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The need to reduce the rate of preterm delivery and the

recent emergence of technologies that measure hun-

dreds of biological analytes (eg, genomics, transcriptom-

ics, metabolomics, proteomics; collectively referred to as

“omics approaches”) have led to proliferation of poten-

tial diagnostic biomarkers. On review of the literature,

a concern must be raised regarding experimental design

and data analysis reporting. Specifically, inaccurate per-

formance has often been reported after selective exclu-

sion of patients around the definition boundary of

preterm birth. For example, authors may report the per-

formance of a preterm delivery predictor by using pa-

tients who delivered early preterm compared with

deliveries at 37 weeks of gestation or greater. A key prin-

ciple that must be maintained during the development of

any predictive test is to communicate performance for all

patients for whom the test will be applicable clinically

(ie, the intended-use population), which for prediction

of preterm birth includes patients delivering throughout

the spectrum of gestational ages, as this is what is to be

predicted, and not known at the time of testing. Using

biomarker data collected from the U.S.-based Proteomic

Assessment of Preterm Risk clinical trial, we provide ex-

amples where the area under the receiver operating

characteristic curve for the same test artifactually im-

proves from 0.68 (for preterm delivery at less than 37

weeks of gestation) or 0.76 (for preterm delivery at less

than 32 weeks of gestation) to 0.91 when patients who

deliver late preterm are excluded. We review this phe-

nomenon in this commentary and offer recommenda-

tions for clinicians and investigators going forward.
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P reterm delivery, which refers to delivery before 37
weeks of gestation, affects 15 million neonates

born each year and varies from approximately 5–
18% of all births across different geographies world-
wide.1 In the United States, it is the leading cause of
neonatal death and the second leading cause of death
in children before age 5 years. Preterm delivery is also
a major source of long-term health consequences,
including chronic lung disease, hearing and visual im-
pairments, and neurodevelopmental disabilities such
as cerebral palsy. The health-economic effects of pre-
term delivery in the United States was estimated to be
between $26 and $31.5 billion2,3 and costs continue to
rise in most countries.4

Obstetric care providers routinely evaluate risk of
preterm delivery using prior pregnancy history and
cervical length, the two strongest traditional predic-
tors of subsequent spontaneous singleton preterm
delivery. Unfortunately, calculations based on pub-
lished data5,6 reveal that the risk factor of prior spon-
taneous preterm delivery is present in only 11% of all
singleton pregnancies that result in spontaneous pre-
term delivery. Furthermore, calculations based on
data from Hassan et al7 indicate cervical length, as
an independent predictor for spontaneous preterm
delivery, only provides an additional attributable risk
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of 6%. Although racial disparities and risk factors,
such as low socioeconomic status, maternal age, and
low maternal body mass index (BMI), have been iden-
tified,8,9 up to 50% of all preterm deliveries occur in
women without any evident risk factors.10 Clearly,
there is a need for improved prediction of this serious
health condition.

Interest in assessing the risk of preterm delivery
and the development of technologies that measure
hundreds of biological analytes (eg, genomics, tran-
scriptomics, metabolomics, proteomics; collectively
referred to as “omics approaches”) have greatly
increased the discovery of potential predictive bio-
markers. However, biomarker predictive performance
is sometimes determined after selective exclusion of
cases adjacent to the clinical definition boundary for
preterm delivery. For example, authors may report
the performance of a preterm delivery predictor by
using patients who delivered early preterm compared
with deliveries at 37 weeks of gestation or greater. Best
practices for development of omics tests were format-
ted into guidelines by the National Academy of Med-
icine’s Committee on the Review of Omics-based tests
in 2012.11 Amongst many elements described in this
authoritative publication was the requirement of dem-
onstrating test performance in the intended-use popu-
lation, which in the context of preterm delivery
prediction covers patients destined for delivery at all
gestational ages after screening.

CHARACTERISTICS OF PREDICTIVE TESTS

The receiver operating characteristic (ROC) curve
formed from the sensitivity and specificity along the
continuum of possible test scores provides a good
representation of the predictive characteristics of a test
(Fig. 1C, F, and I).12 The area under the ROC curve
(AUC) represents the overall predictive ability of the
test, with an AUC of 0.5 indicating no predictive abil-
ity and an AUC of 1.0 representing perfect predictive
ability. When developing such a ROC curve for preg-
nancy outcomes such as preterm delivery, investiga-
tors perform the test on a cohort of women and then
follow them until delivery. Once all the enrolled pa-
tients deliver, the investigators divide the patients into
those with the outcome (case participants) and those
without the outcome (noncase participants). All of the
enrolled patients who were not lost to follow-up
should be categorized as either case or noncase par-
ticipants. When developing predictive tests for pre-
term birth earlier than 37 0/7 weeks of gestation,
some studies have reported biomarker and algorithm
performance after selective exclusion of patients adja-
cent to the definition boundary of 37 weeks of gesta-

tion. For example, some investigators have
published13–18 or presented (Weiner et al. Future-
birthTM—prediction of future preterm birth ,33w
and preeclampsia/eclampsia ,34w by 16w using
a novel test in asymptomatic women. Am J Obstet
Gynecol 2017;216:S196 [abstract]) test performance
by comparing term delivery with preterm deliveries
before an early gestational age cutoff (eg, less than 32,
34 or 35 weeks of gestation), or by omitting early term
deliveries (eg, 37 and 38 weeks of gestation).16

Another more subtle form of gapping can also be
found in the recent report by Jelliffe-Pawlowski
et al,16 where very early preterm deliveries (less than
32 weeks of gestation) were included at an unnatural
equivalent proportion relative to late preterm deliver-
ies (32–36 weeks of gestation). The resulting study
distribution of preterm births by gestational age week
includes an unnatural flattening in birth rate creating
in essence a partial gap. The issue that must be real-
ized, however, is that such limitations of gestational
age within the study population (eg, less than 32, 34,
or 35 vs greater than 37 weeks of gestation) necessar-
ily exclude a whole group of patients and their out-
comes, which artificially inflates the apparent test
performance metrics (eg, AUC). To illustrate the
effect of gapping on test performance, we used actual
biomarker data from a previous study19 and simulated
diagnostic performance with and without gapping.

ROLE OF THE FUNDING SOURCE

Sera Prognostic data and analytical support were used
to bring attention to this important issue of gapping.
Each author participated in conceptualizing the ideas
in this manuscript, designing the analysis, drafting the
manuscript, editing, and approving the final, sub-
mitted version. Ms. Burchard performed the statistical
analyses. Each author declares that Good Publication
Practice (GPP3) guidelines have been maintained.
Specifically, the authors had access to relevant aggre-
gated study data and other information (such as study
protocol, analytic plan and report, validated data
table, and clinical study report) required to under-
stand and report research findings. The authors take
responsibility for the presentation and publication of
the research findings, have been fully involved at all
stages of publication and presentation development,
and are willing to take public responsibility for all
aspects of the work. All individuals included as
authors and contributors who made substantial intel-
lectual contributions to the research, data analysis,
and publication or presentation development are
listed appropriately. The role of the sponsor in the
design, execution, analysis, reporting, and funding is
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fully disclosed. The authors’ personal interests, finan-
cial or nonfinancial, relating to this research and its
publication have been disclosed.

METHODS

Simulation of Test Performance

In a real-world unselected general population, the
number of births increases with gestational age and

peaks at full term (;40 weeks of gestation).20 Accord-
ing to current practice and definitions, less than 37 0/7
weeks of gestation vs 37 0/7 weeks of gestation or
greater is the dividing point by which preterm vs term
births are defined (Fig. 1). Serum biomarker data,
based on the ratio of insulin-like growth factor-
binding protein 4 and sex-hormone binding globulin
serum levels, were derived from analyses done on

Fig. 1. Magnitude of erroneous estimation of test performance as a result of exclusion of patients. Shown are the dis-
tributions of gestational age at birth (A, D, and G), distributions of test scores by case–control status (B, E, and H), and
corresponding actual, ungapped (C, F) or erroneous, gapped (I) test performance as estimated by area under the curve
(AUC). A–C. All patients are included; case group, preterm birth at less than 37 weeks of gestation; control group, term birth
at 37 weeks of gestation or greater. D–F. All patients are included; case group, preterm birth at less than 32 weeks of
gestation; control group, births at 32 weeks of gestation or greater. G–I. Patients with gestational age at birth 32 weeks of
gestation or greater through less than 37 weeks of gestation are excluded; case group, preterm birth at less than 32 weeks
of gestation; control group, term births at 37 weeks of gestation or greater.
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blood drawn in weeks 19 and 20 of gestation from pa-
tients in the U.S.-based Proteomic Assessment of Preterm
Risk clinical trial with singleton pregnancies not on pro-
gesterone after the 1st trimester and without signs or
symptoms of labor at the time of blood draw. Simula-
tions expanded a selected case–control study of 146 pa-
tients (41 preterm case participants and 105 control
participants matched for distributions of BMI and ges-
tational age at blood draw) by 5 times. The simulation
process maintained the characteristics of the original data
set with respect to gestational age and biomarker corre-
lation and variability while increasing statistical power to
80% for detection of an AUC difference of 0.1 with
P,.05 by DeLong’s test,21 a nonparametric approach to
compare AUCs. The effects of an artificial gap on cal-
culated performance metrics for a simulated test was
modeled and is illustrated by the separation of the case
participants’ and control participants’ test scores and by
the corresponding AUCs. One thousand repetitions were
performed, and a representative example was selected
showing AUCs within their interquartile ranges for the
proper intended-use population and for the same popu-
lation where an artificial gap is created, with the differ-
ence between these AUCs at the median. Prevalence
adjusted risk curves were generated from the intended-
use population and from an artificially gapped popula-
tion. A standard calibration plot was used to compare
predicted and observed risk of preterm birth.22 Analyses
were performed in R 3.5.1 using the pROC package for
AUC and the givitiR package for calibration plots.

Modeling Results

In the example data, the test demonstrates moderate
performance using the current practice definition of less
than 37 0/7 weeks of gestation vs 37 0/7 weeks of
gestation or greater (Fig. 1B and C) and improved per-
formance by lowering the boundary of case and noncase
participants (less than 32 0/7 weeks of gestation vs 32 0/
7 weeks of gestation or greater) and performing the
analysis correctly without exclusion of patients (Fig. 1E
and F). To illustrate the effect of gapping for a test in-
tended to predict preterm delivery before 32 weeks of
gestation, we then examined apparent performance with
omission of births between 32 and 37 weeks of gestation
(Fig. 1H and I). The omitted patients (Fig. 1G; hashed
line) comprise approximately 8% of the total population
and more importantly nearly 84% of all preterm
births.20 As illustrated in Figure 1H selective exclusion
of patients widens the separation of case participants’
and control participants’ test scores. This results in an
artifactual improvement in AUC to 0.91 (95% CI 0.85–
0.97) for the gapped population compared with a correct
AUC of 0.68 (95% CI 0.63–0.72) for preterm delivery at

less than 37 weeks of gestation and a correct AUC of
0.76 (95% CI 0.68–0.84) for preterm delivery at less than
32 weeks of gestation in the proper intended-use popu-
lation (Fig. 1C, F, and I). The difference in AUC in
Fig. 1C compared with 1F does not show significance
(DeLong’s test, P5.065); differences in AUC for Fig. 1I
compared with 1C or 1F are significant (DeLong’s test,
P,.001 and P5.002, respectively). The artifactual
increase of 0.23 in AUC on gapping shown in Figure 1
is consistent with changes seen across 1,000 simulations
(median 0.22, interquartile range 0.20–0.25). The effect
on test performance can also be visualized using

Fig. 2. Magnitude of agreement between predicted and
observed risk as a result of exclusion of patients. Shown are
predicted vs observed risks of preterm delivery when risks
are calculated from an ungapped analysis (A, B) or gapped
analysis (C, D), applied to a full intended-use population. A.
Risk of preterm delivery at less than 37 weeks of gestation
when all patients are included in test development. B. Risk of
preterm delivery at less than 32 weeks of gestation when all
patients are included in test development. C. Risk of preterm
delivery at less than 37 weeks of gestation when patients
with gestational age at birth 32 weeks of gestation or greater
through less than 37 weeks of gestation are excluded in test
development. D. Risk of preterm delivery at less than 32
weeks of gestation when patients with gestational age at birth
32 weeks of gestation or greater through less than 37 weeks
of gestation are excluded in test development. Red diagonal
lines represent perfect calibration of risk. The 80% and 95%
CIs of the relationship between predicted and observed risk
are represented by the width of the light gray and dark grey
shaded areas, respectively.

Boniface. Selective Exclusion in Preterm Birth Test Performance.
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a calibration curve constructed from predicted and
actual preterm delivery risk.22 In such an analysis, the
test is considered accurate when the predicted risk falls
on the diagonal. On the other hand, when predicted risk
falls above or below the diagonal the test underpredicts
or overpredicts risk, respectively. Actual risk of preterm
birth at less than 32 or less than 37 weeks of gestation is
quite similar to the predicted risk when prediction is
based on test scores of case and noncase patients repre-
senting the full intended-use population (Fig. 2A and B).
However, predictions based on patients with an artificial
gap in gestational age between case and noncase partic-
ipants greatly underestimate the risk of preterm birth at
less than 37 weeks of gestational age while overestimat-
ing by several fold the risk of preterm birth at less than
32 weeks of gestation at high test scores (Fig. 2C and D).

CLINICAL IMPLICATIONS

Recent progress in omics has provided exciting and
novel opportunities for the development of innovative
clinical tests. Amid this justified excitement, vigilance
must be maintained by the scientific and clinical
community in reporting and reviewing the conclu-

sions of studies promoting biomarker performances.
In this article, we address a concern that is critical to
the validity of reports on biomarker performance for
preterm delivery: the insertion of a gestational age gap
in the study population does not allow for accurate
estimates of predictive performance. The simulations
based on actual data illustrate how “gapping” of the
study population results in artifactual test perfor-
mance for preterm birth prediction. Building esti-
mates of AUC, sensitivity, specificity and predictive
values in the context of selective exclusion of certain
patients is inappropriate, because a prediction cannot
be built for an intended-use population when it does
not account for all such patients who will, in fact, exist
in the population of patients to be tested. The perfor-
mance of a test for the most severe preterm births
should be determined by lowering the case and on-
case boundary without omission of patients, as exem-
plified in Figures 1D, E, and F and 2B. The errors
associated with “gapping” are not trivial and can have
significant implications in both clinical practice and
research. As exemplified here, gapped analyses may
lead to overestimation of the test predictive abilities,

Table 1. Study Design and Analysis Considerations for the Test Characteristics to Be Clinically Applicable

Principle Examples of Good Practice Examples of Poor Practice

The outcome to be predicted (case status)
and the comparison group (control
status) must be appropriately defined,
and study participants must be
representative of the intended-use
population (patients to be tested).

Case participants are defined as those who
deliver before a specific gestational age
(eg, 32, 35, 37 wk), and control
participants (ie, noncase participants)
are defined as those who deliver on or
after the specific gestational age case
definition without a gap.

Case participants are defined as those who
deliver before a specific gestational age
(eg, 32, 35, 37 wk), and control
participants are defined as those who
deliver on or after a later gestational age
with a gap between case and control
participants.

The phenotypic distribution of case and
control participants should match that of
the intended-use population: eg,
preterm delivery vs nonpreterm delivery
(which includes any pregnancy
complications other than preterm
delivery, such as preeclampsia).

Case or control participants included in
the analysis are enriched at unnatural
distributions of gestational ages at birth
(eg, very early preterm births and late
preterm births are present at a 50:50
ratio, or control gestational ages peak
earlier or later than occurs naturally).

Case participants are defined as those with
PTDs, and control participants are
defined as those with term births
without preeclampsia.

Data analysis is conducted in a manner to
be reflective of application of the test to
the defined intended-use population
(patients to be tested).

Analyzing the tables of performance and
the ROC curve, the total number of case
and control (noncase) participants
should be stated and should equal all
the patients enrolled (with the exception
of those lost to follow-up) who meet the
intended-use population criteria,
without exclusions based on times of
delivery.

ROC curves and performance data are
generated on a selected subset of
patients who no longer represent the
intended-use population.

PTD, preterm delivery; ROC, receiver operating characteristic.

VOL. 134, NO. 6, DECEMBER 2019 Boniface et al Selective Exclusion in Preterm Birth Test Performance 1337



which can lead to introduction of an ineffective test,
overdiagnosis and unnecessary treatments, ultimately
increasing cost and harm. Gapped analyses may be
appropriate as proof of concept or for preliminary
evidence to support further research, but such reports
cannot imply clinical test performance nor be
described as “clinical validation.”

When evaluating preterm delivery prediction, it is
important to clarify what is meant by a control partici-
pant. In such an analysis, control participant does not
refer to a patient who has a normal pregnancy. A con-
trol participant is a patient who is not a case participant,
that is, does not have the outcome being predicted. For
the same reasons outlined above regarding gestational
age gapping, it would be inappropriate to exclude pa-
tients who had a pregnancy complication (eg, pre-
eclampsia) from the control group (or noncase group)
when developing tests to predict preterm birth. To pre-
vent any confusion, we suggest using case participant
vs noncase participant to refer to those who have the
outcome to be predicted and those who do not, rather
than case participant and control participant.

When clinicians evaluate reported characteristics
of any test to predict preterm delivery, we suggest
following the checklist provided in Table 1. Although
we focused on gestational age gapping in preterm
delivery prediction, these principles apply equally to
studies of other adverse outcomes in pregnancy that
are influenced by gestational age, such as preeclamp-
sia (early onset vs late onset), intrauterine growth dis-
orders, and other complex maternal conditions that
would mandate preterm delivery.
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