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Abstract 

Background:  Epithelial ovarian cancer (EOC) is the most malignant gynecological tumor in women. This study aimed 
to construct and compare radiomics-clinical nomograms based on MR images in EOC prognosis prediction.

Methods:  A total of 186 patients with pathologically proven EOC were enrolled and randomly divided into a train-
ing cohort (n = 130) and a validation cohort (n = 56). Clinical characteristics of each patient were retrieved from the 
hospital information system. A total of 1116 radiomics features were extracted from tumor body on T2-weighted 
imaging (T2WI), T1-weighted imaging (T1WI), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted 
imaging (CE-T1WI). Paired sequence signatures were constructed, selected and trained to build a prognosis prediction 
model. Radiomic-clinical nomogram was constructed based on multivariate logistic regression analysis with radiomics 
score and clinical features. The predictive performance was evaluated by receiver operating characteristic curve (ROC) 
analysis, decision curve analysis (DCA) and calibration curve.

Results:  The T2WI radiomic-clinical nomogram achieved a favorable prediction performance in the training and 
validation cohort with an area under ROC curve (AUC) of 0.866 and 0.818, respectively. The DCA showed that the T2WI 
radiomic-clinical nomogram was better than other models with a greater clinical net benefit.

Conclusion:  MR-based radiomics analysis showed the high accuracy in prognostic estimation of EOC patients and 
could help to predict therapeutic outcome before treatment.
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Introduction
Epithelial ovarian cancer (EOC) is the most malignant 
gynecological tumor in women [1]. The standard treat-
ment is combined chemotherapy with carboplatin and 
paclitaxel after debulking surgery. However, most cases 

will relapse within 3 years after the first complete treat-
ment cycle [2, 3]. Most of the patients who relapsed in 
half a year showed refractory chemotherapy resistance 
and had a poor prognosis [4, 5]. Therefore, how to select 
these patients as early as possible may help to design 
individualized treatment strategies (such as targeted 
immunotherapy) and improve the potential treatment 
outcome.

Magnetic resonance (MR) imaging is a method to 
evaluate the diagnosis of uncertain adnexal masses in 
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ultrasound examination, which has high accuracy in the 
detection of malignant tumors [6–9]. In recent years, 
MR-based imaging informatics has been rapidly devel-
oped, which provides useful information for the clas-
sification of ovarian masses [10–13]. However, studies 
using preoperative radiologic images to predict thera-
peutic outcomes are limited [12, 14]. In one study, the 
authors used deep learning methods to extract computer 
tomography (CT) image features and reported the effec-
tive 3-year recurrence probability prediction from two 
institutions [15]. In our previous study, we found that the 
radiomic features of T1WI on the maximum lesion plane 
were most likely related to the clinical outcome [12].

Radiomics is an advanced tool for assessing tumor 
heterogeneity by analyzing medical images [16–18]. Its 
essence is to extract high-throughput quantitative fea-
tures from high-quality medical images and establish a 
predictive model for diagnosis and prognostic evaluation 
[19–23]. Previous studies have reported that radiom-
ics has potential in the classification of ovarian cystad-
enomas and stratification of ovarian cysts [24, 25]. A 
CT-based radiomics study has demonstrated the feasibil-
ity of predicting the risk of postoperative recurrence of 
advanced high-grade serous ovarian cancer [26].

Theoretically, MR has better soft tissue resolution and 
can provide more detailed tumor anatomy and biologi-
cal information than CT. The purpose of this study is 
twofold: firstly, we compared the correlation between 
preoperative MR-based radiomic features and clinical 
outcomes in a large cohort sample; secondly, we evalu-
ated the best predictor of MRI features (imaging bio-
marker) and compared its performance in different 
acquisition sequences.

Materials and methods
Patients selection
Our institutional review board (Obstetrics and Gyne-
cology Hospital of Fudan University, Shanghai, China) 
approved this retrospective study, and the requirement 
for informed consent was waived for all participants. 
From January 2013 to December 2018, consecutive 
patients with clinically suspected gynecological diseases 
were retrospectively retrieved from our institutional 
Picture Archiving and Communication System (PACS, 
GE). The inclusion criteria were as follows: 1) no previ-
ous pelvic surgery; 2) no previous history of gyneco-
logical diseases; and 3) The MR examination before 
laparotomy or laparoscopic surgery was performed at 
our institution. The exclusion criteria were as follows: 1) 
previous pelvic surgery or radiotherapy; 2) MR imaging 
data were from outer institutions; and 3) no final path-
ological results or metastatic tumors. Finally, a total of 
186 patients were included (mean age, 47.7 ± 13.2 years). 

The sample consisted of 55 patients with borderline 
tumors, 23 patients with clear cell tumors, 12 patients 
with endometrioid tumors, 9 with low grade tumors and 
87 patients with high grade serous cancer. All included 
patients were pathologically confirmed by invasive sur-
gery (laparoscopy or laparotomy). FIGO staging, patho-
logical types, immunohistochemical staining results and 
laboratory examinations were collected through the hos-
pital information system (HIS).

Patients follow‑up
All patients were followed up every 6 months for the first 
3 years, and then annually thereafter. We used disease-
free survival as the end point. The time range was defined 
as the number of days between the first day of treatment 
and the date of disease progression (determined by imag-
ing or clinical examination), death, or the date of last 
follow-up survey. All the information was provided by 
the patient herself or her relative who knew the medical 
history.

MR acquisition and lesion segmentation
MRI was performed using a 1.5 T MR system (Magnetom 
Avanto, Siemens) with a phased-array coil. Routine 
MRI protocols used for the assessment of pelvic masses 
included axial turbo spin-echo (TSE) T1-weighted imag-
ing (T1WI), sagittal TSE T2-weighted imaging (T2WI), 
and axial/sagittal TSE fat-suppressed T2WI (fs-T2WI). 
Detailed MRI acquisition parameters are listed in sup-
plementary Table  1. Diffusion weighted imaging (DWI) 
using a two-dimensional sequence of echo-planar imag-
ing, performed in the axial plane with parallel acquisition 
technique by using b value = 0, 100, and 800 s/mm2. Pel-
vic enhanced imaging was acquired at multiple enhance-
ment phases in sagittal and axial planes. All lesion 
segmentation was performed by an experienced radiolo-
gist (T.W.). We segmented all visible lesions on each slice 
on T1WI, T2WI, DWI and CE T1WI. For lesions with a 
wide range of peritoneal implants, we chose the largest 
part of the lesion. Itk-Snap software was used for volume 
of interest (VOI) segmentation [27].

Radiomic feature extraction
The flowchart of this study was illustrated in Fig. 1. MR 
images of each sequence were collected from the same 
scanner with the same resolution. Feature extraction was 
performed using PyRadiomics (version 3.0.1, https://​
pyrad​iomics.​readt​hedocs.​io/) package for Python (ver-
sion 3.8) [28]. Laplacian-of-Gaussian (LoG) filters with 
different λ-parameters (λ = 1.0, 3.0, 5.0) and wavelet fil-
ters were used for pre-processing the original T1WI, 
T2WI, DWI and CE T1WI images. A total of 1116 fea-
tures were extracted from MR images of each patient. 

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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The radiomics features included: (1) 18 first-order statis-
tics features; (2) 75 texture features including grey level 
co-occurrence matrix (GLCM), grey-level dependence 
matrix (GLDM), grey-level run-length matrix (GLRLM), 
grey-level size zone matrix (GLSZM) and neighborhood 
grey-tone difference matrix (NGTDM); (3) 279 statistical 
features derived from LoG filtered domain; (4) 744 wave-
let features derived from wavelet filtered domains.

Dataset split
Due to different distribution of radiomics features 
between the training and validation set would seriously 
affect the performance of the radiomics signatures, we 
proposed a novel approach to split the dataset based 
on unsupervised K-means clustering algorithm. Firstly, 

the K-means clustering algorithm was applied to divide 
radiomics features into 30 sets and the feature nearest to 
cluster center was considered as the representative one. 
Then, we randomly split the dataset until there was no 
significant difference between the training cohort and the 
validation cohort in 30 representative radiomics features 
and clinical characteristics (p-value > 0.05) (Fig.  2). The 
186 patients were divided into a training cohort (n = 130) 
and a validation cohort (n = 56) at a ratio of 7:3. The clini-
cal characteristics of included patients in the training and 
validation cohorts were shown in Table 1.

Radiomics signature construction
Before feature selection, up-sampling by repeating ran-
dom cases was applied to improve the imbalance of the 

Fig. 1  The flowchart of this study. The flowchart consists of three steps: A volume of interest manual segmentation, B Radiomics features 
extraction, C signatures and nomograms construction
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training cohort and we used z-score to normalize the fea-
ture matrix. In order to reduce the dimension of features 
and select more useful features to build the radiomics 
model, features in the training cohort were divided into 
several sets according to their categories, such as first-
order, shape and texture features. In the radiomics pipe-
line, combinations of different algorithms were explored 
to achieve comparative performance. Pearson correla-
tion coefficient (PCC) and feature selection algorithms 
(feature elimination (RFE), Kruskal-Wallis (KW) test, 
and Relief ) were used to eliminate high correlation fea-
tures and selection, and classifiers (linear support vector 
machine (SVM), Logistic Regression (LR), and Random 

Forest (RF) were applied to predict the prognostic status. 
The optimal model was selected based on the area under 
the receiver operating characteristic curve (AUC) in the 
cross-validation cohort. When the AUC of the model 
based on the feature subset in the verification set of cross 
validation is higher than a certain threshold (set to 0.6), 
all the sub class features used in the model are combined 
for final modeling. In the final radiomics model, we used 
PCC and Relief algorithms to select the features used to 
build the SVM classifier, and 5-fold cross-validation was 
performed to determine the hyper-parameters of the 
model in the training cohort. Finally, ten radiomics sig-
natures were built, including four single-sequence signa-
tures and six paired-sequence signatures.

Radiomic‑clinical nomogram construction
The radiomics score (rad-score) was calculated for each 
patient in the training and validation cohort through the 
linear combination of the selected features in the radiom-
ics signature. Multivariate logistic regression analysis was 
performed with the rad-score and clinical characteristics. 
Based on multivariate logistic analysis, Radiomic-clinical 
nomogram was constructed in the training cohort to 
quantitatively predict the prognosis status. We also used 
clinical characteristics to construct clinical-radiological 
signature.

Performance evaluation of the models
We used receiver operating characteristic (ROC) curve 
and AUC to evaluate the performance of the models. 
The accuracy (ACC), sensitivity (SEN), specificity (SPE), 
positive predictive value (PPV) and negative predictive 
value (NPV) were calculated at the cutoff value according 
to the Youden index in the training cohort. The calibra-
tion curve was performed to evaluate the discrimination 
of radiomics nomogram. The waterfall plot for distribu-
tion of prediction probability and the prognosis status 
of patients was plotted to verify the predictive ability of 
the nomogram and decision curve analysis (DCAs), and 
determined the clinical usefulness and effectiveness of 
radiomics models by calculating the net benefits at differ-
ent threshold probabilities in validation cohort.

Statistical analysis
Statistical analysis was performed with Python (version 
3.8). An independent samples t-test or Mann–Whitney 
U-test was performed to assess the differences in clini-
cal characteristics and radiomic features between the two 
cohorts, depending on whether they were normal dis-
tribution (Kolmogorov–Smirnov test). The difference of 
categorical variables was assessed with chi-square test. 
A p-value < 0.05 was considered statistically significant. 
The R software (version 4.0.4, http://​www.R-​proje​ct.​org) 

Fig. 2  The three-dimensional (3D) visualization of the clustering 
result of all radiomics features. Different dots represent the individual 
projection of each radiomics feature in the 3D direction; the same 
color dots were assigned into one kind of cluster by K-means 
algorithm

Table 1  The clinical characteristics of the included patients in 
both the training and validation cohort

P-value of all characteristics are calculated by one of the independent-samples 
t-test, the Mann–Whitney U-test or the chi-squared test based on their 
distribution

Characteristics Training (n = 130) Validation (n = 56) P-value

Age, years 
(mean ± SD)

47.6 ± 13.4 47.8 ± 12.9 0.904

CA125 (mean, 
range)

552 (5–5000) 526 (10–5000) 0.295

Ki67 (mean ± SD) 28.22 ± 24.09 27.50 ± 22.80 0.467

FIGO (%)

  1 63 (48) 22 (39) 0.553

  2 10 (8) 6 (11)

  3 52 (40) 24 (43)

  4 5 (4) 4 (7)

http://www.r-project.org
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was performed to plot nomogram, calibration curves and 
DCAs [29]. The construction of the Radiomics models 
was implemented on Python using FeAture Explorer Pro 
(FAEPro, V 4.0.0) [30].

Results
Clinical data analysis
In all patient cohorts, according to age, ki67 and FIGO 
staging, there were significant differences between the 
good prognosis group and the poor prognosis group 
(Table 2). The AUC of clinical-radiological signatures was 
0.704 (95% CI: 0.619–0.787) in the training cohort and 
0.685 (95% CI: 0.545–0.825) in the validation cohort.

Performance of radiomics signatures for recurrence 
estimation
The discrimination ability of T2WI, T1CE, and T2WI-
T1CE radiomics signatures was evaluated by the ROC 
curves. T2WI radiomics signature achieved better per-
formance (AUC = 0.771, CI: 0.629–0.894) than T1CE 
(AUC = 0.593, CI: 0.413–0.770) and T2WI-T1CE 
(AUC = 0.721, CI: 0.559–0.863) radiomics signatures in 
the validation cohort. The performance evaluation of all 
signatures in the validation cohort was listed in Table 3. 
In the T2WI radiomics signature, 17 radiomics features 
were selected to build a linear SVM model, and the cor-
responding coefficients were shown in Supplementary 
Fig. 1. The selected features in each protocol for predic-
tion model construction and the corresponding contrib-
uting coefficients were shown in Supplementary Figs. 2, 
3, 4. In brief, the combination of T1WI and T2WI radi-
omics signatures yielded the highest AUC of 0.736 in the 
validation cohort (Fig. 3). The comparison of AUC from 

multi-modal radiomics signatures and the recurrence 
estimation was summarized in Supplementary Table 2.

Performance and validation of the radiomics‑clinical 
nomogram
The radiomics-clinical nomogram of each protocol 
was constructed based on multivariate logistic regres-
sion analysis developed by combining rad-score and 
clinical characteristics. The corresponding evaluation of 
radiomics-clinical nomogram in both the training and 
validation cohort was listed in Table  3. The T2WI radi-
omics-clinical nomogram performed better than other 
models with an AUC of 0.866 and 0.818, respectively in 
the training and validation cohort. We also compared 
the performance of T2WI radiomics-clinical nomogram 
based on the largest tumor region (two-dimensional, 2D) 
and the whole tumor region (3D) (Table 3). The predic-
tion probability similarity between two patients was cal-
culated using Euclidean distance measure (Fig.  4). The 
performance results of 3D T2WI radiomics-clinical nom-
ogram achieved higher similarity than the 2D did for the 
recurrence prediction. The violin plot and ROC curves 
of T2WI radiomics-clinical nomogram in the training 
and validation cohort were shown in Fig. 5A and B. The 
waterfall plot of the validation cohort with an optimal 
cutoff value of 0.548 for the distribution of prediction 
probability of T2WI nomogram and prognostic status 
was shown in Fig.  5C. Calibration curves with nonsig-
nificant Hosmer-Lemeshow test results (p-value = 0.112) 
and DCAs of radiomics nomogram for prognosis status 
prediction in the validation cohort also demonstrated 
favorable performance (Fig. 6).

Table 2  Clinical characteristics of patients in the training and validation cohorts

Characteristics All cohort
(n = 186)

P-value Training cohort
(n = 130)

P-value Validation cohort
(n = 56)

P-value

Uneventful
(n = 124)

Relapse or dead
(n = 62)

Uneventful
(n = 87)

Relapse or dead
(n = 43)

Uneventful
(n = 37)

Relapse or dead
(n = 19)

Age (mean ± SD 
yrs)

44.5 ± 13.8 54.0 ± 9.2 <  0.001 44.3 ± 13.9 54.3 ± 9.0 <  0.001 45.0 ± 13.4 53.5 ± 9.8 0.019

CA125 
(mean ± SD Iu/L)

511 ± 884 647 ± 1195 0.472 549 ± 914 557 ± 914 0.384 415 ± 521 740 ± 1275 0.182

Ki67 expression% 
(mean ± SD)

25.36 ± 23.23 33.31 ± 23.77 0.007 25.98 ± 24.40 32.77 ± 22.78 0.024 23.89 ± 20.16 34.53 ± 25.83 0.102

FIGO stage(%)

  1 65 (52) 20 (33) 48 (55) 15 (35) 17 (46) 5 (27)

  2 9 (7) 7 (11) 5 (6) 5 (12) 4 (11) 2 (10)

  3 48 (39) 28 (45) 0.005 33 (38) 19 (44) 0.029 15 (41) 9 (47) 0.223

  4 2 (2) 7 (11) 1 (1) 4 (9) 1 (2) 3 (16)
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Discussion
Ovarian cancer is the most lethal cancer in gynecological 
tumors. The high heterogeneity of tumor leads to vari-
ous reactions after treatment, which may influence the 
prognosis. In this study, we tried to extract preoperative 

MR-based radiomic signatures and use this noninva-
sive method to predict prognosis. Our data show that 
the nomogram combining T2WI-based radiomic sig-
natures with clinical features has high accuracy in pre-
dicting the prognosis of selected samples in the training 
(AUC = 0.866) and validation cohort (AUC = 0.818).

Owing to high soft tissue resolution, MR imaging 
is always helpful to determine the etiology of adnexal 
lesions before surgery. Both conventional imaging analy-
sis and imaging-based radiomics studies provide con-
vincing evidence for the classification and prognosis 
prediction of ovarian masses. Recent MR-based radi-
omics studies mainly focus on the prediction of ovar-
ian histological subtypes. Radiomics studies can classify 
EOC patients into binary classifications (Type I and Type 
II), which is better than conventional MR examination. 
A recent MR-based radiomics study using multicenter 
data yielded AUCs of 0.806 and 0.847 in the internal and 
external validation cohorts for type I and type II EOC 
discrimination, respectively. The well-known established 
MR criteria mainly include morphological signs (septa, 
composition, size, etc.) to discriminate malignant from 
benign. However, it is difficult to categorize EOC sub-
types because of the overlap of the above-mentioned 
imaging signs.

Compared with the prediction of histological subtypes, 
the research focusing on the prediction of prognosis is 
very limited. In a recent study, the authors conducted a 

Table 3  The summaries of performance of different predictive models with radiomics and nomogram in both the training and 
validation cohort on MR images

TP True positive, TN True negative, FP False positive, FN False negative, ACC​ Accuracy, SEN Sensitivity, SPE Specitivity, PPV Positive predictive value, NPV Negative 
predictive value

Characteristics Training AUC​
(95% CI)

Validation AUC​
(95% CI)

TP TN FP FN ACC​ SEN SPE PPV NPV

Clinical 0.704 (0.619–0.787) 0.685 (0.545–0.825) 17 17 20 2 0.607 0.895 0.459 0.459 0.895

T1WI
signature

0.845 (0.771–0.906) 0.553 (0.382–0.736) 10 23 14 9 0.589 0.526 0.622 0.417 0.719

CE T1WI
signature

0.837 (0.755–0.910) 0.593 (0.413–0.770) 7 30 7 12 0.661 0.368 0.811 0.500 0.714

DWI
signature

0.848 (0.783–0.909) 0.603 (0.441–0.765) 7 15 22 12 0.393 0.368 0.405 0.241 0.556

T2WI
signature

0.844 (0.762–0.917) 0.771 (0.629–0.894) 10 31 6 9 0.732 0.526 0.838 0.625 0.775

T1WI
nomogram

0.855 (0.794–0.910) 0.724 (0.587–0.865) 14 24 13 5 0.679 0.737 0.649 0.519 0.828

CE T1WI
nomogram

0.868 (0.813–0.918) 0.702 (0.557–0.849) 12 24 13 7 0.643 0.632 0.649 0.480 0.774

DWI
nomogram

0.767 (0.681–0.850) 0.727 (0.576–0.870) 13 27 10 6 0.714 0.684 0.730 0.565 0.818

T2WI-3D
nomogram

0.866 (0.792–0.931) 0.818 (0.691–0.932) 10 33 4 9 0.768 0.526 0.892 0.714 0.786

T2WI-2D
nomogram

0.830 (0.765–0.890) 0.720 (0.559–0.873) 13 25 12 6 0.679 0.684 0.676 0.520 0.806

Fig. 3  Heat map comparison of the AUC values of radiomics 
signatures and radiomic-clinical nomogram
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Fig. 4  Heat map showing the relative feature similarities of the patients in respect of each other computed by the prediction probability from 
2D-T2WI (A) or 3D-T2WI radiomics-clinical nomograms (B). Prediction probability similarities between two of patients were calculated using 
Euclidean distance measure. Patients 1–36 were uneventful and patients 37–56 were recurrence or dead. The value close to 0 (red color) means that 
they had highly similar features

Fig. 5  A The violin plot for probability density distribution of patients with varying prognosis status in both the training and validation cohort. B 
The ROC curves in the training and validation cohort. C The waterfall plot for the distribution of prediction probability of T2WI radiomic-clinical 
nomogram and the prognosis status of patients in the validation cohort. The cutoff value of 0.548 was defined based on the Youden index in the 
training cohort
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retrospective study of 217 patients in one single center 
and they reported that the radiomic-clinical nomogram 
showed a favorable predictive ability with an AUC of 
0.803, which was used to predict the residual lesion size 
in ovarian cancer patients undergoing laparotomy [19]. 
They also concluded that radiomics signature incorpo-
rating both CE-T1WI and T2WI features performed bet-
ter than each sequence alone. In present study, we found 
that the T2WI-based radiomic signatures achieved bet-
ter discriminative ability in the prognosis prediction than 
T1WI, DWI and CE-T1WI alone. Clinical features (age 
and FIGO staging) are also important clinical character-
istics for ovarian cancer categorization [31]. Therefore, 
the T2WI radiomic-clinical nomogram was constructed 
by combining the radiomics signature and clinical fea-
tures to improve the prediction ability.

In respect of dataset split, previous studies mainly 
focused on the differences in clinical characteristics 
between the training and validation cohort. However, 

it is also crucial to ensure a consistent distribution 
of radiomics features in the two cohorts. Herein, we 
used the clustering algorithm to select representative 
features and randomly split dataset until no signifi-
cant differences were observed in these radiomics fea-
tures. Most radiomics studies utilized RFE, KW test or 
Relief algorithms to reduce the feature dimension, and 
it was usually difficult to obtain the optimal solution 
due to the high dimension features [16]. In our study, 
these radiomic features were divided into several sets 
according to their categories. The subclass features 
were also used to establish a radiomics-based predic-
tive model. In another study, the authors developed a 
deep learning method from CT images to establish a 
CT-based prognostic biomarker for recurrence predic-
tion in high-grade serous ovarian cancer (HGSC) [15]. 
In this study, they enrolled 245 patients with HGSCs, 
of which 94 were from two independent centers com-
prised of the validation cohorts. Their model yielded an 

Fig. 6  A The calibration curve of the T2WI radiomic-clinical nomogram in the validation cohort. The dotted line means the optimal probability 
prediction model, while the solid line represents the real scenario. An acceptable error occurred because of the imbalanced data. B DCA for 
clinical-radiological signature (red line), T2WI radiomics signature (blue line) and T2WI radiomic-clinical nomogram (purple line). The “All” line is 
made with the assumption that all patients have poor prognosis. The curve indicates that the net benefit of the nomogram is better than the other 
models when the threshold is in the range between 0.1 and 0.8. C The T2WI radiomic-clinical nomogram incorporated three factors of rad-score, 
age and FIGO staging
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AUC of 0.772 to 0.825 for 3-year recurrence prediction. 
Our present result is a little better than theirs because 
the nomogram combining T2WI-based radiomic sig-
natures with clinical features has high accuracy in pre-
dicting the prognosis of selected samples in training 
(AUC = 0.866) and validation cohort (AUC = 0.818). 
However, the advantage of deep learning method is 
that they can automatically segment the target lesions 
and are less influenced by the operator himself and his 
experience. In addition, CT is more widely used in clin-
ical unit to stage the advanced EOC with short scan-
ning time and low expense.

Our study has the following limitations. Firstly, this is 
a retrospective study of a single center with a relatively 
small research sample. Larger samples and depend-
ent validation from outer institutions can reasonably 
explain the results. Secondly, as mentioned above, 
deep learning technique is gaining more and more 
attention in medical image analysis. Generating more 
sophisticated algorithms from a large research sample 
can improve the performance of preoperative MR to 
predict the prognosis of EOC patients. Thirdly, owing 
to the nature of the retrospective study, the treatment 
methods of all enrolled patients are different, which 
may also influence the final follow-up results. Prospec-
tive design can more clearly clarify the predictive abil-
ity of preoperative MR for the outcome of EOC patients 
after individual treatment.

In conclusion, our current results indicate that MR-
based radiomics analysis shows a high degree of accuracy 
in estimating the prognosis of EOC patients and can help 
to predict the treatment outcome before treatment. Our 
future research direction is to better clarify the predictive 
ability of preoperative MR for EOC patients after individ-
ualized treatment through multi-center, large-sample and 
prospective studies.
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