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Abstract

Background: It is now possible to estimate genetic correlations between two independ-

ent samples when there is no overlapping phenotypic information. We applied the latest

bivariate genomic methods to children in the UK and older adults in Sweden to ask two

questions. Are the same variants driving individual differences in anthropometric traits

in these two populations, and are these variants as important in childhood as they are

later in life?

Methods: A sample of 3152 11-year-old children in the UK was compared with a sample

of 6813 adults with an average age of 65 in Sweden. Genotypes were imputed from 1000

genomes with combined 9 767 136 single nucleotide polymorphisms meeting quality

control criteria in both samples. Two cross-sample GCTA-GREML analyses and linkage

disequilibrium (LD) score regressions were conducted to assess genetic correlations

across more than 50 years: child versus adult height and child versus adult body mass

index (BMI). Consistency of effects was tested using the recently proposed polygenic

scoring method.

Results: For height, GCTA-GREML and LD score indicated strong genetic stability between

children and adults, 0.58 (0.16) and 1.335 (1.09), respectively. For BMI, both methods pro-

duced similarly strong estimates of genetic stability 0.75 (0.26) and 0.855 (0.49), respect-

ively. In height, adult polygenic score explained 60% of genetic variance in childhood and

10% of variance in BMI.

Conclusions: Here we replicated and extended previous findings of longitudinal genetic

stability in anthropometric traits to cross-cultural dimensions, and showed that for height

but not BMI these variants are as important in childhood as they are in adulthood.

Key words: Unrelated samples, GCTA, GREML, genetic stability, height, weight, BMI, LD score regression,

polygenic prediction
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Introduction

Recent developments in genetic technology (genome-wide

genotyping) and methodology (e.g., genome-wide related-

ness maximum likelihood model implemented in genome-

wide complex trait analysis software: GCTA-GREML)

have made it possible to conduct quantitative genetic re-

search on unrelated individuals rather than family mem-

bers such as twins.1,2 This advance enabled estimates of

genetic influence on individual differences in population

samples that can be much bigger than family samples. A bi-

variate extension to this model also permits estimation of

co-heritability between traits.3,4 An especially interesting

application of that is fitting a bivariate model to two unre-

lated samples with phenotypic information on one trait at

two non-overlapping ages, but where each sample only has

data on one of the ages (we could call this a ‘cross-sample’

GCTA-GREML). This has been previously used to show

strong overlap between genetic influences on schizophrenia

in individuals with European ancestry and those from

African descent.5 One of the phenomena that is well suited

to testing the cross-sample GCTA-GREML, but has not

yet been investigated using this method, is age-to-age gen-

etic stability, the extent to which the same genetic factors

influence a trait across development.

Cross-sample GCTA-GREML makes it possible to as-

sess long-term genetic stability by comparing a sample of

unrelated children from one study with a sample of unre-

lated adults from another study. Application of this

method reduces the need for the ‘single-sample’ long-term

longitudinal design by overcoming some of its limitations.

Although the prospective longitudinal design is still the

best design for genetic investigation of developmental

change and continuity, it is very costly in time and is often

troubled by attrition that could lead to measurement biases

and a reduction in power. Until recently, this traditional

longitudinal design has been the only way to investigate

genetic stability, but now we can use cross-sample GCTA-

GREML to investigate long-term genetic stability and

change.

Age-to-age genetic stability has previously been re-

ported in longitudinal twin and extended family studies for

several complex traits including BMI (body mass index)6,7

and height.8 These studies were traditional longitudinal

studies in which the same twins were assessed from age to

age; as a result, the longest age span investigated was from

age 20 to age 45.7 There were strong stabilities over 25

years—phenotypic stability was 0.89 for height and 0.54

for BMI.7 The authors also reported that most of this

phenotypic stability is due to genetic factors, with genetic

correlations estimated from the twin design as 0.97 for

height and 0.69 for BMI. In a short-term longitudinal ana-

lysis of twin data on BMI from ages 4 to 10 years, we re-

ported a twin-estimated genetic correlation of 0.58 [95%

confidence interval (CI): 0.48 to 0.68].9 In the same study

we found suggestive substantial genetic stability (r¼0.66;

95% CI: �0.28 to 1.00), using bivariate GCTA-GREML

for unrelated individuals and an increase in influence of a

polygenic predictor (based on 32 earlier reported vari-

ants10) on BMI. Comparison of these methods within the

same sample supported somewhat puzzling findings of

strong genetic stability even in the presence of increasing

heritability. A more recent long-term longitudinal study

used the same polygenic predictor suggesting similar con-

clusions.11 The authors showed that higher obesity genetic

risk was associated with higher average BMI and a steeper

increase in BMI between early adulthood and age 65.

Strong genetic stability was also found in other complex

traits. For example, a short-term longitudinal study of cog-

nitive abilities from ages 7 to 12 years, found a substantial

genetic stability r¼ 0.73 (95% CI: 0.16 to 1.00) using the

above-mentioned bivariate GCTA-GREML method.12

Similar genetic stability on cognitive abilities was reported

in an earlier published long-term longitudinal study of un-

related individuals.13 This study also used repeated meas-

ures bivariate GCTA-GREML design, but it spaned data

over more than 50 years(ages 11 and 65–79). Genetic cor-

relation from childhood to adulthood was 0.62 (95% CI:

0.19 to 1.00); this 95% confidence interval, just like in our

short-term study, did not overlap zero but did overlap one.

This suggested that nearly two-thirds of the genetic influ-

ences on general intelligence at old age are accounted for

by the genetic influences in childhood.

Key Messages

• There are new genomic methods that enable estimation of genetic covariance from individual genotype and GWA

summary statistics data where no phenotypic covariance is available.

• Strong genetic stability can be observed in anthropometric traits over more than 50 years.

• Genetic stability is very strong even when comparing children in the UK and adults in Sweden.

• The analytical polygenic prediction method shows that for height, but not BMI, these variants are as important in

childhood as they are in adulthood.
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In the present study we examined 50-year genetic stability

of height and body mass index (BMI). However, unlike the

previous longitudinal publications, here we present, for the

first time, cross-sample GCTA-GREML analyses of genetic

stability for height and BMI using a sample of UK children

and a sample of older Swedish adults. This allows us to inves-

tigate genetic stability across 50 years and to compare the

genetic architecture of anthropometric traits in childhood

and adulthood using data where longitudinal repeated meas-

urements are not available. Furthermore, it has been shown

that genetic estimates could be affected by linkage disequilib-

rium (LD) between genotyped markers and causal vari-

ants.14,15 It has been previously discussed that such effect can

bias estimates of single nucleotide polymorphism (SNP) herit-

ability,14–19 but we have also shown that this would not af-

fect estimates of genetic correlation.12 We used recently

developed LD score regression—LDSC14—as it explicitly

controls for effect of LD. Therefore if this effect was true, we

would observe difference in estimates of SNP heritability but

not in genetic correlations. Finally, we wanted to address an-

other aspect of genetic stability that has been previously

looked at in BMI data within the Swedish population.11

Specifically, providing that we found evidence of genetic sta-

bility, we wanted to see if those same SNPs played equally

important roles at both ages. Genetic stability could be strong

but effect sizes could be completely different. To do that we

used the recently developed analytical polygenic predictor

method.20,21 We therefore asked two questions related to

genetic stability of anthropometric traits: do the same vari-

ants affect children in the UK and adults in Sweden? Is the ef-

fect of these variants as important in adult life as it is in

childhood?

Material and methods

Samples and genotyping

Twins Early Development Study

The UK sample was drawn from the Twins Early

Development Study (TEDS), a longitudinal multivariate

study of approximately 11 000 twin pairs born in England

and Wales between 1994 and 199622 and representative of

the UK population.23 The project received ethical approval

from the Institute of Psychiatry ethics committee (05/

Q0706/228). Parental consent was obtained before data

collection. DNA and anthropometric data were collected

when children were 11 years old [mean¼ 11.26 years,

standard deviation (SD)¼ 0.69). After quality control, data

with no missing measure of height and BMI were available

for 2221 and 2186 unrelated individuals, respectively,

(Table 2) and approximately 7.7 million SNPs (see

Supplementary data for detailed description of quality con-

trol procedures, available at IJE online).

TwinGene

TwinGene is a sample of approximately 12 600 twins

drawn from the Swedish Twin Registry,24 assessed when

adults were aged 47 to 94 (mean¼ 64.81, SD¼8.26). The

current sample was based on one individual from each

twin pair. Quality control resulted in a sample with no

missing measure of height and BMI of 5938 and 5928 un-

related individuals, respectively (Table 2), and � 9.7 mil-

lion SNPs (see Supplementary data, available at IJE

online). There were 7 686 666 variants in common across

the two samples and 9 767 136 across the combined data.

Measures

TEDS

Children’s height and weight in TEDS were self-reported

using tape measures that were sent to all families. The

twins were allowed to report in either metric or imperial

units; data were later re-coded into metric units. Reported

heights and weights were validated against measures col-

lected in person from a sub-sample, with parent- and

researcher-measured heights and weights correlated 0.90

and 0.83, respectively, in a subsample of 228 families.25

Table 1. Age, gender proportion and sample size for TEDS

and TwinGene

Age mean (SD) Proportion

of males

Sample na

TEDS 11.26 (0.69) 46% 2865

TwinGene 64.81 (8.26) 51% 5945

aNon-missing age data.

Table 2. Descriptive statistics for height, weight and BMI in

TEDS and TwinGene

Sample Trait Mean (SD) Minimum Maximum Sample na

TEDS Height

(cm)

146.69 (8.36) 112.00 188.00 2221

Weight

(kg)

38.69 (8.68) 22.20 95.00 2186

BMIb 17.86 (3.08) 12.12 46.96 2186

TwinGene Height

(cm)

170.10 (9.18) 117. 00 205.00 5938

Weight

(kg)

75.61 (13.87) 37.60 171. 50 5928

BMIb 26.07 (4.00) 15.43 66.99 5928

aUnrelated Genetic Relatedness Matrix (GRM)< 0.025 cut-off) and non-

missing phenotype data.
bBody mass index¼weight (kg) / height (m2).
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BMI was calculated as weight (kg / height (m2). Given that

we were comparing children’s anthropometric measures

with adults’, we needed to standardise the scores of each

child. This is done because, unlike adult growth, child de-

velopment does not follow a linear pattern, varying by age

and gender. For this reason, children’s BMI were standar-

dised to age- and gender-appropriate population reference

data, using UK 1990 population reference data.9,25

TwinGene

Anthropometric measures were collected during DNA col-

lection.24 Each participant was asked to visit their local

healthcare centre, where blood and health and anthropo-

metric measures were collected. Participant’s weight and

height were recorded without shoes and in light clothing.

BMI was calculated as specified above. Of note, we did not

remove BMI outliers from either TEDS or TwinGene, as

their raw measures of height and weight were within a

plausible range.

Covariates

Genomic data were pruned for LD using PLINK 1.07,26 re-

sulting in � 100 000 SNPs. This thinned SNP set was then

used to calculate ancestral axes for the combined sample

(children and adults); 20 Principle Components (PC) were

calculated using PLINK 1.9027 and all were used as covari-

ates in the main analyses. Age and gender were also

included as fixed covariates. For comparison, we also pro-

jected previous analyses, EIGENSTRAT-calculated28

within-sample ancestral axes, produced independently for

TEDS and TwinGene, before performing cross-sample

GCTA-GREML analysis; we obtained nearly identical re-

sults (not shown).

Analyses

The bivariate cross-sample GCTA-GREML was first

described in detail by Visscher et al.,4 and we have detailed

its important algorithms and aspects in the Supplementary

data, available at IJE online. Here we would like to briefly

highlight important elements conceptually. First, genetic

influence is estimated from across the whole genome (algo-

rithm 1 in Supplementary data, available at IJE online).

Second, the model is based on a simple linear mixed design

where additive genetic influences are modelled as random

effects (equations 2 and 3 in supplementary materials).

Third, in contrast to standard repeated measures design

(equation 4 in supplementary materials), the data have no

phenotypic overlap. In our example, one sample has child-

hood data only and the other sample has only adult data

available. For that reason, the only influence that can be

estimated on the covariance is genetic. There is no residual

covariance (equation 5 in supplementary materials).

P-values of h2
GCTA are obtained from univariate likelihood

ratio tests (LRT), where fit of the full model (with genetic

component) is compared with the fit of a reduced ‘null’

model (with no genetic component). Similarly, P-values for

correlation estimates are from LRT. However, here the test

is applied to a bivariate model where fit of the full model is

compared with a reduced model where genetic correlation

is fixed to either zero or one (see Supplementary data,

available at IJE online).

As mentioned earlier, to guard against potential bias from

uneven LD between tagging markers and causal variants, we

took advantage of the recently developed LDSC that can be

applied to genome-wide association (GWA) summary statis-

tics only.14 In addition, to test for consistency of effect sizes

we used another recently developed polygenic method that

can be also applied to GWA summary statistics only.29 To

produce summary statistics, we run independently GWA on

TEDS and TwinGene samples (see Supplementary data for

details, available at IJE online) and used the results to run

the two earlier-mentioned methods. Genome-wide methods

are often affected by inflation in test statistics, and this could

be driven by either population stratification or polygenic sig-

nal. LDSC partitions these effects out, giving unbiased re-

sults.14 Finally, the analytical polygenic scoring method

described previously20,21 and available in an R30 package

called ‘gtx’,31 extends our findings by testing not only if we

have the same variants affecting anthropometric traits at two

ages but also if these same variants are as important in child-

hood as they are in adulthood.

Results

Descriptive statistics

Table 1 describes age, gender and sample size of the two

samples. Age ranges are 11–12 years in TEDS and 47–94

years in TwinGene. Descriptive statistics for height and

BMI are shown in Table 2. Because they are children, the

TEDS sample is shorter and lighter than the TwinGene

adult sample, but as mentioned in the Methods section,

these traits were standardised to make the comparison pos-

sible. Both TEDS and TwinGene samples were representa-

tive of their respective populations with respect to their

height and BMI.24,32,33

Heritabilities and genetic correlations of height

and BMI from childhood to adulthood

In children, h2
GCTA of height was 0.47 (0.15) and in adults

0.69 (0.08) (Figure 1a). The genetic correlation between

adult and child height was 0.58(0.16). Likelihood ratio test
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for h2
GCTA of height in children was 8.305 with P-value¼

0.002 and n¼ 2080. For h2
GCTA in adults LRT¼ 85.051,

with P-value¼ 1.45e-20 and n¼ 5573. LRT for correlation

different from zero was 17.986 with P-value¼ 1e-05 and

n¼ 7653. When genetic correlation was tested as different

from one, LRT was 14.089, P-value¼ 9e-05 and n¼ 7653.

For standardised BMI, h2
GCTA was 0.37 (0.16) in child-

hood and 0.26 (0.08) in adulthood (Figure 1b). The genetic

correlation between child and adult BMI was 0.75 (0.26).

As explained in the Methods section, the correlation repre-

sented by the double-ended arrow in Figure 1a and b can be

estimated for additive genetic influence but not the residual.

LRT for h2
GCTA of BMI in children was 12.028, P-value¼

0.0003, n¼ 2049 and in adults LRT¼ 7.179, P-value¼
0.004, n¼ 5462. LRT for genetic correlation being different

from zero was 11.485, P-value¼ 0.0004 and n¼ 7511.

For genetic correlation different from one, LRT¼ 2.250,

P-value¼ 0.07, n¼ 7511.

LDSC results were consistent with GREML analyses,

showing strong genetic correlation between both samples

rgLDSC¼ 1.335 (1.09) and rgLDSC¼ 0.855 (0.49) in height

and BMI respectively (Supplementary Table 1, available as

Supplementary data at IJE online). The estimates of SNP

heritability for height were 0.13 (0.19) and 0.60 (0.11) in

TEDS and TwinGene, respectively. The estimates of SNP

heritability in BMI were 0.20 (0.15) and 0.23 (0.08) in

TEDS and TwinGene, respectively.

Analytical polygenic scoring approach suggested that

the most predictive polygenic score obtained from adult

height data accounts for 60% (P-value< 3.5e-07) of the

genetic variance in child data. In contrast, the most pre-

dictive polygenic score from adult BMI accounted for only

10% (P-value< 3.5e-07) of the phenotypic variance in

child data. Of note, the most natural implementation of

this method would have been to calculate a polygenic score

in child data and apply it to adult data. However, the dif-

ference in sample size meant that to maximise the accuracy

of the polygenic score we needed to calculate it in adult

data and predict it in child data. Although counterintuitive,

the direction of the prediction was not crucial to our con-

jecture and thus it did not affect our interpretation.

Discussion

We used cross-sample GCTA-GREML and LDSC to esti-

mate genetic correlations from childhood to adulthood for

height and BMI using data from children in the UK (age 11

years) and adults (average age 65) in Sweden. The results

from both methods show that genetic correlations for both

height and BMI were substantial, (rgGREML¼ 0.58 and

rgLDSC¼ 1.335) for height and (rgGREML¼ 0.75 and

rgLDSC¼ 0.86) for BMI, respectively. Although genetic sta-

bility for height and BMI is a known phenomenon, this is

the first time it has been shown across a somewhat

uniquely defined 50-year period (from age 11 to 65), and

to persist even though our cross-sample design involved

children in the UK and adults in Sweden.

A unique feature of our design is its unusual definition of

longitudinal. These two samples are not separated by ‘secu-

lar time’ in the same way as they would be in the traditional

longitudinal design. That is, the two samples were assessed

at approximately the same calendar time despite being 50

years apart in age. We have shown, using measured genomic

variants, that the influence of common genetic variants on

the individual differences in anthropometric traits is highly

stable even over a 50-year span, and that this is true for un-

related individuals drawn from different countries, growing

up or having grown up in different environments. Because

this is a cross-sample GCTA-GREML, no individuals were

assessed both as children and adults, which meant that we

could not estimate how much of the phenotypic covariance

was due to genetic influences (bivariate heritability).

However, tentatively using the estimates from a 25-year

span twin study7 suggests that genetic stability in height and

BMI could account for as much as 60% and 100% of the

phenotypic covariance, respectively.

Figure 1. (a) Bivariate GCTA-GREML model of height between children

in the UK and adults in Sweden. (b) Bivariate GCTA-GREML model of

BMI between children in the UK and adults in Sweden. V(G): SNP herit-

ability; V(e): residual variance; standard error in parentheses;

190x142mm (300 x 300 DPI).
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Our results make sense in terms of what has been found

in a longitudinal twin study of genetic stability for height

and BMI from age 20 to age 45.7 Across 25 years, this twin

study reported genetic correlations of 0.97 for height and

0.69 for BMI, as compared with our cross-sample GCTA-

GREML estimates for a 50-year age span of 0.58 (0.16)

for height and 0.75 (0.26) for BMI. Although h2
GCTA could

underestimate the ‘true’ heritability (due to linkage dis-

equilibrium between the markers and the causal variants),

genetic correlations are unbiased.12 It is therefore not sur-

prising that the results obtained from LDSC analysis,

where LD is explicitly modelled, were in agreement with

strong genetic stability in both traits.

Finally, the polygenic scoring method suggested that the

variants affecting height in adult data explain the majority

of genetic variation in child data. In contrast, the adult BMI

predictor only explained a small fraction of genetic variation

in child BMI. This makes sense in terms of our genetic sta-

bility and extends our understanding of its nature. Genetic

correlations suggest that virtually the same variants influ-

ence individual differences in anthropometric traits through-

out life. However, polygenic prediction suggests that for

height, the effect of the same variants is largely as important

in childhood as it is in adulthood. The same is not true for

BMI, where the effect of the same variants change greatly

from childhood to adulthood. This is supportive of previ-

ously reported longitudinal changes in BMI within a

Swedish population where polygenic score acquired at age

25 predicted � 10% in older adults.11 Of note, when we

tested the same hypothesis in reversed order, i.e. using child

polygenic score to predict adult height/BMI, we found much

lower estimates for both height and BMI (10% and 2%, re-

spectively). The substantial drop was almost certainly driven

by the less accurate predictor, as the TEDS sample is only a

half of the TwinGene sample.

In conclusion, we used GREML-GCTA and LD score re-

gression to show strong genetic stability between children in

the UK and older adults in Sweden. We have shown that

genetic stability not only spans across a 50-year age gap but

also across geographical distance. Furthermore, just as was

previously reported in a study of long-term genetic stability

of cognitive abilities,13 genetic stability of anthropometric

traits across two European populations suggests that more

than half of genetic influence in late adulthood is the same

as that influencing individual differences in childhood.

Finally, we have also shown that, for height, the influence

of these variants does not change much across the human

life span, whereas it changes substantially for BMI.

Supplementary Data

Supplementary data are available at IJE online.
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