reached 
across current studies. Constructing rational benchmarking standards and developing the best prac-
tice approach can facilitate the development of signature reversion approach and help to identify 
more effective therapeutic strategies for refractory diseases.

Herein, we mainly focused on the disease of liver cancer. As one of the most lethal malignancies 
worldwide, liver cancer directly accounts for nearly one million deaths each year (Bray et al., 2018). 
Hepatocellular carcinoma (HCC) is the major type of liver cancer, representing approximately 90% of 
all liver cancer cases (Llovet et al., 2016). Although many standard of care therapies, including Lenva-
tinib (Kudo et al., 2018), regorafenib (Bruix et al., 2017), cabozantinib (Abou- Alfa et al., 2018), 
ramucirumab (Zhu et al., 2019), pembrolizumab (Finn et al., 2020b), nivolumab (El- Khoueiry et al., 
2017), and atezolizumab- bevacizumab (Finn et al., 2020a), have been approved for treating HCC in 
recent years, most of them can yield only marginal survival benefit. Thus, more effective therapeutics 
treatments for HCC are highly desired. The objectives of the present study were threefold. The first 
objective was to develop novel benchmarking standards for evaluating drug retrieval performance. 
The second one was to determine the best practice approach for LINCS data- based signature rever-
sion. For the last objective, we sought to identify novel drug candidates against liver cancer, exploiting 
the findings from the second objective.

Results
Summary of influencing factors and compound experiments in LINCS
Many factors may affect the accuracy of signature- based drug retrieval. We have categorized these 
factors into three main aspects: acquisition of compound signature (reference signature), generation of 
disease signature (query signature), and selection of disease- compound matching methods (Figure 1, 
Figure 1—figure supplement 1). Although all factors were mentioned and discussed, not all of them 
were included in the present analyses, considering that some factors have been covered elsewhere 
and some were challenging to explore due to data and method restrictions. In this study, systematic 
analyses were carried out to assess the influences of four major factors on signature matching- based 
drug discovery, including source of cell line, clinical phenotype of query signature, query signature 
size, and signature matching method.

Since only compound- induced expression data was the focus of this study, we first excluded exper-
iments of other perturbagens, including gene knockdown (or knockout) and gene overexpression 
manipulations. Subsequently, the distribution of compound profiles was visualized based on their 
perturbation time, perturbation dose, and cell line used. Most of the measurements were made in 
the treatment durations of 6 hr (43%) or 24 hr (56.6%), and under the concentrations of 5 μM (21%) 
or 10 μM (63%) (Figure 1—figure supplement 2A). The count distribution of all cell lines in LINCS 
was also presented in Figure  1—figure supplement 2B. Although 71  cell lines were included in 
LINCS project in total, not all of them were extensively profiled, and only 9 cell lines contained more 
than 5000 profiles, which, however, account for 77.8% of all compound profiles. There were 2912 
compounds shared by these nine cell lines. We further integrated annotation of the most profiled 
cell lines with treatment duration and concentration information, and illustrated the specific profile 
numbers of each cell line under the conditions of certain time and dose (Figure 1—figure supple-
ment 2C). Unless otherwise indicated, all the following analyses were performed on a fixed perturba-
tion condition of 10 μM for 6 hr. Besides, compound profiles of all top nine cell lines were only utilized 
when investigating the factor ‘Source of cell line.’ In other cases, we focused exclusively on the cell 
line of HepG2, as our main point was to uncover novel therapeutics for liver cancer in this study. A 
systematic summary of included data sets for analyses was presented in Supplementary file 1A and 
B.

https://doi.org/10.7554/eLife.71880
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Compound-induced expression changes are highly cell line-specific
Some previous studies utilized compound profiles from cell lines irrelevant to the disease they are 
studied for signature reversion prediction. To investigate whether this was a reasonable practice, 
we conducted following analyses based on LINCS data of the nine most profiled cell lines. First, we 
visualized the compound profiles in a cosine distance- based two- dimensional t- distributed stochastic 
neighbor embedding (t- SNE) plot that represented the overall compound perturbation space wherein 
each dot was equivalent to a unique perturbation and each cell line was color- coded (Figure 2A). 
As shown in the figure, most dots with the same color clustered together, indicating that most of 
compound- induced gene expression changes tended to be cell- type specific. Intriguingly, dots with 
different colors in the white region seemed to mix together, suggesting that some compounds might 
induce similar gene expression changes across cell lines. To figure out which compounds were likely 
to cause cell- type specific gene expression changes and which tended to induce universal changes 
independent of cell lines, we calculated the pairwise cosine similarities (L1) among the profiles from 
the same compounds measured in different cell lines (Figure  2B). The cosine similarity measures 
range from –1 to 1, where higher values indicate increased similarity. The similarity scores (compound- 
level, L2) of the 2912 unique compounds were determined by calculating the median pairwise cosine 
similarity values (L1) across the nine cell lines (Supplementary file 2). As a result, a high degree of cell- 
specificity was observed for most compounds, with a median L2 similarity score of 0.078 (Figure 2C). 
Furthermore, we retrieved the mechanism of action (MOA) information and mapped them to the 
compounds to determine the MOA- level similarity scores (L3). L3 similarity scores were calculated 
based on the median values of L2 similarity scores of compounds within the same MOA. Results 
suggested that inhibitors targeting core cellular processes (e.g., cell cycle, RNA transcription, and 
protein synthesis) tended to induce similar changes across all cell lines, generally in agreement with 
previous findings (Figure 2D, Supplementary file 2; Niepel et al., 2017; Subramanian et al., 2017; 
Wang et al., 2018). We then marked the dots representing the compounds of the top five MOAs 
in the t- SNE plot. As expected, most of marked dots fell in clusters within the nonspecific region 
(Figure 2E).

Apart from investigating the similarity of perturbed expression profiles at compound level, we 
further sought to further investigate the cell line pair/cell line- level similarity. Nine cell lines contrib-
uted a total of 36 unique cell line pairs. The cell line pair- level perturbed expression similarities (L4) 
were determined through calculating the median value of similarity scores of all compound pairs 
between two cell lines, and the corresponding basal expression similarities were computed using 
Spearman ranked correlation on expression data from CCLE project (Figure 2F). The result showed 
that there was a significant, albeit not very remarkable, association between the perturbed expression 
similarities (cell line pair- level, L4) and basal expression similarities (ρ=0.344; p=0.040), suggesting 
that cell lines with similar molecular features were more likely to have consistent gene expression 
changes upon perturbation (Figure 2G). Similarities within the nine cell lines were also explored (cell 
line- level, L5). Among the nine cell lines we tested, PC3 cell line showed the highest L5 similarity score 
(median value=0.122) (Figure 2H). Notably, the cosine similarity of 0.122 still denoted a weak rela-
tionship, which further supported the conclusion that compound- induced gene expression changes 
were highly cell line- specific.

Among the nine most profiled cell lines, HepG2 was the only one derived from liver. To investi-
gate whether HepG2 was an appropriate cell line model for computational therapeutics discovery 
for liver cancer or other liver- associated diseases, we calculated the expression correlation between 
HepG2 and other cell lines (921 CCLE cell lines) or tissues (17,382 normal tissues from GTEx and 9701 
tumor tissues from TCGA PanCancer). Compared to other tissue- derived cancer cell lines or normal/
tumor tissues, HepG2 exhibited a significantly higher expression correlation with liver cancer cell lines 
(median correlation coefficient=0.729), normal liver tissues (median correlation coefficient=0.616), 
and liver cancer tissues (median correlation coefficient=0.631) (Figure  2—figure supplement 1). 
Collectively, we supposed that the use of LINCS- derived HepG2 data was preferable to be limited 
within liver diseases.

https://doi.org/10.7554/eLife.71880
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Developing benchmarking standards for evaluating drug retrieval 
performance
Owing to the lack of benchmarking standards, accurate assessment of retrieval performance of 
signature matching methods remains challenging. Inspired by previous findings (Chen et al., 2017a; 
Chen et  al., 2017b; Cheng et  al., 2014; Wagner et  al., 2015), we proposed two novel bench-
marking standards, namely area under the curve (AUC)- based standard and Kolmogorov- Smirnov (KS) 
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Figure 2. Highly cell- type specific compound- induced expression changes. (A) Two- dimensional t- SNE projection based on cosine distance between 
compound signatures. Each dot represents a unique perturbation- induced expression profile, and each color represents one type of cell line. Drug 
perturbation data was obtained from GSE92742 and GSE70138. (B) Schematic diagram displaying the calculation process of compound- level (L2) and 
MOA- level (L3) similarity scores. (C) Distribution of compound- level (L2) cosine similarity scores, which range from –1 (completely opposite pattern) 
to 1 (perfectly identical pattern). Three examples are presented (left to right: etodolac, geldanamycin, and doxorubicin). (D) Illustration of MOA- 
level (L3) similarities. Only MOAs with more than five compounds included are shown in the figure. (E) A t- SNE projection showing the distribution 
of compounds (indicated by purple dots) in top ranked five MOAs (including HDAC inhibitors, IKK inhibitors, mTOR inhibitors, CDK inhibitors, and 
topoisomerase inhibitors). (F) Schematic diagram displaying the calculation process of cell line pair- level (L4) similarity scores. (G) Correlation between 
basal expression similarities and perturbed expression similarities (L4) of 36 cell line pairs (nine cell lines in total). Statistical significance and correlation 
coefficient were determined by ranked- based Spearman correlation. (H) Schematic view of the calculation of cell line- level (L5) similarity scores (upper) 
and the presentation of L5 similarity scores of nine cell lines in the boxplot (lower). Data are presented as median±quartiles. MOA, mechanism of action; 
t- SNE, t- distributed stochastic neighbor embedding.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Correlations between HepG2 cell line and other cancer cell lines or normal/tumor tissues.
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statistic- based standard. They were built upon different notions and thus were independent of each 
other, which helped to avoid potential bias introduced by single standard. The corresponding bench-
marking data sets were developed mainly based on preclinical/clinical data of liver cancer. Detailed 
processes of data collection and metrics calculation were described in Materials and methods and 
visualized in Figure 3A.

The development of AUC- based standard was based on the finding that there existed correlation 
between the reversal potency and treatment efficacy (Chen et al., 2017a; Wagner et al., 2015). In 
order to further validate whether this correlation remained significant in other conditions, we retrieved 
drug response data from CTRP data set in which area under the dose- response curve (AUDRC) values 
were used as measurements of drug sensitivity, and utilized two different HCC signatures as query 
signatures to obtain KS- based similarity scores (Chen et al., 2017a; Chen et al., 2017b). A total of 
109 compounds shared by two data sets were selected to conduct correlation analyses. As a result, 
statistically significant correlation could still be observed between similarity scores and AUDRC values 
in these scenarios, further proving the reliability of this standard (Figure 3B). A benchmark data set 
was then generated, composed of 117 unique compounds with both LINCS and drug efficacy (IC50) 
data available, which was taken as a basis for the application of AUC- based standard (Supplementary 
file 3). The resultant AUC from this standard was termed as drug retrieval- associated AUC (DR- AUC). 
Higher DR- AUC value indicated better performance.

As for KS statistic- based standard, we assumed that agents under evaluation in clinical trial for HCC 
treatment, namely HCC- related agents, might possess an increased reversal capacity (Chen et al., 
2017b). In other words, HCC agents were more likely to cause negative enrichment in KS test. To 
verify this hypothesis, we compiled a set of 27 potential HCC agents which were both included in 
LINCS and under clinical trials for liver cancer treatment. Besides, similarity scores of all compounds 
tested in HepG2 were also calculated, which were then used as ranked list for KS test. The results 
of KS test demonstrated that the HCC agent set was indeed negatively enriched (Figure 3C). The 
resultant enrichment scores (ES) here were termed as drug retrieval- associated ES (DR- ES) (Supple-
mentary file 4). Of note, in contrast to DR- AUC, lower DR- ES values denoted better performance.

XSum is the optimal signature matching method for drug retrieval
The two independent benchmarking standards enabled us to quantitatively assess the retrieval 
performance of different signatures matching methods. Six available methods, including eXtreme 
Sum (XSum) (Cheng et al., 2014), eXtreme Cosine (XCos) (Cheng et al., 2013; Cheng et al., 2014), 
eXtreme Pearson (XCor) (Zhou et al., 2018), eXtreme Spearman (XSpe) (Zhou et al., 2018), KS test 
(Lamb et  al., 2006), and the Reverse Gene Expression Score (RGES) (Chen et  al., 2017a), were 
included for performance comparison. To minimize technical bias introduced by different query signa-
tures, four HCC signatures with different sizes generated from distinct data sets were utilized for 
benchmarking (Supplementary file 5). Of these, Siggastro (Chen et al., 2017b) and SigNC (Chen et al., 
2017a) were directly obtained from previous publications, while SigLIRI and SigGSE54236 were gener-
ated using RNA- seq data from LIRI cohort and microarray data from GSE54236, respectively. A brief 
summary of the above essential components involved in the evaluation process was presented in 
Figure 4A.

Considering that the performance of eXtreme methods (including XSum, XCos, XCor, and XSpe) 
may be affected by the number of top genes (topN), we thus calculated the DR- AUC or DR- ES values 
of each eXtreme methods iteratively, using topN ranging from 50 to 489. In the condition of using 
SigLIRI as query signature, both benchmarking standards demonstrated that XSum outperformed other 
five methods across almost all candidate topNs (Figure 4B). Concordantly, when using other three 
query signatures, XSum also achieved better performance compared with other methods, except in 
the case of using SigGastro as query signature and AUC- based standard for benchmarking, where RGES 
showed a similar performance with XSum (Figure  4—figure supplement 1A- C). Generally, XSum 
exhibited a consistently excellent performance, independently of the query signature and bench-
marking standard (Supplementary file 6A and B). In addition, our analyses also demonstrated that 
the recently developed RGES (a modification of the KS method) was superior to the KS method and 
might serve as an alternative approach for KS- based connectivity mapping (Chen et al., 2017a).

We next sought to find the most appropriate topN value for applying XSum method to achieve the 
best retrieval performance. Directly selecting the exact topN value where corresponding DR- AUC/

https://doi.org/10.7554/eLife.71880
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Figure 4. Benchmarking different methodologies and parameters. (A) Diagram summarizing the workflow and the important components involved in 
the evaluation process of drug retrieval performance of six different signature matching methods. (B) Retrieval performance of six matching methods 
evaluated by AUC- based benchmarking standard (left) and KS statistic- based benchmarking standard (right). Query signature was generated based on 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Benchmarking methodologies and parameters in the conditions of using different query signatures.

Figure supplement 2. The influences of query signature size on retrieval performance.
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DR- ES reached their maximum/minimum might cause bias and could be prone to overfitting. Given 
the continuous trait of candidate topNs, we chose to divide them into several smaller bins, typically 50 
topN values in each bin. The DR- AUC/DR- ES of a given bin was defined as the mean DR- AUC/DR- ES 
values within this bin, which could decrease potential influences brought about by outliers. With this 
normalization approach, relatively consistent results across varying conditions were obtained. The 
optimal window with the best performance was either ‘top150–200’ or ‘top200–250’ (Supplemen-
tary file 6C). Besides, we also observed a biphasic pattern of fitting curves, with the inflection points 
appearing where topNs were around 200 (Figure 4C, Figure 4—figure supplement 1D- F). Collec-
tively, we supposed that topN of 200 could serve as a rough guide.

A query signature size of 100 is applicable for drug retrieval
Next, we intended to further discern the optimal query signature size. Considering that Siggastro 
(Ngene=44) and SigNC (Ngene=73) had fixed and relatively small signature sizes, only signatures generated 
from LIRI and GSE54236 cohorts were utilized for the following investigation. We adopted two comple-
mentary approaches: (i) iterative fold change- based and (ii) random sampling- based approaches, to 
obtain query signatures with varying sizes (Figure  4D). The iterative fold change- based approach 
could create a number of signatures with discontinuous sizes through setting iterative threshold values 
of fold changes. The exact sizes of optimal signatures identified by this approach varied substantially 
(including 55, 79, 140, and 167). Despite this, similar trends of biphasic pattern with inflection points 
at around 100 under different conditions could still be observed (Figure 4E, Figure 4—figure supple-
ment 2A). The approach based on random sampling was adopted as a complement. The results 
showed that, as the signature sizes increased, the DR- AUC/DR- ES values also increased/decreased 
and eventually converged when the signature size was more than 100 (Figure 4F, Figure 4—figure 
supplement 2B). Accordingly, we considered that a signature size of 100 could be selected as a good 
compromise. This conclusion remained valid in the conditions when other topN values were applied, 
such as 100 and 400 (results not shown).

A good query signature should comprehensively reflect the clinical 
characteristics of corresponding disease
Many previous studies chose to compare normal versus diseased states to define disease signatures. 
However, signatures that are generated based on other clinical phenotypes, such as prognosis and 
metastasis, can also be used to query LINCS. Aiming to figure out whether this factor could also affect 
the performance of drug retrieval, we designed a forward and a backward strategy (Figure 5A). The 
application of forward strategy was based on two types of signatures, general signatures (repre-
senting discordant expression pattern between normal and tumor tissues) and prognostic signatures 
(associated with survival outcomes). We compared the above two signature phenotypes across varied 
signature sizes. Unfortunately, the results under different data sets and benchmarking standards were 
highly inconsistent. This strategy thus failed to provide a definitive conclusion (Figure  5—figure 
supplement 1A and B).

Opposed to the forward strategy, backward strategy started from creating a collection of 10,000 
random signatures, followed by determining the optimal signature for clinical implication evaluation. 
The optimal random signature was determined according to both benchmarking standards. Exploring 
the clinical values of this signature might reveal some necessary features possessed by a ‘good’ query 
signature (Figure 5B). A comprehensive clinical evaluation on the optimal signature was carried out 
based on five RNA- seq and five microarray clinical cohorts from three perspectives. First, the ability 
of this signature to distinguish tumors from non- tumors was investigated. Briefly, we extracted the 
first principal components (PC1) of this signature to represent its overall expression pattern. AUC 
was used here as a measurement of the classification capability. The results showed that more than 
0.90 of AUC can be obtained in seven out of the eight cohorts (87.5%), indicating that the ability to 
discern the difference between diseased and normal states might be an indispensable property for 
achieving good retrieval performance (Figure 5C). Next, we intended to find out whether the optimal 
signature should be a prognostic indicator. Cox regression analyses were conducted to investigate 
the association between the signature expression (PC1) and clinical outcome. As a result, significant 
prognostic implications of the optimal signature could be observed in six out of the eight cohorts 
(75%), suggesting that prognostic significance was also a necessary characteristic (Figure 5D). At last, 
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The influences of query signature phenotype on retrieval performance.
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the association between signature expression and other clinical features was explored. Considering 
that CHCC and LIHC cohorts held the most abundant clinical information, corresponding analyses 
were thus conducted on these two cohorts. The results showed that there was a significant correla-
tion between the optimal signature and multiple clinical features, including BCLC stage (p=0.011), 
tumor thrombus (p=0.001), AFP level (p=0.022), TNM stage (p<0.001), and histologic grade (p<0.001) 
(Figure 5E). Accordingly, we concluded that a good query signature should possess the ability to 
comprehensively recapitulate the clinical features of corresponding disease, rather than only reflect 
the disease characteristic from single perspective.

Generation of novel liver cancer signature
The conclusions from the above analyses were then applied to establish a signature representing liver 
cancer initiation and development, which could be utilized to query compounds with potential ther-
apeutic as well as preventive effects against liver cancer. The generation of this evolution- associated 
signature was based on the concept that the initiation and progression of liver cancer was a step-
wise process with gradually acquired advantageous biological capabilities (Figure  6A). Therefore, 
conceptually, antagonizing genes that were most related to these stages could be a potential thera-
peutic strategy. Through implementing random forests algorithm on GSE89377 cohort, preliminary 
screening was performed to include stage- associated genes, where genes with greater predictive 
power were selected for further analysis. This screening yielded a total of 6017 stage- associated 
genes (23.9%), of which 309 were landmark genes (Figure 6B). Next, we conducted weighted gene 
co- expression network analysis (WGCNA) to obtain co- expressed modules with diverse expression 
patterns (Figure 6—figure supplement 1A). Seven gene modules were discerned by WGCNA anal-
ysis (Figure 6—figure supplement 1B and C), and two of them, which we termed the ‘ascending’ 
module (N=1738) and the ‘descending’ module (N=350) for their greatest relevance to stages and 
patterns of linear evolution from normal to cancer, were retained for further analyses (Figure 6C and 
D). Biological processes associated with genes in these two modules were investigated. We found that 
the ‘ascending’ module was closely associated with proliferation (Figure 6C), while the ‘descending’ 
module was enriched in several different types of processes (Figure 6D). There were 159 genes in 
common between these two modules and landmarks. Based on the aforementioned recommendation 
of query signature size, we sought to further reduce the size of 159–100. This procedure was carried 
out using HCC occurrence- related clinical and molecular data from GSE15654 cohort. In brief, 10,000 
random signatures, each containing 100 genes, were generated based on the 159- gene panel. The 
one which had the most significant association with HCC occurrence was considered as the optimal 
query signature (Figure 6—figure supplement 2A and B). This analysis yielded a signature comprised 
of 82 ascending genes and 18 descending genes, which was then named as Sigevo (Supplementary 
file 7). The linear evolution pattern of Sigevo remained present in training (Figure 6—figure supple-
ment 2C) as well as an independent validation cohort (Figure 6—figure supplement 2D).

As previously discussed, a good query signature should reflect the clinical features of corresponding 
disease comprehensively. Therefore, we systematically surveyed the association between Sigevo and 
the clinical phenotypes of precancerous/cancerous liver lesions using clinical and experimental data 
from both human and animal data sets. First, based on clinical cohorts of HCC, we demonstrated that 
Sigevo had a remarkable capability for distinguishing tumors from non- tumors, with a median AUC of 
0.972 in all eight cohorts (Figure 6E). Besides, this signature also held great prognostic power in HCC, 
as indicated by the results of Cox analyses (Figure 6F). Next, in view of the crucial role of fibrosis in 
driving hepatocarcinogenesis, further investigation was performed to validate its relevance to fibrosis- 
related phenotype. The result suggested that Sigevo could also effectively differentiate between mild 
(S0/S1) and severe (S3/S4) fibrosis (Figure  6G). Additionally, we collected four experimental data 
sets, including two carbon tetrachloride (CCl4)- treated mouse data sets and two diethylnitrosamine 
(DEN)- treated rat data sets, to assess the enrichment levels of Sigevo in mouse and rat fibrosis models. 
It could be observed that ascending genes in Sigevo were significantly enriched in both CCl4- treated 
(GSE27640) and DEN- treated (GSE19057) liver tissues (Figure 6H and I). However, descending genes 
did not exhibit any significant enrichment pattern in all included data sets, possibly due to the limited 
gene number (Figure 6H, I). Notably, the expression profiles in GSE63726 were derived from non- 
parenchymal cell fractions which had abundant hepatic stellate cells (HSCs), and thus the significant 
enrichment could provide the evidence that this signature might reflect the molecular feature of HSC 
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Figure 6. Development of a novel signature representing the initiation and progression of liver cancer. (A) Schematic of the stepwise process of 
liver cancer initiation and progression. (B) Preliminary screening of developmental stage- associated genes by random forests algorithm based on 
GSE89377. (C) The expression pattern of the ‘ascending’ module discerned by WGCNA analysis (left) and the enriched biological processes determined 
by hypergeometric test (right). (D) The expression pattern of the ‘descending’ module (left) and the enriched biological processes (right). (E) The 
performance evaluation of the Sigevo for discerning the difference between tumor and normal tissues based on RNA sequencing cohorts (left) and 
microarray cohorts (right). (F) The association between the Sigevo and the clinical phenotype of prognosis. Color toward gray indicates no statistical 
significance. (G) The association between the Sigevo and fibrosis- related phenotype suggested by ROC curve. (H) The association between Sigevo and 
CCl4- induced expression changes in liver tissues of mice. The enrichment scores and statistical significance were determined by gene set enrichment 
analysis. (I) The association between Sigevo and DEN- induced expression changes in liver tissues of rats. WGCNA, weighted gene co- expression network 
analysis.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Weighted gene co- expression network analysis (WGCNA).

Figure supplement 2. Identification and validation of the novel query signature.
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activation (Figure 6I). In summary, the Sigevo fully complied with the criteria of a good query signature 
and was then employed for querying LINCS.

Using the optimal method (XSum) and a compromising parameter (topN=200), we matched 
Sigevo with HepG2- derived compound signatures in LINCS and obtained the similarity scores of all 
compounds (lower scores implied higher reversal potency and greater potential for application). After 
excluding preclinical agents or agents withdrawn from the market, 793 agents remained (Corsello 
et al., 2017). These agents were then considered repositioning candidates (Supplementary file 8). 
Interestingly, some agents which were previously proved to have chemopreventive effects, including 
erlotinib (Fuchs et al., 2014), caffeine (Hoshida et al., 2012), and fasudil (Nakagawa et al., 2016), 
dominated relatively high rankings on the list (Figure 7A). Besides, anti- HCC agents were also found 
to be enriched significantly in compounds with reversal potency (Figure 7B). These findings collec-
tively supported the reliability of the prediction results.

Homoharringtonine is a candidate anti-liver agent
According to the computational results, homoharringtonine (HHT) (Figure 7C), a protein synthesis 
inhibitor targeting RPL3, had the highest reversal potency among 793 repositioning candidates 
(Tujebajeva et al., 1989). To prove that the reversal effect of HHT is not cell type- or concertation- 
dependent, we generated HHT- perturbed expression data using five different liver cancer cell lines 
(Hep3B, HepG2, Huh6, Huh7, and PLC) and four different concentrations (0.1 μM, 0.5 μM, 1 μM, and 
10 μM). HHT with a fixed concentration of 10 μM (a standard concentration in CMap and LINCS) was 
used to treat different cell lines and a single cell line HepG2 (a cell line used in LINCS) was perturbed by 
HHT with varying concentrations (Figure 7—figure supplement 1A). HHT signatures were obtained 
through calculating the fold changes of HHT- treated samples to control samples. Subsequently, GSEA 
was conducted against different HHT signatures, taking ascending and descending genes in Sigevo 
as query gene sets separately. The results indicated that the ascending genes tended to enrich in 
HHT- induced downregulated genes (ES<0), while descending genes appeared to be more associated 
with HHT- induced upregulated genes (ES>0), suggesting that the ability of HHT to reverse the Sigevo 
was independent of cell type and treatment concentration (Figure 7—figure supplement 1B and C, 
Figure 7—source data 1, GSE193897).

As the drug target of HHT, RPL3 was characterized for its clinical and biological implications. 
Comprehensive comparisons of the expression of RPL3 between tumor and non- tumor tissues were 
conducted using seven clinical cohorts with available expression profiles of both tumor and non- tumor 
tissues. The results showed that RPL3 had higher expression levels in tumor compared with non- tumor 
tissues in more than half the clinical cohorts (57.1%) (Figure 7—figure supplement 2A). The increase 
of protein expression of RPL3 could also be observed in tumor tissues (Figure 7—figure supplement 
2B), as shown by immunohistochemical images from the Human Protein Atlas (Uhlén et al., 2015). 
Higher expression of RPL3 also indicated worse prognosis (Figure  7—figure supplement 2C). In 
addition, leveraging CRISPR- based screening data from Project Achilles (Meyers et al., 2017), we 
found that RPL3 was essential for maintaining the survival and growth of all liver cancer cell lines 
(Figure 7—figure supplement 2D, E). Above results demonstrated the rationality of RPL3 inhibition 
for treating liver cancer.

Homoharringtonine has a remarkable therapeutic effect against liver 
cancer
To investigate the in vitro anti- tumor activity of HHT against liver cancer, we analyzed the drug 
response data of HHT from PRISM data set (Corsello et al., 2020). It could be observed that HHT 
had a lower distribution of IC50 values across 482 PRISM cell lines compared with molecular- targeted 
agents and non- oncology agents (Figure  7D). Of note, in liver cancer cell lines, HHT exhibited a 
powerful tumor suppressor activity with a median IC50 value of 0.408  μM, which was numerically 
lower than that of other three Food and Drug Administration (FDA)- approved HCC agents (lenva-
tinib: 0.617  μM; regorafenib: 2.009  μM; sorafenib: 3.348  μM) (Figure  7E). The in vitro anti- tumor 
activity of HHT was corroborated by the long- term cell proliferation assay (Figure 7F) and short- term 
IncuCyte real- time assay (Figure 7—figure supplement 3). In addition, in vivo efficacy of HHT was 
also evaluated using subcutaneous xenograft model of MHCC97H cell line. The result demonstrated 
that HHT could significantly inhibit the growth of xenograft tumors (Figure 7G and H), with limited 

https://doi.org/10.7554/eLife.71880


 Research article      Cancer Biology

Yang, Zhang, Chen, et al. eLife 2022;11:e71880. DOI: https://doi.org/10.7554/eLife.71880  14 of 34

−100

−50

0

50

0 200 400 600 800
Compounds

XS
um

 s
co

re

Erlotinib

Fasudil

Caffeine

Rank: 29/793

Rank: 93/793

Rank: 70/793

Homoharringtonine

IKK-2-inhibitor-V

Selamectin

Clofarabine

Triclosan

Penfluridol

Menadione

Nonoxynol-9

Spiperone

Amsacrine

Top 10 compounds
Compounds with
evidence for
chemopreventive
effects in liver cancer

A

−0.4

−0.2

0.0

En
ric

hm
en

t S
co

re

ES = -0.504
P value = 0.008

HCC agents

B
0.0

1.0

2.0

3.0

4.0

0 100 200 300 400 500

IC
50

 (μ
m

ol
)

Cell lines (PRISM)

Chemotherapy
HHT

Non-oncology
Targeted cancer 

0

1

2

3

SNU39
8

SKHEP1

PLC
PRF5

SNU44
9

SNU88
6

HLF

SNU42
3
HUH6

JH
H1

HEP3B
21

7
JH

H5 LI7

SNU76
1
JH

H7
JH

H6

IC
50

 (μ
m

ol
)

0.0

2.5

5.0

7.5

10.0 HHT

Regorafenib
Sorafenib

Lenvatinib
Chemotherapy
Targeted cancer 
Non-oncology

C

D

E

O

O

O

O

HO
OH

N

O

O

O

H

Homoharringtonine
(HHT)

F

SNU398

SNU475

SKHEP1

HEPG2

HUH7

HUH6

PLCPRF5

HEP3B217

SNU449

MHCC97H

HHT (nM)

0 1005012.5

Cell lines without HHT
response data in PRISM

0

300

600

900

1200

1 3 6 9 12

Tu
m

or
 v

ol
um

e 
(m

m
3 )

0

5

10

15

20

Time (days)

HHT (1mg/kg)
Control

Bo
dy

 w
ei

gh
t (

g)

1 3 6 9 12
Time (days)

Control
group

MHCC97H xenografts

HHT
group

(1mg/kg)

*

**

***

*** *** NS NS NS

HHT (1mg/kg)
Control

G H I

Figure 7. Homoharringtonine (HHT) has significant tumor killing activity both in vitro and in vivo. (A) Results of best practice approach- based 
computational drevo as query signature. Top ranked 10 compounds with highest reversal potency were illustrated in the right panel. (B) Enrichment of 
HCC agents in compounds with reversal potency (XSum score<0). Statistical significance was determined based on the null distribution formed by 
10,000 permutations. (C) 2D (left) and 3D (right) chemical structure of HHT. (D) Comparison of distribution of compound activity between HHT and 
three different drug categories, including chemotherapy (N=45 compounds), targeted cancer agents (N=419 compounds), and non- oncology (N=362 
compounds). The IC50 values (from PRISM data set) of each drug category in each cell line (N=482) were determined through calculating the median IC50 
value across all the compounds in this category. Data are presented as median±quartiles, N≥100. (E) The drug sensitivity data of HHT (achieved from 
PRISM data set) across liver cancer cell lines. The drug sensitivities of two HCC agents in the first- line (sorafenib and lenvatinib) and one HCC agent in 
the second- line (regorafenib) were also presented for comparison. Areas with different colors denote the interquartile range of median IC50 values of 
compounds within different drug categories. (F) Long- term cell proliferation assay for testing the anti- tumor activity of HHT across 10 liver cancer cell 
lines. Of these, four cell lines have not been profiled by PRISM for the sensitivity to HHT. (G) Macroscopic image of tumors harvested from xenograft 
mice treated with vehicle (upper) and HHT (lower). (H) Longitudinal tumor volume progression of subcutaneous MHCC97H xenograft tumors treated 
with vehicle (N=6) and HHT (N=6). The statistical significance of difference between groups was determined using Student’s t- test. Data are represented 
as mean ± SD. (I) Body weight changes of mice in control (N=6) and HHT- treated (N=6) groups. Statistical significance was determined using Student’s 
t- test. Data are represented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001. NS, not significant. HCC, hepatocellular carcinoma.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Drug- induced expression changes across different cell lines as well as different concentrations.

Figure supplement 1. Reversal effect of HHT on Sigevo across different conditions.

Figure supplement 2. Clinical and biological characterization of RPL3 in liver cancer.

Figure supplement 3. The effect of HHT on cell proliferation across 10 liver cancer cell lines.

Figure 7 continued on next page
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drug- related toxicity (Figure  7I). Since co- administration of HHT with other approved agents was 
more likely to have clinical significance, we also interrogated whether HHT could augment the tumor- 
killing effect of sorafenib. Three different statistical models were adopted for synergy estimation. The 
results suggested that HHT could indeed synergize with sorafenib in many conditions, albeit not very 
remarkable in general (Figure 7—figure supplements 4 and 5).

Homoharringtonine treatment can alleviate liver fibrosis both in vivo 
and in vitro
Liver fibrosis occurs when the liver tissue is repeatedly and continuously injured, which is a crucial 
risk factor for hepatocarcinogenesis (O’Rourke et al., 2018). Since we have proved that Sigevo was 
associated with liver fibrosis using clinical and animal- derived data, it could be postulated that HHT 
also had the potential to alleviate liver fibrosis. The antifibrotic effect of HHT was first assessed using 
carbon tetrachloride (CCL4)- induced mouse liver fibrosis model (Figure 8A). The results suggested 
that HHT could significantly reduce Ishak scores and positive area of Sirius Red staining compared to 
vehicle controls (Figure 8B and C). Besides, HHT treatment could also lead to significant reduction 
of serum levels of alanine transaminase (ALT) and aspartate transaminase (AST) (Figure 8D). These 
observations demonstrated that HHT can impede fibrosis development and partially rescued hepatic 
function in CCL4- induced mouse model. The activation of HSCs is one of the key steps in fibrosis 
development (Zhou et al., 2014). To determine whether HHT could inhibit the activation of HSCs, 
in vitro experiments based on TGF-β1- activated human HSC line LX- 2 were further conducted. LX- 2 
cells were treated with vehicle or HHT (1 μM and 5 μM) for 6 hr, followed by RNA- seq for quantifying 
HHT- induced expression changes. Nine fibrotic genes from previous publications were collected; high 
expression level of these genes represented the activation status of HSCs. After HHT treatments, the 
expression level of almost all fibrotic genes was downregulated (Figure 8E, Figure 8—figure supple-
ment 1, Figure 8—source data 1, GSE180243). The downregulated tendency of the two most critical 
genes which encoded collagen I and α-SMA were further corroborated by the quantitative real- time 
PCR (Figure 8—figure supplement 2A). Additionally, the protein- level expression of collagen I and 
α-SMA was also detected using western blot (Figure 8—figure supplement 2B, Figure 8—source 
data 2) and immunofluorescence (Figure 8—figure supplement 2C). The results showed that HHT 
could inhibit the protein expression of collagen I and α-SMA as well. Taken collectively, HHT can 
inhibit the progression of liver fibrosis via suppressing HSC activation and thus may have certain 
preventive effects on liver cancer.

Discussion
In recent years, the explosive growth of pharmacogenomic data enables the development of compu-
tational drug discovery and repositioning, leading to many remarkable findings of novel therapeutics 
(Kong et al., 2020; Stathias et al., 2018; Yang et al., 2021). Owing to the success of CMap and 
LINCS projects (Lamb et al., 2006; Subramanian et al., 2017), signature reversion- based computa-
tional drug discovery approach has been extensively used (Chen et al., 2017a; Chen et al., 2017b; 
Dudley et al., 2011; van Noort et al., 2014; Wei et al., 2006). However, lack of suitable bench-
marking standards for evaluating drug repositioning performance limits further improvement of this 
approach. Some studies proposed that the benchmarks assessing drug- drug similarity, such as the 
anatomical therapeutic chemical (ATC) system, could be taken as alternative standards to indirectly 
determine the optimal methodologies and parameters of computational repositioning (Cheng et al., 
2013; Zhou et  al., 2018). However, considering the great difference between the two situations, 
developing tailored benchmarking standards for assessing disease- drug similarity would be more 
desirable (Cheng et al., 2014). In this study, we proposed two novel benchmarking standards, AUC- 
based and KS statistic- based standards. Despite being mutually independent, the evaluation results of 
the two standards were highly consistent, demonstrating their rationality and robustness.

Figure supplement 4. Summary of the anti- tumor effect of HHT- sorafenib combination across 10 liver cancer cell lines.

Figure supplement 5. Detailed information of the anti- tumor effect of HHT- sorafenib combination across 10 liver cancer cell lines.

Figure 7 continued
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These two standards enable the establishment of a standardized procedure for performing more 
effective signature- based drug prediction. We first determined that using reference signatures from 
one of the most relevant cell lines with the disease of interest instead of from a non- touchstone 
cell line or aggregation- based consensus results was a preferable option to exploit LINCS data. 
Next, XSum was identified as an optimal method for matching compound and disease signatures. 
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Figure 8. HHT has significant in vivo anti- fibrotic effects. (A) Schematic diagram (upper) of the experimental design for validating the anti- fibrotic 
ability of HHT and representative photographs (lower) of the livers harvested from different groups at the time of sacrifice. (B) Representative images 
of Masson’s trichrome staining and Sirius Red staining of liver tissues from different groups (scale bars: 250 µm). (C) Comparisons of Ishak scores (left) 
and Sirius Red- based collagen quantification (right) between different groups. Statistical significance was determined using one- way ANOVA followed 
by Tukey multiple comparison test. Data are represented as mean ± SD (N=6 in each group). (D) Comparisons of serum levels of ALT, AST, ALP, and 
Alb between different groups. Statistical significance was determined using one- way ANOVA followed by Tukey multiple comparison test. Data are 
represented as mean ± SD (N=6 in each group). (E) Differential expression of nine fibrosis- associated genes between HHT- treated and HHT- untreated 
LX- 2 cells. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. HHT, homoharringtonine; NS, not significant.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Sequencing results of HHT- treated LX2 cells.

Source data 2. Raw unedited plots.

Figure supplement 1. Comparison of the expression of nine fibrosis- associated genes between control LX2 and HHT- treated LX2.

Figure supplement 2. In vitro anti- fibrotic effects of HHT.

https://doi.org/10.7554/eLife.71880


 Research article      Cancer Biology

Yang, Zhang, Chen, et al. eLife 2022;11:e71880. DOI: https://doi.org/10.7554/eLife.71880  17 of 34

Interestingly, a prior study that made a comparison of drug retrieval performance between XSum, 
XCos, and KS methods using a totally different benchmarking standard from ours also come to the 
same conclusion (Cheng et al., 2014). Furthermore, we also uncovered an appropriate parameter of 
XSum (topN=200), which lacked guidance previously.

Most of the current investigations and methodological developments were focused on reference 
signatures and signature matching methods. By contrast, relatively limited efforts have been made 
to standardize the generation of query signatures (Chan et al., 2019; Wen et al., 2016; Wen et al., 
2015). In this study, two potential factors, signature phenotypes and signature size, were systemati-
cally analyzed. Through adopting two independent approaches, an appropriate query signature size 
of 100 was determined. However, prior studies considered a reduced number of 50 as the optimal size 
of query signatures (Chen et al., 2017a; Parkkinen and Kaski, 2014). It is reasonable to speculate 
that the utility of different signature matching methods (XSum in this study and KS- based methods in 
other studies) and also the different benchmarking standards may be responsible for the discrepancy. 
Next, we determined that a good query signature should hold the ability to comprehensively char-
acterize the clinical features of corresponding disease. This finding seemed to be reasonable since 
disease was highly likely to be underrepresented when the query signature was generated based on 
a single clinical phenotype.

Based on these findings, we summarized the best practice approach for LINCS- based drug predic-
tion. An application of this approach to liver cancer was then carried out. An evolution- associated 
query signature related to the development and progression of liver cancer was first constructed for 
drug retrieval. Following the best practice approach, HHT was identified as the candidate agent for its 
highest reversal potency. Since the query signature (Sigevo) could reflect the properties of liver cancer 
initiation and development, we considered that HHT might have both therapeutic and preventive 
effects on liver cancer. The therapeutic effect of HHT was assessed by in vitro cell line models as well 
as in vivo subcutaneous xenograft model. Both of them suggested remarkable tumor- killing activity 
of HHT. For validating the preventive effect, an indirect approach that focused on proving the anti- 
fibrotic effect of HHT was adopted. The results demonstrated that HHT could alleviate liver fibrosis 
in vivo and inhibit the activation of HSCs in vitro. Inhibition of liver fibrogenesis might prevent the 
progression of cirrhosis and thereby suppress HCC tumorigenesis (Fuchs et al., 2014). Therefore, 
we supposed that HHT had the potential to be taken as preventive agents for liver cancer as well. 
Notably, in view of the grim prognosis and imperfect treatment modalities of liver cancer, prevention 
of HCC development in patients at high risk of primary malignancy rather than treating patients at 
advanced stages is theoretically the most desirable approach to improve patient prognosis (Fujiwara 
et al., 2018; Nakagawa et al., 2016). As HHT has been approved by FDA for the treatment of chronic 
myelogenous leukemia, it can be tested directly in clinic without worrying about its safety problem 
(Kantarjian et al., 2013).

In this study, we have performed the most comprehensive surveys so far about the influencing 
factors of signature reversion- based drug prediction. Two novel benchmarking standards are 
proposed, providing new insight into the evaluation of related methodologies. All the findings in 
this study are verified independently by at least two different approaches, ensuring the reliability of 
the conclusions. Nevertheless, we also recognize several important limitations. First, with our design, 
our conclusions are conditional and hold only under the conditions of using compound profiles of 
HepG2 in LINCS as reference signatures. Further investigations using other LINCS data are required 
to extend current conclusions to other conditions. Second, the parameters recommended by us, 
including topN of 200 and query signature size of 100, are more or less based on our subjective 
judgments and should be taken as a rough guide. Although there are sufficient non- quantitative 
estimates supporting the use of these two parameters, more efforts are still needed to accurately 
determine the optimal parameters. Third, we only focused on analyzing the data from the project 
that utilized transcriptomic platforms to measure cell responses during perturbation experiments, 
and other omics data which are actively being generated by different LINCS centers might also be a 
good choice for computational drug discovery and repositioning (Keenan et al., 2018; Koleti et al., 
2018). Recently, large- scale resources (CPPA) of perturbed protein responses have been generated 
(Zhao et al., 2020). Considering that proteins are the components of the basic functional units in 
biological pathways, investigating the optimal repositioning strategy based on proteomic resources 
may also have important implications.

https://doi.org/10.7554/eLife.71880
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In summary, our findings fill a knowledge gap in the area of LINCS- based computational reposi-
tioning. Through exploiting these findings, we also determined a promising anti- liver cancer agent 
HHT, of which the therapeutic and preventive effects have been validated experimentally.

Materials and methods
Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens) Hep3B ATCC
Cat#: HB- 8064;
RRID:CVCL_0326

Cell line (H. sapiens) HepG2 ATCC Cat#: HB- 8065; RRID:CVCL_0027

Cell line (H. sapiens) Huh6 RCB Cat#: RCB1367; RRID:CVCL_4381

Cell line (H. sapiens) Huh7 JCRB
Cat#: JCRB0403; 
RRID:CVCL_0336

Cell line (H. sapiens) MHCC97H Zhongshan Hospital RRID:CVCL_4972
Liver Cancer Institute of Zhongshan Hospital 
(Shanghai, China)

Cell line (H. sapiens) PLC/PRF/5 ATCC
Cat#: CRL- 802;
RRID:CVCL_0485

Cell line (H. sapiens) SNU398 ATCC Cat#: CRL- 2233; RRID:CVCL_0077   

Cell line (H. sapiens) SNU449 ATCC Cat#: CRL- 2234; RRID:CVCL_0454

Cell line (H. sapiens) SNU475 ATCC
Cat#: CRL- 2236;
RRID:CVCL_0497

Cell line (H. sapiens) SK- Hep1 ATCC Cat#: HTB- 52; RRID:CVCL_0525

Cell line (H. sapiens) LX2 ATCC
Cat#: SCC064;
RRID:CVCL_5792

Chemical compound, 
drug Homoharringtonine Selleck Chemicals S9015

Antibody
Anti- HSP90 (Mouse 
monoclonal) Santa Cruz Biotechnology

Cat#: sc- 13119;
RRID:AB_675659 WB (1:5000)

Antibody
Anti-α-SMA (Mouse 
monoclonal) Sigma- Aldrich Cat#: A5228; RRID:AB_262054

WB (1:2000)
IF (1:200)

Antibody
Anti- Collagen I (Rabbit 
polyclonal) ProteinTech

Cat#: 14695- 1- AP; 
RRID:AB_2082037

WB (1:2000)
IF (1:200)

Sequence- based reagent ACTA2_F This paper PCR primer 5′ GACA ATGG CTCT GGGC TCTGTAA3′

Sequence- based reagent ACTA2_R This paper PCR primer 5′ CTGT GCTT CGTC ACCC ACGTA3′

Sequence- based reagent COL1A1_F This paper PCR primer 5′ TCCT GGTC CTGC TGGC AAAGAA3′

Sequence- based reagent COL1A1_R This paper PCR primer 5′ CACG CTGT CCAG CAAT ACCTTGA3′

Software, algorithm R software, version 3.6.0 https://cran.r-project.org/ RRID:SCR_001905   

Software, algorithm ImageJ, version 1.53k http://imagej.net/ RRID:SCR_003070   

Software, algorithm Combenefit, version 2.02
https://sourceforge.net/ 
projects/combenefit/     

LINCS data source and processing
We downloaded the LINCS level 5 data (moderated Z- score) which comprises the differential expres-
sion signatures for nearly 20,000 unique compounds as well as meta- information of these signatures 
from Gene Expression Omnibus (GEO) database (Phase I: GSE92742, Phase II: GSE70138). Because 
this study only focused on analyzing compound signatures, those signatures induced by other pertur-
bagens including gene knockdown (knockout) and gene overexpression were first excluded. The 
L1000 platform used by LINCS project only measures the expression level of 978 landmark genes, and 
the expression of remaining genes was based on imputation (Subramanian et al., 2017). This set of 
landmark genes is widely expressed in various cellular contexts and can well represent the full genome 
(Subramanian et al., 2017). Accordingly, we chose to use just the landmark genes (Chen et al., 2017a; 
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Chen et al., 2017b). To ensure the reliability, only high- quality signatures are designated for following 
analyses (is_gold=1). In addition, L1000 data was further filtered for only 6- hr treatment samples 
due to the most abundant experiments on HepG2 cell line in this time point. Besides, the previous 
study also showed that gene expression changes obtained at a late time point (such as 24 hr) might 
reflect secondary or even tertiary responses, and the mechanistic effects of compounds might not be 
correctly recorded at late time point (De Wolf et al., 2016). As for the perturbation concentration, we 
selected expression profiles measured at 10 μM considering that this relatively high concentration is 
often chosen for performing high- throughput small molecular screens, and also, there exist the most 
abundant experiments at this concentration. The similarity between compound pairs was calculated 
based on cosine similarity algorithm (Cheng et al., 2013). For visualizing the LINCS data in 2D space, 
we measured the cosine distance (1−cosine similarity) between signatures and utilized cosine distance 
matrix as input to perform t- SNE analysis (Niepel et al., 2017). We downloaded the MOA and clinical 
phase information of compounds in LINCS from the Drug Repurposing Hub (https://clue.io/repur-
posing) (Corsello et al., 2017). The basal expression data of LINCS cell lines was achieved from the 
Cancer Cell Line Encyclopedia (CCLE) project (https://portals.broadinstitute.org/ccle/) (Ghandi et al., 
2019). The expression- based similarity between different cell lines or between cell lines and clinical 
samples was determined through using ranked- based Spearman correlation (Chen et al., 2017b).

AUC-based benchmarking standard
In this study, we mainly focused exclusively on one cell line (HepG2) and one disease (liver cancer). 
Two benchmarking standards, namely AUC- based standard and KS statistic- based standard, were 
generated for evaluating the retrieval performance of disease- compound similarity metrics across 
different conditions. For establishing AUC- based standard, we collected the drug response data from 
multiple data sources. Compound IC50s tested in HepG2 cell line was achieved from ChEMBL (version 
27) (Mendez et al., 2019) and Liver Cancer Model Repository (LIMORE) (Qiu et al., 2019) data sets. 
Compounds among LINCS, ChEMBL, and LIMORE were mapped using compound name followed 
by manual inspection. Each experiment provided in ChEMBL was also manually checked to ensure 
the compliance with our requirement. Due to the redundancy of IC50s, the median IC50s of certain 
compounds among duplicates was used for representing the activity of this compound. We cate-
gorized the compounds into effective (IC50<10 μM) and ineffective groups (IC50≥10 μM) according 
to a previous study (Chen et al., 2017a). The ability to distinguish between effective and ineffec-
tive compounds was taken as a measurement of retrieval performance of different similarity metrics 
(namely AUC value) (Chen et al., 2017a). Notably, some have argued that partial AUC (limiting false 
positive rate at 0.1/0.01) might be a more relevant statistic for actual application of drug repositioning 
(Cheng et al., 2013; Cheng et al., 2014). However, due to the limited size of our benchmarking 
data set, adopting partial AUC could result in loss of statistical precision. The statistical significance 
of AUCs was calculated through performing permutation test. Briefly, we randomly permuted the 
class labels of the feature vectors and created 10,000 permutations to form a distribution of ‘random’ 
AUCs. Then, the p value was determined according to the fraction of ‘random’ AUCs greater than or 
equal to the observed AUC (Cheng et al., 2014). For distinguishing, AUC used for evaluating drug 
retrieval performance was renamed as drug retrieval- associated AUC (DR- AUC), the higher values of 
which indicate better performance.

KS statistic-based benchmarking standard
To avoid confusion, it should be noted that KS- based method was also used for calculating disease- 
compound similarity scores, and the specific details were described below. For generating the bench-
marking data set required for the KS statistic- based standard, we systematically surveyed clinical trials 
involved in HCC treatment and compiled a set of potential HCC agents ( clinicaltrials. gov). Preliminary 
retrieval yielded 1999 results, and after removing trials failing to fulfill our requirements, we obtained 
254 potential therapeutic agents for HCC. The detailed retrieval process was presented in Figure 3A. 
To minimize potential selection bias, this process was performed independently by two investigators 
(CY and XH). Perturbagen- induced expression profiles of 27 agents among these tested in HepG2 
cell line are available in LINCS data set. Based on the assumption that HCC- associated agents are 
more likely to reverse HCC signature than random agent combinations, the enrichment capabilities 
of different similarity metrics could be used to assess their repositioning performance. The calculation 
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of enrichment score (ES) of HCC agents was generally identical with that in gene set enrichment anal-
ysis (Subramanian et al., 2005). Considering that there was no need to account for the size of the 
agents set, we did not calculate the normalized enrichment score (NES) that might introduce addi-
tional randomization. To obtain a nominal p value, we created 10,000 permutations and recomputed 
the ES for each permutation to form a null distribution. The significance p of the observed ES was 
then determined relative to the null distribution. Notably, ES used in retrieval performance evaluation 
was renamed as drug retrieval- associated ES (DR- ES), the lower values of which represent better 
performance.

Other pharmacogenomic data sets
In addition to ChEMBL and LIMORE, the drug response data of HepG2 cell line was also obtained 
from the Cancer Therapeutics Response Portal (CTRP) data set (CTRPv.2.0, released October 2015) 
(Rees et al., 2016). Considering that IC50s were not provided, the available AUDRC values were used 
solely for demonstrating the correlation between reversal potency and drug efficacy in different condi-
tions. The AUC values in CTRP range from 0 to 30, and similar to IC50, lower values indicate increased 
sensitivity to treatment. To investigate the drug sensitivity of repositioning candidate across different 
HCC cell lines, we achieved the response data from the PRISM Repurposing data set (19Q4, released 
December 2019). Although IC50s are also provided by PRISM as one of drug response metrics, the 
drug response data of HepG2 cell line is absent (similar situation also exists in the Genomics of Drug 
Sensitivity in Cancer data set). Therefore, drug response data in these data sets were not used for 
developing AUC- based benchmarking standard.

Genetic dependency data
CRISPR dependency data were obtained from the 20Q1 dependency map (DepMap) portal, which 
contained dependencies estimated for nearly 20,000 protein- coding genes and 739 cell lines using 
the CERES algorithm (Meyers et  al., 2017). CERES score (gene effect) was used to measure the 
dependency of the gene of interest in cell lines, and a lower CERES score indicates a higher likeli-
hood that the gene is essential in cell growth and survival. Besides, data of dependency probability 
were also achieved. A probability of dependency of certain gene in certain cell lines greater than 0.5 
represents that the gene can be considered essential in this cell line. Essential genes in liver cancer 
were defined as genes that were essential in all 22 liver cancer cell lines.

RNA-sequencing data sets
We collected five RNA- sequencing (RNA- seq)- based HCC cohorts, including CHCC- HBV (Gao et al., 
2019), LICA- FR (Schulze et al., 2015), LIRI- JP (Fujimoto et al., 2016), TCGA- LIHC (Ally et al., 2017), 
and GSE124535 (Jiang et al., 2019), representing 947 HCC patients derived from four geographi-
cally different origins. Of these, LICA, LIRI, and LIHC cohorts provided raw counts quantifying gene 
expression, which were transformed into transcripts per kilobase million (TPM) values for subsequent 
analyses (raw counts were only used for edgeR- based differential expression analysis) (Li and Dewey, 
2011). CHCC and GSE124535 cohorts provided fragments per kilobase per million reads (FPKM) 
normalized data, which was also converted to TPM values. All TPM values were log2 transformed. 
In addition, the batch effects- normalized expression matrices of ~10,000 patients across 33 human 
cancers (TCGA Pan- Cancer) were downloaded from the UCSC Xena browser (http://xena.ucsc.edu/). 
The RNA- seq data of 29 normal tissues were downloaded from the Genotype- Tissue Expression 
(GTEx) project (https://gtexportal.org/home/). Ensembl GeneIDs were mapped to HGNC symbols 
using biomaRt package.

Array data sets
Five microarray- based clinical cohorts, including E- TABM- 36 (Kim et al., 2012), GSE14520 (Roessler 
et al., 2012), GSE54236 (Villa et al., 2016), GSE76427 (Grinchuk et al., 2018), and GSE84005, were 
included to construct and validate HCC- associated signatures. Raw microarray data generated from 
Affymetrix platforms were normalized using robust multi- array average (RMA) method in Affy package 
(Gautier et al., 2004), while Illumina platform- derived raw data were normalized using the robust 
spline normalization (RSN) method in lumi package (Du et  al., 2008). In other cases, normalized 
data were directly downloaded for use. Three liver cancer development- associated cohorts, including 
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GSE89377, GSE6764 (Wurmbach et  al., 2007), and GSE15654 (Hoshida et  al., 2013), were also 
included for constructing the new signature, Sigevo, which was then applied to query LINCS for finding 
potential therapeutics of liver cancer. The samples in GSE89377 and GSE6764 covered multiple stages 
of the development of liver cancer, with the ability to recapitulate the step- wise process of hepato-
carcinogenesis and progression. As for GSE15654, this cohort contains the gene expression profiles 
of samples from 216 patients with early cirrhosis who were prospectively followed for a median of 
10 years, which thus can be used to identify the relationship between gene expression and HCC occur-
rence (Hoshida et al., 2013). In addition, a liver fibrosis- associated clinical cohort (GSE84044) (Wang 
et al., 2017) and four experimental data sets, including two carbon tetrachloride (CCl4)- treated mouse 
data sets (GSE27640 and GSE71379) (Fuchs et al., 2014; Nakagawa et al., 2016) and two diethyl-
nitrosamine (DEN)- treated rat data sets (GSE19057 and GSE63726) (Fuchs et al., 2014; Nakagawa 
et al., 2016), were utilized to further assess the potential implication of Sigevo. Mouse and rat genes 
were mapped to orthologous human genes using biomaRt package, and genes without known human 
homologous relationships were excluded.

Clinical data
Among the clinical cohorts above, nine cohorts have corresponding follow- up information, including 
four RNA- seq cohorts (CHCC, LICA, LIRI, and LIHC), and five microarray cohorts (E- TABM- 36, 
GSE14520, GSE54236, GSE76427, and GSE15654). For RNA- seq cohorts, the survival data of CHCC 
and LICA cohort were obtained from the supplementary files of reference (Gao et al., 2019; Schulze 
et al., 2015), data of LIRI cohort were achieved from the International Cancer Genome Consortium 
(ICGC) portal (https://dcc.icgc.org/), and data of LIHC cohort were achieved from TCGA Pan- Cancer 
Clinical Data Resource (TCGA- CDR) (Liu et al., 2018). For microarray cohorts, complete clinical data 
were accessed from either public database (GEO: https://www.ncbi.nlm.nih.gov/gds/; ArrayExpress: 
https://www.ebi.ac.uk/arrayexpress/) or the original authors. Notably, except GSE15654 which uses 
the occurrence of HCC as endpoint, other eight cohorts all take survival status as endpoint.

Signature matching methods
The retrieval performance of six different matching methods, including XSum (Cheng et al., 2014), 
XCos (Cheng et al., 2013; Cheng et al., 2014), XCor (Zhou et al., 2018), XSpe (Zhou et al., 2018), KS 
test (Lamb et al., 2006), and the RGES (Chen et al., 2017a), was systematically benchmarked. Based 
on the consideration that small variations in expression changes may be noise without biological signif-
icance, the eXtreme methods only utilized top up- and downregulated genes in compound signatures 
for similarity score calculation (all remaining genes were assigned the values of zero). By contrast, KS 
and RGES methods use complete compound profiles as reference signatures. The detailed features 
and scoring schemes of these methods are described as follows.

The XSum method handles the up- and downregulated genes separately. In brief, the sums of 
the change values in reference/compound signatures relative to upregulated query/disease genes 
(sumup) and downregulated query/disease genes (sumdown) are first calculated. Then, XSum is defined 
as following: XSum=sumup−sumdown. Other three eXtreme methods, including XCos, XCor, and XSpe, 
take disease signatures as a whole to query compound signatures, and they calculated the correlation 
between the numeric vectors of disease and compound signatures using cosine similarity, Pearson 
correlation, and spearman correlation, respectively. Notably, cosine similarity is nearly identical with 
Pearson correlation except without centering vectors around the mean values. The KS method was 
adopted by the first CMap study and has been the most widely used method for connecting disease 
signatures to compound signatures (Lamb et al., 2006). Similar to XSum, KS method also need to 
seperate disease signatures into two gene sets, upregulated gene set and downregulated gene set, 
and ignores the magnitude of differential expression. Briefly, using complete compound profiles as 
reference, maximum deviation (MD)- based ES of upregulated gene set (esup) and downregulated 
gene set (esdown) are first computed. If esup and esdown have the same algebraic sign then KSscore=0, 
otherwise, KSscore=esup−esdown. The RGES method is a recently proposed modification of the original 
KS method, which was demonstrated to perform better in drug response prediction than KS method 
(Chen et al., 2017a). In contrast to original KS method, RGES focuses on the reversal relation between 
the disease and agents, and RGES is defined as esup−esdown regardless of the sign of esup and esdown. 
In addition to the above six methods, there also exist many other methods, such as WSS/sscMap 
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(Zhang and Gant, 2008), TES (Iorio et al., 2010), ProbCmap (Parkkinen and Kaski, 2014), NFFinder 
(Setoain et al., 2015), and EMUDRA (Zhou et al., 2018), for calculating the similarity between disease 
and compound signatures. However, some of them are not accessible currently and some are devel-
oped based on the data of initial CMap data set (1309 compounds). Accordingly, we did not include 
these methods in our analyses.

Generation of query signatures for performance evaluation
For evaluating retrieval performance of similarity metrics at different conditions, we prepared four 
HCC- associated gene signatures to query LINCS. Two of them, Siggastro and SigNC, are achieved from 
previously published studies (Chen et al., 2017a; Chen et al., 2017b). Given that the development 
of these two signatures was mainly based on LIHC cohort, as a complement, the other two were 
generated from another RNA- seq cohort (LIRI) and a microarray cohort (GSE54236), respectively. The 
differentially expressed genes in LIRI cohort were computed using edgeR package (version 3.26.5) on 
raw count data (McCarthy et al., 2012). For microarray data, we used limma package (version 3.40.2) 
to conduct differential expression analysis on normalized data (Ritchie et al., 2015). The statistically 
significant differential genes in the above analyses were defined as adjusted p<0.01 and absolute 
log2 fold change (FC)>1. As a result, we obtained a 70- gene signature (SigLIRI) with 48 up- and 22 
downregulated genes from LIRI and a 28- gene signature (SigGSE54236) with 22 up- and 6 downregulated 
genes from GSE54236, respectively, which could represent discordant expression pattern of HCC. 
The gene numbers in signatures created through differential expression analysis were much less than 
that in prognostic signatures (see section below). To make these two types of signatures comparable, 
we relaxed the significance threshold of differential genes to p<0.01 and log2FC>0.5, and built two 
increased signatures which included 125 (LIRI) and 116 genes (GSE54236). These two increased signa-
tures were also used to explore the potential influences of signature size.

Construction of size-diversified query signatures
We adopted two independent approaches to explore whether the differences of query/disease 
signature size could affect subsequent drug retrieval. The first approach was based on iterating the 
threshold of fold change values, ranging from 0.1 to 0.1 to the maximum/minimum with an incre-
ment/decrement of 0.05, which could obtain a number of query signatures with varying signature size 
(duplicates were removed). As for the second approach, two increased signatures, 125- gene signature 
from LIRI and 116- gene signature from GSE54236, were taken as the basis for generating smaller- size 
testing signatures. Briefly, we randomly extracted testing signatures from complete signatures, with 
the size ranging from the minimum of 5 to the maximum of 124 or 115. To avoid bias, this process was 
repeated 1000 times to generate 1000 testing signatures for each signature size.

Construction of query signatures representing different clinical 
phenotypes
To investigate whether the clinical phenotype of signature was potential factor affecting the retrieval 
performance, we developed two strategies, a forward strategy starting from generation of signatures 
with distinguishing clinical phenotypes to the evaluation of retrieval performance and a backward 
strategy starting from obtaining signature with the best performance to the comprehensive investi-
gations of its clinical implication. For the first strategy, to compare with general HCC signature repre-
senting discordant expression pattern, two prognostic signatures based on LIRI and GSE54236 cohorts 
were constructed. We integrated survival data with expression data and performed Cox proportional 
hazards regression to assess association between overall survival and gene expression. The statisti-
cally significant prognostic genes were defined as p<0.005. A 133- gene prognostic signature with 117 
poor- and 16 good- outcome genes was generated based on LIRI, while analysis on GSE54236 resulted 
in a 107- gene prognostic signature with 79 poor- and 28 good- outcome genes. Comparisons of drug 
retrieval performance between these two types of signatures were carried out subsequently. For the 
second strategy, taking 978 landmark genes as a basis, simple random sampling without replacement 
(SRSWOR) was performed to extract genes from landmarks for forming candidate signatures. The 
size of randomized signatures was set at 100 and the process of random sampling was repeated 
10,000 times to obtain a collection of 10,000 randomized signatures. The DR- AUC and DR- ES values 
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were then calculated for each signature, and the optimal one was defined as the signature with the 
minimum of DR- AUC multiplying DR- ES.

Generation of evolution-associated query signature
To find compounds with potential to prevent and treat liver cancer, we developed a hepatocarcino-
genesis and progression- associated signature. GSE89377 cohort was utilized to build this signature 
while GSE6764 cohort was taken for external validation. To identify genes associated with develop-
mental stages, RF model was constructed, taking stages as dependent variable. Variable importance 
was assessed with the mean decrease accuracy (MDA) measures for individual factors in RF model. 
Variables with positive MDA values are of high importance in predicting stages. In other words, these 
variables are more likely to be related with liver cancer development and progression (negative MDA 
values can be regarded as equivalent to zero importance with no predictive power). RF analysis was 
independently repeated 1000 times with 1000 trees growing each time, and genes with positive MDA 
values incorporated in more than 200 iterations were kept for subsequent analyses.

We next performed WGCNA to assign resultant genes into modules according to expression 
similarity and recognize the trajectories of gene expression during liver cancer development (Lang-
felder and Horvath, 2008). First, an appropriate soft threshold was estimated by using the pickSoft-
Threshold function in WGCNA package. Then, we constructed WGCNA network and detected gene 
expression modules using blockwiseModules function with a minimum module gene number of 50, 
soft thresholded power of 12, and a dendrogram cut height of 0.3. Genes without assignment to 
specific modules were assigned the color of gray. Module eigengenes (MEs) representing the first 
principal components (PC1) of each module were returned, and the module- trait relationship (MTR) 
analysis was conducted by calculating the correlation between MEs and developmental stages. The 
expression trend of each module across seven stages of HCC development was visualized through 
using mean PC1 values of samples in each stage to generate trend curves. According to the correla-
tion coefficient of MTR analysis and the visualized expression trend of each module, two modules 
exhibiting the highest positive/negative correlation with developmental stages as well as showing 
gradually increasing or decreasing expression trends were selected. Subsequently, to explore the 
biological processes associated with genes in these two modules, we conducted hypergeometric 
test based on the hallmark gene sets ( h. all. v7. 0. symbols) downloaded from the Molecular Signatures 
Database (MSigDB) using enricher function in clusterProfiler package (Liberzon et al., 2015; Yu et al., 
2012). The p values from the hypergeometric tests were adjusted for multiple comparison testing and 
an adjusted p value less than 0.05 was considered significantly enriched.

Genes in these two modules were mapped to the 978 landmark genes, resulting in a 159- gene 
panel (134 genes in ascending module and 25 genes in descending module). According to the find-
ings described in Results section, we further narrowed down this panel to create a query signature 
with 100 genes. The molecular and clinical data in GSE15654 were utilized to determine the asso-
ciation between the expression patterns of signatures and the occurrence of HCC. Briefly, we first 
performed SRSWOR to extract a subset of 100 genes from the 159- gene panel, repeated 10,000 
times. As a result, 10,000 randomized signatures with 100 genes per signature were generated. Next, 
PC1 values of all randomized signatures were extracted based on expression data from GSE15654 
to represent the overall expression patterns of these signatures, and the follow- up data using HCC 
occurrence as endpoint was then integrated with above expression pattern data for subsequent Cox 
proportional hazards regression (COXPH). The signature which had the minimum p value across the 
10,000 COXPH analyses was considered the optimal signature. The expression trend of this signature 
was further validated GSE6764 cohort.

Human cell lines and compounds
The liver cancer cell lines, Hep3B, Huh7, PLC/PRF/5, SNU398, and Huh6, were provided by Erasmus 
University (Rotterdam, the Netherlands). MHCC97H and SK- Hep1 were provided by the Liver Cancer 
Institute of Zhongshan Hospital (Shanghai, China). SNU449, SNU475, HepG2, and the immortalized 
human HSC line LX2 were purchased from the American Type Culture Collection (ATCC). These cells 
were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Carlsbad, CA) supple-
mented with 10% fetal bovine serum (FBS) (Gibco) and 1% penicillin/streptomycin (Basal Media), 
incubated at 37°C in humidified atmosphere with 5% CO2. Mycoplasma contamination was excluded 
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via a PCR- based method. The identities of all the cell lines were confirmed by short tandem repeat 
(STR) profiling. Human recombinant transforming growth factor β1 (TGF-β1) was purchased from R&D 
Systems (Minneapolis, MN), which was used to activate LX2 (10 ng/ml TGF-β1 for 24 hr). HHT treat-
ment was performed by pre- treating for 2 hr before TGF-β1 stimulation. HHT (S9015) was purchased 
from Selleck Chemicals and dissolved in dimethyl sulfoxide (DMSO) using a storage concentration of 
10 mM.

Cell proliferation assays
For long- term cell proliferation assay, cells were seeded into six- well plates (2–3×104 cells per well) 
and HHT was added after 24 hr. Cells were treated with HHT as indicated for 10 days during which the 
culture media were replaced every 3 days. Then, cells were stained with 1% crystal violet for 10 min 
and rinsed with tap water. Pictures were taken using ImageScanner III (GE Healthcare) at 300- dpi reso-
lution. For IncuCyte real- time assay, cells were cultured and seeded into 96- well plates at a density 
of 1000–1500 cells per well, and 24 hr later, HHT was added at indicated concentrations. Cells were 
imaged every 4 hr in IncuCyte ZOOM system (Essen Bioscience) and phase- contrast images were 
collected and analyzed to determine the proliferation curves based on cell confluence. Cell viability 
in dose- response matrix was assessed using CellTiter- Blue (CTB) assay (Promega) according to the 
manufacturer’s recommendations. For measuring the synergistic effect of HHT- sorafenib combination, 
three different models, including Bliss independence model, Loewe additivity model and Highest 
single agent (HAS) model, were adopted, which were all implemented in Combenefit software version 
2.02 (Di Veroli et al., 2016).

Xenografts
Male BALB/c nude mice of 6–8 weeks old were used to establish xenograft tumor model. MHCC97H 
cells were suspended in 200-µl serum- free DMEM and subcutaneously injected into the upper flank of 
each mouse. When tumors reached a volume of approximately 50–100 mm3, mice from both groups 
were randomly assigned to treatment with vehicle or HHT (1  mg/kg, daily gavage). The 1  mg/kg 
dosage of HHT used to treat the nude mice with xenograft tumors was selected according to previous 
studies (Wang et al., 2021; Weng et al., 2018). Tumor volume was monitored every 3–4 days. The 
body weights were monitored every day. After 2 weeks of treatment, the mice were euthanized, the 
tumors were weighed and imaged.

Liver fibrosis model
Mouse model of liver fibrosis was established based on previous publications (Chen et al., 2014; 
Qu et al., 2018; Scholten et al., 2015). In specific, 6- week- old male C57BL/6 mice (Shanghai Model 
Organisms Center, Shanghai, China) were treated three times a week for 10 weeks with intragastric 
administration of 0.1 ml of a 40% solution of CCl4 (Aladdin, Shanghai, China) in olive oil (N=12) or 
olive oil alone (N=6). A subset of CCL4- treated mice received daily gavage of either 0.2 mg/kg HHT 
(N=6) or vehicle (N=6) during weeks 6–10. A concentration of 0.2 mg/kg was selected considering 
that the concentration for prevention is typically much lower than that for anti- tumor therapy (Bayo 
et al., 2021). Mice were sacrificed 3 days after the final treatment. The liver was harvested and cardiac 
terminal blood draw was also performed.

Histology
Formalin- fixed samples were embedded in paraffin, cut into 5-µm- thick sections. Histologic slides 
were stained with hematoxylin and eosin (H&E), Masson’s trichrome, and Sirius Red according to stan-
dard procedures, and then scanned using the Aperio CS Scanscope (Aperio Technologies, CA, USA). 
Fibrosis score was assessed on Masson’s trichrome staining using Ishak scoring system (Ishak, 1994) 
and the positive area of Sirius Red staining was quantified by ImageJ software (version 1.53k, http:// 
imagej.net/). All slides were reviewed in a blinded fashion by the same expert pathologist.

Liver function tests
Blood was collected by a cardiac blood draw at the time of sacrifice. Blood was allowed to clot at 
least 20 min and serum was purified by centrifugation. Serum was stored at –80℃ prior to use. Liver 
function was evaluated through measuring several serological markers, including ALT, AST, alkaline 
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phosphatase (ALP), and albumin (Alb). The serum levels of these markers were determined by BS- 200 
Chemistry Analyzer (Mindray, China).

Quantitative real-time PCR
We first harvested cells using TRIzol reagent (Invitrogen) based on the manufacturer’s instruction. Then, 
cDNA synthesis was carried out using Maxima Universal First Strand cDNA Synthesis Kit (No. K1661, 
Thermo Fisher Scientific). Quantitative reverse transcription PCR (qRT- PCR) assays were conducted 
using 7500 Fast Real- Time PCR System (Applied Biosystems). Relative mRNA levels of genes shown 
were normalized to the mRNA level of glyceraldehyde- 3- phosphate dehydrogenase (GAPDH) (house-
keeping gene). The primer sequences for assays using SYBR Green master mix (Roche) are as follows:

β-actin Forward, 5′ AAATCTGGCACCACACCTTC3′,
β-actin Reverse, 5′ GGGGTGTTGAAGGTCTCAAA3′,
Collagen I Forward, 5′ TCCT GGTC CTGC TGGC AAAGAA3′,
Collagen I Reverse, 5′ CACG CTGT CCAG CAAT ACCTTGA3′,
α-SMA Forward, 5′ GACA ATGG CTCT GGGC TCTGTAA3′,
α-SMA Reverse, 5′ CTGT GCTT CGTC ACCC ACGTA3′.

Western blotting analysis
Cells were washed with PBS and lysed on ice with RIPA lysis buffer supplemented with Complete 
Protease Inhibitor (Roche) and Phosphatase Inhibitor Cocktails II and III (Sigma). Protein concentration 
was measured using the BCA Protein Assay Kit (Pierce). All lysates were then freshly prepared and 
processed with Novex NuPAGE Gel Electrophoresis Systems (Thermo Fisher Scientific) followed by 
western blotting. The antibody against α-smooth muscle actin (α-SMA) (A5228) was obtained from 
Sigma- Aldrich (USA) and the antibody against collagen I (14695- 1- AP) was achieved from ProteinTech.

Immunofluorescence
Cells were cultured on glass cover slips, fixed for 10 min with 4% formaldehyde, and permeabilized 
with 0.5% Triton X- 100 for 15 min at room temperature. Immunofluorescence analysis was performed 
using the following antibodies: anti- Actin, α-Smooth Muscle antibody (1:200), anti- collagen I (1:200), 
anti- mouse IgG Fab2 Alexa Fluor (R) 488 (1:2000, CST), and anti- rabbit IgG Fab2 Alexa Fluor (R) 542 
(1:2000, CST). Cell nuclei were stained with DAPI (4,6- diamidino- 2- phenylindole). After immunos-
taining, the samples were observed using a LEICA TCS SP5 confocal microscope.

RNA sequencing
For RNA sequencing, total RNA was extracted and purified using the TRIzol reagent (Invitrogen). The 
library was prepared using TruSeq RNA sample prep kit according to the manufacturer’s protocol (Illu-
mina). Paired- end libraries were sequenced by an Illumina HiSeq 4000, with a sequence coverage of 
20 million paired reads. For data analysis, raw sequencing reads were mapped to the human genome 
(GRCh38) using STAR (version 2.4.2g1) (Dobin et al., 2013). Then gene- level read counts were gener-
ated using featureCounts from the subRead package with default settings (Liao et al., 2014).

Statistics
All the computational analyses and graphical visualization were performed in R software, version 3.6.0 
(https://cran.r-project.org/). Unless stated otherwise, correlation between two continuous variables 
was measured by Spearman’s rank- order correlation, and pairwise comparisons were conducted using 
Kruskal- Wallis and Wilcoxon sum- rank tests. ROC curves and AUC values were visualized and calcu-
lated using the pROC package (Robin et al., 2011). The hazard ratio was estimated using Cox regres-
sion model in survival R package. Cumulative hazard curve was carried out using jskm package and the 
log- rank test was used to determine the statistical significance of differences. All data points indicate 
individual biologic replicates (independent experimental samples) and not technical replicates (the 
same sample re- analyzed using the same method). A two- tailed p<0.05 was considered significant 
unless indicated otherwise.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Chen Y 2021 A survey of optimal 
strategy for signature- 
based drug repositioning 
and an application to liver 
cancer

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE180243

NCBI Gene Expression 
Omnibus, GSE180243

Chen Y 2022 A survey of optimal 
strategy for signature- 
based drug repositioning 
and an application to liver 
cancer (liver cancer cell 
lines)

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE193897

NCBI Gene Expression 
Omnibus, GSE193897

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Aurélien de R, 
Charles B, David 
R, Dominique F, 
Emmanuelle J, 
Jacques B, Jean S, 
Jessica Z- R, Paulette 
B- S, Pierre L- P, Sandra 
R, Sandrine B

2007 Transcription profiling of 57 
hepato cellular carcinoma 
tumoral samples, 3 
hepatocellular adenomas, 5 
non- tumoral pools

https://www. ebi. ac. 
uk/ arrayexpress/ 
experiments/ E- 
TABM- 36/

ArrayExpress, E- TABM- 36

Jiang Y, Zhang L 2019 Gene expression profiles 
of 35 paired HCC and non- 
tumor tissues by RNA- seq 
data

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE124535

NCBI Gene Expression 
Omnibus, GSE124535

Ally A, Balasundaram 
M, Carlsen R, Chuah 
E, Clarke A, Dhalla N

2016 Comprehensive and 
integrative genomic 
characterization of 
hepatocellular carcinoma

https:// xenabrowser. 
net/ datapages/? 
cohort= TCGA% 
20Liver% 20Cancer% 
20( LIHC)& 
removeHub= https% 
3A% 2F% 2Fxena. 
treehouse. gi. ucsc. 
edu% 3A443

Xena Functional Genomics 
Explorer, TCGA Liver 
Cancer (LIHC)

Ghandi M, Huang 
FW, Jané-Valbuena J, 
Kryukov GV, Lo CC, 
McDonald ER

2018 Broad Institute Cancer Cell 
Line Encyclopedia (CCLE)

https:// depmap. org/ 
portal/ download/

DepMap Portal, CCLE

GTEx Consortium 2017 The Genotype- Tissue 
Expression (GTEx) project

https:// gtexportal. 
org/ home/

Genotype- Tissue 
Expression (GTEx), GTEx
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Author(s) Year Dataset title Dataset URL Database and Identifier

Cancer Genome Atlas 
Research Network

2016 The Cancer Genome Atlas 
Pan- Cancer analysis project

https:// xenabrowser. 
net/ datapages/? 
cohort= TCGA% 
20Pan- Cancer% 
20( PANCAN)& 
removeHub= https% 
3A% 2F% 2Fxena. 
treehouse. gi. ucsc. 
edu% 3A443

Xena Functional Genomics 
Explorer, TCGA Pan- Cancer 
(PANCAN)

Subramanian A, 
Narayan R, Corsello 
SM, Peck DD, Natoli 
TE, Lu X

2017 A Next Generation 
Connectivity Map: L1000 
Platform and the First 
1,000,000 Profiles

https:// clue. io/ GEO- 
guide

CMap LINCS Gene 
Expression Resource, 
LINCS

Mendez D, Gaulton 
A, Bento AP, 
Chambers J, De Veij 
M, Félix E

2019 ChEMBL: towards direct 
deposition of bioassay data

https://www. ebi. ac. 
uk/ chembl/

European Bioinformatics 
Institute, ChEMBL

Rees MG, Seashore- 
Ludlow B, Cheah JH, 
Adams DJ, Price EV, 
Gill S

2016 Cancer Therapeutics 
Response Portal

https:// portals. 
broadinstitute. org/ 
ctrp/

Broad Institute, CTRP

Qiu Z, Li H, Zhang Z, 
Zhu Z, He S, Wang X

2019 Liver Cancer Model 
Repository

https://www. picb. ac. 
cn/ limore/ batch

LIMORE, LIMORE

Corsello SM, Nagari 
RT, Spangler RD, 
Rossen J, Kocak M, 
Bryan JG

2020 PRISM Repurposing 
dataset

https:// depmap. org/ 
repurposing/

DepMap Portal, PRISM

Wang XW 2010 Gene expression data 
of human hepatocellular 
carcinoma (HCC)

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE14520

NCBI Gene Expression 
Omnibus, GSE14520

Villa E, Critelli R, 
Lei B, Marzocchi G, 
Cammà C, Giannelli 
G, Pontisso P, Colopi 
S, Caporali C, 
Cabibbo G, Milosa F, 
Maccio L, Martinez- 
Chantar ML, Todesca 
P, Turola E, Berselli A, 
De Maria N, Ballestri 
S, Schepis F, Loria 
P, Gerunda GE, Losi 
L, Di Benedetto F, 
Cillo U

2014 Prospective gene 
expression analysis of 
human RNA samples from 
Hepatocellular Carcinoma 
in relation with growth rate 
and survival

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE54236

NCBI Gene Expression 
Omnibus, GSE54236

Grinchuk OV, 
Yenamandra SP, 
Kuznetsov VA

2017 Microarray expression data 
for tumor and adjacent 
non- tumor tissues from 
hepatocellular carcinoma 
patients

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE76427

NCBI Gene Expression 
Omnibus, GSE76427

Tu X, Song J, Chen X, 
He F, Zhou G

2017 Integrative omics analysis 
in HCC samples [mRNA 
expression]

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE84005

NCBI Gene Expression 
Omnibus, GSE84005
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Author(s) Year Dataset title Dataset URL Database and Identifier

Wurmbach E, Chen Y, 
Khitrov G, Zhang W, 
Roayaie S, Schwartz 
M, Fiel I, Thung S, 
Mazzaferro V, Bruix J, 
Bottinger E, Friedman 
S, Waxman S, Llovet 
JM

2007 Genome- wide molecular 
profiles of HCV- 
induced dysplasia and 
hepatocellular carcinoma

https://www. ncbi. nlm. 
nih. gov/ geo/ query/ 
acc. cgi? acc= GSE6764

NCBI Gene Expression 
Omnibus, GSE6764

Hoshida Y, Villanueva 
A, Sangiovanni A, 
Sole M, Gould J, 
Gupta S, Taylor B, 
Crenshaw A, Gabriel 
S, Minguez B, 
Iavarone M, Friedman 
S, Colombo M, Llovet 
JM, Golub TR

2013 Gene- expression profiles of 
hepatitis C- related, early- 
stage liver cirrhosis

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE15654

NCBI Gene Expression 
Omnibus, GSE15654

Eun J, Nam S 2017 Identifying novel drivers 
of human hepatocellular 
carcinoma and revealing 
clinical relevance as early 
diagnostic and prognostic 
biomarker

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE89377

NCBI Gene Expression 
Omnibus, GSE89377

Wang M, Lu L, Zhang 
J, Yuan Z, Zhang X

2016 Characterization of gene 
expression profile in 
HBV- related liver fibrosis 
patients

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE84044

NCBI Gene Expression 
Omnibus, GSE84044

Fuchs BC, Hoshida 
Y, Fujii T, Yamada S, 
Lauwers GY, McGinn 
CM, Wei L, Kuroda 
T, Lanuti M, Gupta S, 
Crenshaw A, Onofrio 
R, Taylor B, Winckler 
W, Golub TR, Tanabe 
KK

2014 Gene expression profile 
of liver tissue in carbon 
tetrachloride (CCl4)- 
treated mouse treated with 
erlotinib

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE27640

NCBI Gene Expression 
Omnibus, GSE27640

Fuchs BC, Hoshida Y 2016 Gene expression profile 
of liver tissue from carbon 
tetrachloride (CCl4)- treated 
mouse cultured ex vivo

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE71379

NCBI Gene Expression 
Omnibus, GSE71379

Fuchs BC, Hoshida Y, 
Fujii T, Lauwers GY, 
McGinn CM, Yamada 
S, Kuroda T, Lanuti M, 
Golub TR, Tanabe KK

2014 Gene expression 
profile of liver tissue 
in low- dose, repeated 
diethylnitrosamine (DEN)- 
treated rat treated with 
erlotinib

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE19057

NCBI Gene Expression 
Omnibus, GSE19057

Fuchs BC, Hoshida Y 2016 Gene expression profiles 
of fractionated cells from 
cirrhotic rat livers

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE63726

NCBI Gene Expression 
Omnibus, GSE63726
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