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Intrauterine growth restriction (IUGR) is strongly associated with obesity in adult life. The mechanisms contributing to the
onset of IUGR-associated adult obesity have been studied in animal models and humans, where changes in fetal adipose
tissue development, hormone levels and epigenome have been identified as principal areas of alteration leading to later life
obesity. Following an adverse in utero development, IUGR fetuses display increased lipogenic and adipogenic capacity in
adipocytes, hypoleptinemia, altered glucocorticoid signalling, and chromatin remodelling, which subsequently all contribute to
an increased later life obesity risk. Data suggest that many of these changes result from an enhanced activity of the adipose master
transcription factor regulator, peroxisome proliferator-activated receptor-γ (PPARγ) and its coregulators, increased lipogenic
fatty acid synthase (FAS) expression and activity, and upregulation of glycolysis in fetal adipose tissue. Increased expression of
fetal hypothalamic neuropeptide Y (NPY), altered hypothalamic leptin receptor expression and partitioning, reduced adipose
noradrenergic sympathetic innervations, enhanced adipose glucocorticoid action, and modifications in methylation status in the
promoter of hepatic and adipose adipogenic and lipogenic genes in the fetus also contribute to obesity following IUGR. Therefore,
interventions that inhibit these fetal developmental changes will be beneficial for modulation of adult body fat accumulation.

1. Introduction

Obesity refers to excessive adipose tissue accumulation and
is defined by the World Health Organization (WHO) as a
body mass index (BMI: weight (kg)/length (m2)) greater
than or equal to 30 [1]. Obesity has been declared a major
health problem and its incidence has more than doubled
worldwide since 1980 with over 200 million men and
nearly 300 million women being classified as obese in 2008
according to the WHO. Obesity is associated with numerous
adverse health consequences, including type 2 diabetes,
insulin resistance, hypertension, cardiovascular disease, and
certain cancers [2, 3]. The direct costs associated with obesity
were estimated to account for between 0.7% and 2.8% of
a country’s total healthcare expenditures with medical costs
of obese individuals being approximately 30% greater than
their normal weight peers [4]. Thus, social and economic

costs related to obesity in developed countries are now well
recognized.

It has been reported that the current intervention
strategies to prevent and manage obesity and its associated
diseases are limited to postnatal life with focus on exercise,
salt intake, dietary interventions, and smoking cessation
[5]. These interventions have limited success and it is not
surprising that the battle against obesity and its associated
diseases particularly in wealthy industrialized countries is
currently being lost. Gluckman and Hanson [5] suggest that
it is important to refocus on maternal health and nutrition
issues during pregnancy, which are now considered to play a
major role in the onset of obesity.

In this review we summarize epidemiological and animal
studies linking adverse in utero environments, particularly
IUGR, to postnatal adipose tissue accumulation. We also
highlight potential mechanisms underlying links between
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IUGR and the long-term adipose tissue expansion and
emphasize some ideas for further research in IUGR models.

2. The Fetal Programming Concept

The term programming in the broad sense was suggested
by Lucas [6], to name the process by which a stimulus or
insult during critical periods of life results in long-term
consequences such as induction, deletion, or impairment of
a somatic structure or alteration of a physiologic function.
Earlier animal experiments reported the early environment
to be a major determinant of growth and form [7]. Human
cohort studies also reported an inverse association between
birth weight and systolic blood pressure in 36-year-old men
[8]. It was in the early 80s that the “fetal programming” and
“early life origins of adult diseases” concepts as proposed
by David Barker and colleagues really began to cement
the importance of the in utero environment. Barker and
colleagues proposed that environmental factors, particularly
nutrition, act in early life to program the onset of cardio-
vascular disease in early adult life and premature death as
the consequence [9]. This association has been postulated to
be an adaptive response to a suboptimal fetal environment
protecting the growth of key organs such as brain to the
detriment of others such as liver and resulting in an altered
postnatal metabolism. These adaptations, termed the “thrifty
phenotype” [10], serve the purpose of enhancing prenatal
survival under conditions of intermittent or poor nutrition
[11]. However when nutrition is more abundant in the
postnatal environment than in the prenatal environment,
the changes adopted by the fetus before birth may lead to
a nutritional mismatch between energy intake, storage, and
expenditure, resulting in a subsequent increase in disease
risk [11]. Fetal programming is a concept that thus identifies
in utero environmental conditions as key determinants for
the increased risk of diseases later in life. Epidemiological
observations as well as clinical and animal studies worldwide
support the concept of fetal programming as the origin of
a number of diseases including obesity, insulin resistance,
and noninsulin-dependent diabetes [12–15]. Specifically,
the “early life origins of obesity” concept has led to the
hypothesis that exposure to excessive or deficient nutrition
before birth alters the development of the fat cell, the
adipocyte, in utero and results in a permanent increase in the
capacity to form new cells in adipose depots or to store lipid
in existing adipocyte in postnatal life [16].

3. Adipose Tissue

3.1. The Different Types of Adipose Tissue. Two types of
adipose tissue, white adipose tissue (WAT) and brown
adipose tissue (BAT), coexist in most mammalian species.
WAT has an essential role in energy storage by providing
long-term fuel reserve in the form of triacylglycerols, which
can be mobilized during food deprivation with the release
of fatty acids for oxidation in others organs [18]. BAT, on the
other hand, is specialized in the dissipation of energy through
the production of heat [19].

The WAT is made up of unilocular adipocytes, which
contain a single large lipid vacuole that pushes the cell
nucleus against the plasma membrane [20]. The biogenesis
of white adipocytes comprises the generation of committed
adipocyte precursors (or preadipocytes) and the terminal
differentiation of these preadipocytes into mature functional
adipocytes [21]. This is accompanied by the expression of
adipogenic and lipogenic transcription factors including per-
oxisome proliferator-activated receptor-γ (PPARγ), PPARδ,
CCAAT/enhancer binding proteins (C/EBPα, β, δ), and the
sterol regulatory element-binding protein 1 (SREBP1) and
the expression of specific lipid-metabolizing enzymes such
as FAS [22–26]. These transcription factors appear to be
part of a cascade in which PPARγ is the master regulator
with its activity modulated by selecting corepressors and
coactivators including SRC1 (steroid receptor coactivator
1), SIRT1 (an NAD+-dependent histone deacetylase and
chromatin-silencing factor), NCoR (nuclear receptor core-
pressor), and SMRT (silencing mediator for retinoid and
thyroid hormone receptor) [27, 28]. Following this gene
regulation cascade, the adipogenesis process ends with the
establishment of the endocrine function characterised by the
production of the adipocyte-specific hormone, leptin [29].
Leptin circulates at levels proportional to body fat and acts
on the central nervous system to regulate energy intake and
expenditure, through binding with neuropeptide Y (NPY)
neurons producing a feeling of satiety.

In mammals, WAT is distributed unevenly through the
body and is represented by two main fat depots, which are
defined by their location: subcutaneous and visceral [30]. In
humans, subcutaneous depots consist of adipose tissue under
the skin in primarily the buttocks, thighs, and abdomen. Vis-
ceral adipose tissue depots include the mesenteric, omental,
perirenal, retroperitoneal, and pericardial fat stores [31]. In
sheep, a large animal model of adult onset obesity, WAT is
present in the omental, subcutaneous and hindlimb regions
[32–34]. WAT depots in rodents (rats and mice), exist in
two main subcutaneous fat depots, one anterior and one
posterior, lying in discrete anatomical sites [35]. The anterior
depot is complex, occupying the dorsal body region between
and under the scapulae, the axillary and proximal regions
of forelimbs, and the cervical area. The posterior depot
is located at the base of hind legs and at dorsolumbar,
inguinal, and buttock regions. The visceral adipose depots
similarly to humans, are located in thoracic and abdominal
cavities: mediastinic, mesenteric, retroperitoneal, perirenal,
and perigonadal depots.

The second type of adipose tissue, the BAT, is specialized
in the dissipation of energy through the production of heat
[19]. It is characterised by having a dark color compared to
WAT, which arises from its vascularization and numerous
mitochondria [36, 37] and appears to have a denser nerve
supply than WAT [38]. In BAT, multilocular adipose
cells usually contain many small vacuoles of lipid and
large mitochondria with closely packed parallel cristae
[39, 40], where the uncoupling protein 1 (UCP1) is highly
expressed and is regarded as a BAT-specific marker [41]. In
conjunction with UCP1, a number of other genes including
type 2 iodothyronine deiodinase, the transmembrane
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Figure 1: Developmental stages of adipose tissue (adapted from Brooks and Perosio, [17]). Phase 1: emergence of loose connective tissue
composed of an amorphous ground substance and stellate cells (filed). Phase 2: aggregates of mesenchymal cells (filed) are condensed around
proliferating primitive blood vessels (bold ovals). Phase 3: mesenchymal cells differentiating into stellate preadipocytes within a glomerulus.
Phase 4: appearance of adipocytes with multiple small lipid droplets closely packed around the capillaries. Phase 5: fat lobule with many
unilocular cells (clear circles) is evident. This developmental process (phase 1 to 5) occurs between the 14- and 23-week gestation period.
From 23 to 29 weeks, the number of fat lobules is relatively constant. From the 23rd to 29th week and throughout postnatal life, the growth of
adipose tissue is determined mainly by an increase in size of the fat lobules arising from adipocyte hypertrophy and enlargement of adipose
capillaries.

glycoprotein Elovl3, the fatty-acid-activated transcription
factor peroxisome proliferator-activated receptor-α
(PPARα), the nuclear coactivator peroxisome proliferator-
activated receptor-γ coactivator 1α (PGC-1α), and
developmental homeobox genes HoxA1 and HoxC4
are preferentially expressed in BAT [37, 42]. By way of
comparison, expression of leptin, the nuclear corepressor
RIP140, matrix protein fibrillin-1, and developmental
human genes HoxA4 and HoxC8 in BAT are low compared
to their greater expression observed in WAT [37, 42].

It has long been assumed that white and brown
adipocytes share a common developmental origin and
also undergo a very similar program of morphological
differentiation controlled by PPARγ and members of the
C/EBP family of transcription factors [43]. However, recent
studies indicate that brown adipocytes arise from tripotent
engrailed-1-expressing cells in the central dermomyotome
through a dynamic involvement of the PRD1-BF-1-RIZ1
homologous domain-containing protein-16 (PRDM16) [43,
44]. In addition, PRDM16 coactivates the transcriptional
activity of PGC-1α, PGC-1β, PPARα, and PPARγ through
direct interaction and thus drives preadipocytes develop-
ment into brown adipocytes [43]. This differential origin is
probably determinative for the evolutionary role of BAT and
WAT in mammals.

In the human fetus and newborn, BAT is located mainly
in the cervical, axillary, perirenal, and periadrenal depots
[45, 46] and plays an important role in nonshivering heat
production during neonatal life and thus provides protection
against lethal cold exposure (hypothermia). In adults, the
depots of BAT are found in a region extending from the neck
to the thorax, especially in interscapular, supraclavicular,
cervical, axillary, and paravertebral regions [47, 48] and these

depots are now understood to be associated with body weight
regulation [49]. In comparison, BAT in rodents is located
mainly in the upper back region (interscapular BAT) [50]
and first appears during the last days of gestation, matures
during the neonatal period, and remains at a relatively stable
level for the life span of animals [51]. BAT is also visible in the
subcutaneous anterior depot and mediastinic and perirenal
sites in adult rodents maintained in normal conditions [35].
In other species, the situation is quite different. For example,
lambs are born with almost 100% BAT [52, 53], with
majority of this adipose tissue located around the kidneys
[33, 34]. Postnatally in young life, BAT localization becomes
the sternal, clavicular, pericardial, and epicardial depots in
addition to the perirenal depot [34].

3.2. Ontogeny of Adipose Tissues. Adipocytes in WAT are
generally described to be derived from mesenchymal stem
cells (MSCs). These themselves are thought to arise from
mesoderm, although an alternative source of MSCs, as
well as adipocytes, from the neural crest has recently
been demonstrated [21]. Adult adipose tissue develops
as a continuous process; however, prenatal adipose tissue
formation can be divided into five morphogenic phases
strongly associated with the formation of blood vessels
(Figure 1). These five stages include (1) the emergence of
loose connective tissue, (2) proliferation of primitive vessels
associated with mesenchymal condensation, (3) mesenchy-
mal cells differentiating into stellate preadipocytes within a
vascular structure or glomerulus, (4) appearance of fine fat
vacuoles in cell cytoplasm of mesenchymal lobules, and (5)
fat lobules well separated from each other by dense septae
of perilobular mesenchymal tissue [54]. Fat lobules are the
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earliest structures to be identified before the appearance of
typical vacuolated fat cells [55]. In humans, white fat lobules
appear first in the face, neck, breast, and abdominal wall at 14
weeks gestation [55]. By 15 weeks, they are also evident over
the back and shoulders and further development of white
fat lobules in the upper and lower extremities and anterior
chest begins around this time. After the 23rd week, the total
number of fat lobules remains approximately constant, while
from the 23rd to 29th week, the growth of adipose tissue is
determined mainly by an increase in size of the fat lobules.

In comparison, three distinct stages of prenatal WAT
differentiation are postulated in rats [56]. In stage 1, a
sparse network of large capillaries develops. In stage 2,
most of cells are spindle-shaped cells and surrounding
connective tissue contains very few blood vessels followed
by capillary bed formation. Stage 3 is characterized by a
mature capillary bed and rounded adipocytes. The earliest
embryonic subcutaneous adipose cells are detected at days
15-16 of gestation (length of gestation ∼21–23 days) [57].
Perirenal adipose tissue in rat appears mainly around birth,
that is, 12 hours before and after birth [58]. Only two to five
days separate the formation of first perirenal adipose cells
and the appearance of mesenteric fat cells that develop the
last. As a consequence, minimal amounts of adipose tissue
(1%) are deposited prior to birth and maturation of this
tissue primarily occurs postnatally [59].

In rats the brown adipocyte precursors are parenchymal
spindle cells closely related to a network of capillaries
[60]. As the cells and vessels proliferate, they are organized
into lobules by connective tissue septa. When the cells
start accumulating lipid, they initially are unilocular, but
with further lipid accumulation, multiple cytoplasmic lipid
vacuoles appear. BAT formation takes place in the scapula of
rats between day 15 to 17 of gestation [60, 61] and is present
throughout life [50]. Human studies are not as specific as in
rats; however studies suggest that fetal BAT is observed in the
cervical, thoracic, and abdominal viscera and at the shoulder
girdle and neck at approximately 23 weeks of pregnancy [62].

In the postnatal environment, expansion of adipose tis-
sue occurs mainly after birth through increases in adipocyte
size and enlargement of adipose capillaries (Figure 1) under
the actions of enzymes such as lipoprotein lipase, a regulator
of adipocyte lipid filling [63, 64]. Adipocyte hyperplasia
following birth appears limited; however studies do report its
activation for the renewal of adipocytes [65] suggesting that
WAT and BAT in humans, as well as in rodents, still contain
precursor cells capable of differentiating into adipocytes at
adulthood [66–68].

4. Long-Term Consequences of IUGR on
Adipose Tissue Development

IUGR or fetal growth restriction (FGR) which refers to
a fetus that fails to meet its genetic growth potential, is
characterized by a weight at or below the 10th percentile
for gestational age and affects approximately 7–15% of
pregnancies worldwide [69]. The association between IUGR
and the postnatal development of obesity has been reported
in human epidemiological studies and in animal models

[70, 71] and their interaction is postulated to be a major
contributor to the current global obesity epidemic [5, 70].

4.1. Effects of IUGR and Low Birth Weight on Long-Term
Adipose Tissue Expansion in Animal Models. A number of
animal models have been developed to examine the effects of
in utero insults such as maternal undernutrition and placen-
tal insufficiency on the long-term adipose tissue expansion
and function. In the frequently used rodent maternal low-
protein model (50% protein restriction during gestation),
IUGR and subsequent obesity have been reported [14, 72–
75]. While protein restriction in pregnancy itself is sufficient
to lead to obesity, this effect is enhanced by overfeeding
during the suckling, proving the concept of the nutritional
mismatch [74–76]. Further, maternal undernutrition as a
nutritional manipulation is characterized by a global dietary
restriction during pregnancy and also results in low weight at
birth and later obesity in rats [77]. In pigs, low protein diet
(6% protein versus 12%) throughout pregnancy results in
decreased body weight of piglets at birth and increased WAT
percentage at 188 days of age [78]. Moreover, IUGR occurs
spontaneously in pigs and these low-birth-weight piglets also
display significant higher body fat at 12 months compared
to normal-birth-weight piglets [79], highlighting common
mechanisms at play between a reduced protein supply in
utero and a reduced placental exchange capacity as occurs in
spontaneous IUGR [80]. In addition, placental insufficiency
results in reduced birth weight, increased early postnatal
growth, and increased visceral adiposity in adolescent sheep
and in young and adult rat offspring [81, 82].

The idea that BAT deposition may change in response
to suboptimal in utero environment as IUGR and that this
adaptation is perpetuated through the life cycle, thereby
suppressing energy expenditure and ultimately promoting
later obesity, is currently emerging. In the sheep model, pla-
cental restriction alters feeding activity, which increases with
decreasing size at birth and is predictive of increased postna-
tal growth and adiposity including the perirenal adipose tis-
sue [83], a depot that displays characteristic of BAT in young
sheep [34]. Prenatal nutrition regulates BAT development
as studied in fetuses from arginine-treated underfed ewes
compared with fetuses from saline-treated underfed ewes
[84]. Existing data indicate that nutrient availability during
the intrauterine life, independently of fetal growth, deter-
mines BAT development and the control of energy utilization
during postnatal life period. Indeed, it has been demon-
strated that feeding pregnant mice with the low-protein diet
throughout gestation results in an unchanged BAT mass and
a significantly increased expression of UCP1 in interscapular
brown adipose tissue in adult female offspring when com-
pared to normal offspring [85]. It should be noted that in
this study, the protein restricted offspring did not display a
reduced fetal growth or low birth weight. In contrast, in a
female rat offspring born with normal weight, the intrauter-
ine malnutrition resulted in lower BAT deposition accompa-
nied with an increased WAT adiposity at 53 days of age [86].
The programming of BAT is therefore an exciting area that
warrants further studies into the effects of IUGR or low birth
weight upon postnatal BAT growth and metabolism.
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Figure 2: Schematic overview depicting key postulated molecular changes in adipose tissue and in hormonal status in the fetus and that may
be involved in the development of later obesity following intrauterine growth restriction. For full explanation and definitions, see (Section 5).
TGF-α1 (transforming growth factor alpha-1), CTGF (connective tissue growth factor), CYR61 (cysteine-rich, angiogenic inducer, 61),
dermatopontin, and chymase-1.

4.2. Human Low Birth Weight and Later Adipose Tissue Accu-
mulation. The first studies addressing low birth weight as a
result of fetal growth restriction leading to the subsequent
expansion of adipose tissue in adults utilised data obtained
from the studies of the offspring born following the Dutch
famine of 1944-1945 [87]. Exposure to the famine during
the first half of pregnancy resulted in low birth weight and
this was significantly associated with higher obesity rates and
more truncal and abdominal fat distribution in men at 19
years of age. A subsequent study of this cohort reported a
higher BMI and waist circumference in 50-year-old women
exposed to the famine in early gestation (first trimester) com-
pared to nonexposed women [12]. The association between
low birth weight and later adiposity is also highlighted by
studies in a biethnic population (Mexican-American and
non-Hispanic white) in the United States. In these studies,
normotensive and nondiabetic adult individuals whose birth

weight was in the lowest tertile have a significantly greater
truncal fat deposition pattern (+14%, measured through the
subcapsular-to-triceps skinfold ratio) than individuals whose
birth weight was in the highest tertile independently of sex,
ethnicity, and current socioeconomic status [88].

5. Intrauterine Mechanisms behind In Utero
Programming of Later Adiposity

Animal and human studies have focused on several intrauter-
ine mechanisms that may program the fetal adipose tissue
for later obesity. Specifically, changes in fetal adipose tissue
morphology and metabolism, altered pathways regulating
appetite, and modification of hormone levels and epigenome
in the fetus have been highlighted as critical regulators in the
development of obesity following IUGR (Figure 2).
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5.1. The Role of Fetal Adipose Development in the Later Expan-
sion of Adipose Tissue. Emerging evidence from animal
studies indicates that an increased prenatal adipocyte differ-
entiation and lipogenesis likely promotes the development of
later obesity in IUGR offspring [28, 89]. Such effects imply
an early induction of adipose PPARγ activity concomitantly
with an upregulated expression of its coactivator SRC1 and
its downstream regulatory transcriptional factors (CEBPα,
β, δ, and the retinoid X receptor α) and a downregulation
of hormone-sensitive lipase (HSL), an enzyme favouring
adipocyte lipid release [28, 90]. In pigs, metabolic pathways
have been identified that underlie early subcutaneous adi-
pose tissue adaptation to prenatal maternal low-protein diet
and cause later fattening phenotype [91]. These data indicate
that maternal diet restriction during gestation leads to IUGR,
affects fetal adipose tissue development and programs its
later phenotype. In these experiments, 1-day-old piglets
prenatally exposed to low-protein diet displayed an upreg-
ulation of proteins involved in the conversion of glucose
into fatty acids (e.g., transaldolase 1, aldolase C, enolase 1,
and pyruvate dehydrogenase) as well as an increased FAS
activity in subcutaneous adipose tissue [91]. In addition, a
decreased insulin-like growth factor 1 mRNA expression has
been demonstrated in perirenal visceral adipose tissue from
placental restriction in sheep fetuses at day 145 of gestation
[92], which may alter adipocyte proliferation and differentia-
tion [93], increasing their susceptibility for increased visceral
adipose tissue in later life. Moreover, an increased abundance
in the expression of genes, involved in adipogenesis (e.g.,
CEBP-β, -δ, and FAS) and angiogenesis (e.g., leptin TGFα-
1, CTGF, CYR61, dermatopontin, and chymase-1) in adipose
tissue (Figure 1) as molecular mechanisms that underlie the
early programming of later increased visceral adiposity in
rats by maternal protein restriction, has been reported [94].
These data emphasize the involvement of prenatal adipose
tissue development in later life adult obesity. It is however
necessary to note that although an altered metabolism and
morphology of adipose tissue during fetal life participates as
a mechanism in later obesity related to IUGR, rapid postnatal
catch-up growth is also a contributor in such increased
adiposity [74, 75]. Indeed, prenatal growth trajectory in
conjunction with rapid growth in early infancy (catch-up
growth) must be considered to ultimately determine the
origins of later diseases such as obesity [95].

5.2. Leptin, IUGR and Later Adipose Tissue Development.
Leptin, a 16 kDa protein hormone, stimulates a negative
energy balance by increasing energy expenditure and reduc-
ing food intake [96]. Leptin mainly acts by binding to
specific central and peripheral receptors in the hypotha-
lamus, adipose tissue, liver, and pancreatic β-cells [97].
Studies have highlighted the importance of prenatal leptin
in developmental programming of adipose tissue and several
human studies have reported that fetal serum leptin levels are
lower in IUGR babies [98–101]. Thus, leptin may play a role
in the control of substrate utilization and in the maintenance
of fat mass before birth, producing permanent changes
resulting in adiposity in adulthood [102, 103]. Supporting

this idea, it has been demonstrated that neonatal leptin
treatment of IUGR piglets and pups reverses high level of
fetal cell proliferation in adipose tissue induced by IUGR as
well as the associated later increased adiposity [104, 105].
It is possible that in IUGR, the underlying mechanisms of
in utero leptin action in the developing susceptibility to
adult obesity are alterations of the expression of appetite
stimulating neuropeptides, such as NPY in the fetal brain
[103], alterations in adipose sympathetic innervations [106],
as well as an altered hypothalamic leptin receptor (ObRb,
obese receptor b) expression and partitioning among the
different hypothalamic nuclei [107]. Indeed, ObRb, which
is preferentially localized in the arcuate nucleus (ARC) in
animals with normal body weight, was found to be almost
equally distributed between ARC and paraventricular nuclei
(PVN) in IUGR newborn piglets. In addition, a lower
expression of ObRb in the ARC of IUGR versus control
piglets was observed suggesting a lower sensitivity to leptin
action in IUGR leading to altered food intake behaviour
and subsequent obesity [107]. In line with that data, leptin
administration in both pregnancy and lactation has been
shown to provide long-term protection from early maternal
low-protein-associated obesity in rats [108].

5.3. In Utero Exposure to Glucocorticoids and Postnatal
Adipose Tissue. The hypothalamo-pituitary-adrenal (HPA)
axis has been proposed to participate in the pathophysiology
of later life obesity following being born IUGR [109]. The
mechanisms are ill defined, but evidence from animal studies
suggests that adverse events in early life may influence the
neuroendocrine development of the fetus resulting in long-
term alterations in the setpoints of several major hormonal
axes, including an increase in adrenal glucocorticoid secre-
tion. Indeed, the adipose tissue from early nutrient-restricted
sheep fetuses displays alterations in glucocorticoid signalling
(increased glucorticoid receptor and 11-β-hydroxysteroid
dehydrogenase 1 (11β-HSD1) expression, but decreased 11β-
HSD2 abundance) at day 140 of gestation and at 6 months
postnatally [110]. As 11β-HSD2 converts cortisol to its
inactive metabolite cortisone [111] and is thought to protect
certain tissues from excess cortisol exposure [112], these
results suggest that glucocorticoid action may be enhanced
in offspring exposed to nutrient restriction in utero, thereby
increasing their susceptibility to later obesity. Thus, it
has been suggested that this in utero increased adipose
glucocorticoid sensitivity observed near term in maternal
nutrient-restricted sheep fetuses, may subsequently lead to
the pathophysiological development of visceral obesity in
later life by triggering the acquisition of white adipose tissue
characteristics postnatally [110].

5.4. Fetal Epigenome and Postnatal Adipose Development.
Epigenetic modifications alter gene expression without
changes in DNA sequences [113]. Epigenetic systems include
DNA methylations, histone modifications, and microRNAs.
Low levels of DNA methylation, particularly at gene pro-
moter regions, have been proposed to generate active genes
[114]. Elevated DNA methylation at promoter regions may
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however deactivate genes. As the epigenome is established
early in development, during a window in which environ-
mental insults such as in utero stress are able to influence
developmental trajectories, altered epigenetic regulations are
therefore mechanisms which could underlie programmed
adiposity in the offspring. The study of altered chromatin
structure in IUGR, as it relates to later life obesity, is a new
and rapidly evolving field. In maternal low-protein animal
models of later life obesity, alterations of the methylation
status in the promoter of metabolic genes, such as hepatic
PPARα, glucocorticoid receptor (GR), and liver X receptor
(LXR) and hypomethylation of leptin promoter in adipose
tissue have been reported during fetal and postnatal life
[115], highlighting the importance of in utero environment
as a predeterminant of later life chromatin function. In
human studies, investigations of blood samples from the
Dutch Hunger Winter cohort at the age of 60 years, report
an increased DNA methylation induced by periconceptional
exposure to the famine in genes known to be involved in
adipose tissue metabolism, specifically leptin and the fat
mass and obesity associated gene (FTO) [116] suggesting
a possible suppression of its activity. Indeed, modifications
in FTO gene expression are reported to modulate tissue
lipid metabolism [117], and content [118, 119] as well as
lipotoxicity [120] and may be mediated by changes in energy
balance at any stage of fetal development.

6. Conclusion and Perspectives

This paper provides a frame work for how adipogenesis
and lipogenesis processes may be altered in IUGR and low
birth weight, setting the stage for obesity later in life. It
presents evidence from both animal and human studies indi-
cating that an increased lipogenic and adipogenic capacity
of adipocytes, hypoleptinemia, altered glucocorticoid sig-
nalling, and epigenetic modifications during fetal life likely
play major roles in the in utero origins of later life obesity.
Given that discrete molecular changes in fetal adipose tissue
have been shown to adversely affect adipose tissue develop-
ment of IUGR individuals later in life, there is a real need
to undertake longitudinal studies (before birth, during early
postnatal life, and adulthood) on adipose tissue development
and establish definitively which genes and pathways in this
tissue have a causal role in the in utero origins of obesity.
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