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Abstract
To develop a classification model for accurately discriminating common infectious diseases in Zhejiang province, China.
Symptoms and signs, abnormal lab test results, epidemiological features, as well as the incidence rates were treated as predictors,

and were collected from the published literature and a national surveillance system of infectious disease. A classification model was
established using naïve Bayesian classifier. Dataset from historical outbreaks was applied for model validation, while sensitivity,
specificity, accuracy, area under the receiver operating characteristic curve (AUC) and M-index were presented.
A total of 146 predictors were included in the classificationmodel, for discriminating 25 common infectious diseases. The sensitivity

ranged from 44.44% for hepatitis E to 96.67% for measles. The specificity varied from 96.36% for dengue fever to 100% for 5
diseases. The median of total accuracy was 97.41% (range: 93.85%–99.04%). The AUCs exceeded 0.98 in 11 of 12 diseases,
except in dengue fever (0.613). The M-index was 0.960 (95%CI 0.941–0.978).
A novel classificationmodel was constructed based on Bayesian approach to discriminate common infectious diseases in Zhejiang

province, China. After entering symptoms and signs, abnormal lab test results, epidemiological features and city of disease origin, an
output list of possible diseases ranked according to the calculated probabilities can be provided. The discrimination performance
was reasonably good, making it useful in epidemiological applications.

Abbreviations: AI = artificial intelligence, AUC = area under the receiver operating characteristic curve, CI = confidence interval,
CISDCP = China Information System for Disease Control and Prevention, FN = false negative, FP = false positive, GIDEON =Global
Infectious Disease and Epidemiology Network, ROC = receiver operating characteristic, TN = true negative, TP = true positive.
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1. Introduction

Zhejiang province is located on the southeast coast of China, with
high incidence rates of many infectious diseases.[1] In recent years,
outbreaks of infectious diseases were still common in many
counties. Therefore, the prevention and control of infectious
diseases is a public health priority in Zhejiang. The early
detection and efficient control are very important for prevention
of further spreading of the disease. As a consequence, epidemio-
logical field investigators must determine the cause of outbreaks
as soon as possible. However, it can be quite challenging because
the available information is always limited at the early phase of
an outbreak.[2] In many cases, epidemiological field investigators
make a diagnosis based on personal experience and understand-
ing of various diseases, with possibility of misdiagnosis. Timely
and accurate diagnoses are vital to ensuring that the proper
measures for disease control will be administered and new cases
will be minimized.[3]

Recently, data mining techniques, including Bayesian classi-
fiers, decision tree classifiers and neural network classifiers, have
been the widely utilized for discriminating or diagnosing
diseases.[4] The infectious disease diagnosis module within the
well-known Global Infectious Disease and Epidemiology Net-
work (GIDEON) was developed based on Bayesian formula.[5,6]

Decision tree was applied for psychiatric diagnosis.[7] Cualing
et al[8] and Shaw[9] also used this technique to assist with
diagnosing various diseases. Moreover, neural network tech-
nique was used to establish a system for diagnosing acute
myocardial infarction.[10] These studies supported the utility of
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disease classification. However, many of them were based on
clinical data of individual cases, and the models in these studies
are typically designed to assist medical professionals for clinical
diagnoses. Limited research is available within the public health
field to assist in determining the causative disease or pathogen of
an epidemic or outbreak. Last, although the incidence rates of
infectious diseases are relatively high in Zhejiang, no such study
has been performed for this region.
Given the fact that Bayesian classifier possesses high predictive

accuracy and is suitable for large database,[11] this study utilized
Bayesian method to construct a classification model for discrimi-
nating common infectious diseases in Zhejiang province. Themodel
was designed to provide epidemiological field investigators with an
artificial intelligence (AI)-based, efficient method for discriminating
various infectious diseases at the early phases of an epidemic or
outbreak. It was expected to promote timely implementation of
appropriate control measures, and provide potential clues to
narrow the range of laboratory pathogens screening.

2. Methods

2.1. Classification algorithm

A naïve Bayes algorithm was used in this study.[12] There is a
group of diseases that contains j types of disease: Dtotal = (D1, D2

. . . Dj). The prior probabilities of these diseases are P(D1), P
(D2) . . . P(Dj). Furthermore, there are k attributes or predictors
including symptoms and signs, abnormal lab test results and
epidemiological features, that form a set of attributes: Stotal ={S1,
S2 . . . Sk). The conditional probabilities of these attributes when
certain diseases exist are P(S1jDj), P(S2jDj) . . . P(SkjDj).
When a patient presents n attributes, which form a set of

presence attributes: S ={S1, S2 . . . Sn}, the posterior probability
of a disease for this patient, according to the Bayesian formula,
would be:

PðDf j SÞ ¼
PðDfÞ � Pð SjDfÞ

Pj
i¼1 PðDiÞ � Pð SjDiÞ

¼ PðDfÞ � ∏n
m¼1PðSmjDfÞ

Pj
i¼1 PðDiÞ � ∏n

m¼1PðSmjDiÞ

f = 1, 2 . . . j.
P(DfjS) is the probability of the fth type of disease being

accompanied by the presence of attribute set S. The probability of
the disease depends on the value of P(DfjS). That is, if the value of
P(DgjS) is the highest of all j posterior probabilities, then the
likelihood of the gth type of disease is the highest with the presence
of attribute set S, and Dg is the maximum likelihood diagnosis.
Finally, all possible diseases with posterior probabilities are
ranked from highest probability to lowest probability, and
presented on the output list.
A flow chart of the algorithm is shown in Figure 1. The model

was performed using SAS (V.9.3, SAS institute) software.

2.2. Data collection

The prior probability, P(Dj), was estimated according to the
incidence rates of all included infectious diseases in every cities of
Zhejiang province. The incidence data was collected from the
China Information System for Disease Control and Prevention
(CISDCP),[13] a national surveillance system of infectious disease
reported by medical institutions in real time.
2

The conditional probability, P(SkjDj), was estimated based on
the frequency of the corresponding attribute prevalent in
individuals with each disease. Epidemiological features were
collected from CISDCP. The symptoms and signs, as well as
abnormal lab test results within each specific disease were derived
from the epidemiology literature. The data including total number
ofpatients, numbersof patientswith each symptomsand signs, and
numbers of patients with each abnormal lab test result, were
abstracted from each literature to calculate weighted frequencies.
We systematically searched the following Chinese databases:

the China Knowledge Resource Integrated Database (www.cnki.
net), Wanfang Data (wanfangdata.com.cn), VIP Journal Integra-
tion Platform (www.cqvip.com) and China Biology Medicine
disc (www.sinomed.ac.cn). The search terms included “epidemic
investigations” OR “outbreak investigation” AND names of
each infectious disease. The references in published articles were
also searched. Initially, titles and abstracts were screened to
exclude ineligible studies. Then the full texts were reviewed for all
the remaining studies. The literature screening procedures are
presented in Figure 2.

2.3. Model validation

Dataset from historical outbreaks was utilized to validate the
model. The data was collected from several outbreak inves-
tigations of infectious disease in Zhejiang province. During each
investigation, epidemiological and clinical data has been collected
based on a standard questionnaire by trained investigators for
each patient. Most symptoms and signs were recorded in a
dichotomized way (yes/no). General laboratory results have been
documented as continuous variables with threshold of normality
if available. Infectious etiologywas determined according to strict
case definitions from the Chinese Guideline of Diagnosis and
Treatment for corresponding diseases issued by the National
Health Commission of the People’s Republic of China.
The sensitivity, specificity, total accuracy, and area under the

receiver operating characteristic curve (AUC) have been widely
used as criteria for evaluating a diagnosis model.[14] The following
terms are fundamental to understanding the utility of them:
a)
 True positive (TP): the patient has a disease and the prediction
is positive.
b)
 False positive (FP): the patient does not have a disease but the
prediction is positive.
c)
 True negative (TN): the patient does not have a disease and the
prediction is negative.
d)
 False negative (FN): the patient has a disease but the prediction
is negative.

The sensitivity of a diagnosis model refers to the ability of the
model to correctly identify those patients with the disease:

Sensitivity ¼ TP
TPþ FN

The specificity of a diagnosis model refers to the ability of the
test to correctly identify those patients without the disease:

Sensitivity ¼ TN
FPþ TN

The accuracy of a diagnosis model refers to the ability of the
model to correctly identify those patients with the disease and
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Figure 1. Flow chart of the algorithm.
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without the disease:

Total accuracy ¼ TPþ TN
TPþ Fpþ TN þ FN

The receiver operating characteristic (ROC) plot expresses
relationship between sensitivity and 1-Specificity. The closer the
ROC curve is located to upper-left hand corner, the better the
model. The AUC can have any value between 0 and 1 and it is a
good indicator of the goodness of the model.
We primarily employed these four parameters to assess

discrimination performance of the model. The above-mentioned
parameters were usually applied for binary outcomes. Consider-
ing the model designed for discriminating various diseases
3

(polytomous outcomes), we obtained these parameters of
category i by comparing category i with all other categories
combined (1-vs-rest measure).[15] Additionally, theM-index,[16] a
pairwise approach that averages all pairwise AUCs, was also
evaluated, where the pairwise AUC measures the discrimination
between any two categories. It is suggested independent of the
category prevalence,[17] with 0.5 and 1 as the values represented
for random and perfect discrimination. All results were presented
as point estimation with 95% confidence intervals (CIs).

3. Results

The initial search identified 2963 potentially relevant articles of
25 infectious disease. After screening duplicate records, titles,

http://www.md-journal.com


Figure 2. Flow diagram of literature screening procedure. CNKI, China Knowledge Resource Integrated Database; VIP = VIP Journal Integration Platform;
CBMdisc = China Biology Medicine disc.
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abstracts and full texts, 2400 articles were exclude. Finally, 563
articles were included for further data extraction. Table 1 showed
the included 25 infectious diseases with the information on
included literature. Frequencies of symptoms and signs, and
abnormal lab test results were derived for estimation of
conditional probabilities (see supplementary material, http://
links.lww.com/MD/D825). Meanwhile, the data of incidence
rates as well as epidemiological features (age and gender) within
each disease was collected to establish the database for model
construction.
Dataset from historical outbreaks in Zhejiang province

involving 12 diseases were used for model validation. Patient’s
characteristics of the validation dataset were summarized in
Table 2. A total of 520 cases were included in validation dataset.
4

The sample sizes of 12 diseases ranged from 13 to 93. The mean
age of all patients was 22.37 years, with a highest mean age
(71.06 years) in those diagnosed with Hepatitis E. 66.92% (348/
520) were male, with a male-to-female ratio of 2.02:1. The
calendar year of the outbreaks varied from 2005 to 2012. The
majority of diseases possessed data from one outbreak.
The validation results were presented in Table 3. The highest

sensitivity of the model was achieved for measles (96.67%), and
the lowest for hepatitis E (44.44%). The specificity varied from
96.36% for dengue fever to 100% for 5 diseases including
leptospirosis, acute hemorrhagic conjunctivitis, epidemic cere-
brospinal meningitis, hepatitis E, and epidemic hemorrhagic
fever. The median of total accuracy was 97.41% (range: 93.85%
for dengue fever to 99.04% for bacillary dysentery). The AUCs

http://links.lww.com/MD/D825
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Table 2

Patient’s characteristics of the validation dataset.

Disease Sample size Gender (N, %) Age (years, mean, SD) Year Region

Male Female

Leptospirosis 55 27 (49.09) 28 (50.91) 49.13 (11.65) 2007 Pan’an
Chickenpox 48 25 (52.08) 23 (47.92) 8.00 (1.07) 2006 Jindong
Acute hemorrhagic conjunctivitis 74 69 (93.24) 5 (6.76) 14.42 (6.37) 2007 Jindong
Bacillary dysentery 20 19 (95.00) 1 (5.00) 36.80 (9.89) 2006 Pan’an
Epidemic cerebrospinal meningitis 13 7 (53.85) 6 (46.15) 17.46 (13.04) 2005 Pujiang, Wuyi, Yiwu
Hepatitis E 18 17 (94.44) 1 (5.56) 71.06 (10.98) 2006 Wuyi
Mumps 71 44 (61.97) 27 (38.03) 9.14 (2.84) 2005 Jiande
Epidemic hemorrhagic fever 33 25 (75.76) 8 (24.24) 51.09 (13.66) 2010, 2011, 2012 Shangyu
Hand, foot and mouth disease 93 52 (55.91) 41 (44.09) 2.91 (1.89) 2011, 2012 Shangyu
Dengue fever 27 14 (51.85) 13 (48.15) 41.33 (19.39) 2009 Yiwu
Measles 30 15 (50.00) 15 (50.00) Unrecorded 2013 Jiande
H1N1 influenza 38 34 (89.47) 4 (10.53) 22.24 (4.80) 2009 Dongyang, Yiwu
Overall 520 348 (66.92) 172 (33.08) 22.37 (21.18)

Table 1

Infectious diseases included in the model.

Disease No. of literature
∗

No. of patients# Disease No. of literature
∗

No. of patients#

Amebic dysentery 3 192 Japanese encephalitis 12 1079
Acute hemorrhagic conjunctivitis 10 5437 Leptospirosis 23 1996
Bacillary dysentery 33 2851 Malaria 17 360
Brucellosis 15 1080 Measles 33 2275
Chickenpox 64 4505 Mumps 24 1500
Cholera 22 985 Paratyphoid fever 43 4991
Concurrent outbreak of typhoid and paratyphoid fever 7 1567 Pertussis 9 562
Dengue fever 21 2493 Pulmonary tuberculosis. 26 432
Epidemic cerebrospinal meningitis 21 391 Rubella 8 1519
Epidemic hemorrhagic fever 14 1655 Scarlet fever 15 1787
H1N1 Influenza 27 1154 Typhoid fever 45 2861
Hand Foot and Mouth Disease 59 13,475 Typhus 8 785
Hepatitis E 7 149
∗
Number of literature included finally.

# Total number of patients reported in included literature.

Li et al. Medicine (2020) 99:8 www.md-journal.com
exceeded 0.98 in 11 of 12 diseases, except in one disease (0.613
for dengue fever). The M-index (0.960, 95%CI 0.941–0.978)
appeared very close to 1, which also indicated high discrimina-
tion performance of the model.
Table 3

Validation results of the classification model.

Disease Sensitivity (%) Specificity (%)

Leptospirosis 74.55 (70.81–78.29) 100.00 (100.00–100.
Chickenpox 93.75 (91.67–95.83) 97.67 (96.37–98.97
Acute hemorrhagic conjunctivitis 79.73 (76.27–83.19) 100.00 (100.00–100.
Bacillary dysentery 95.00 (93.13–96.87) 99.20 (98.43–99.97
Epidemic cerebrospinal meningitis 61.54 (57.36–65.72) 100.00 (100.00–100.
Hepatitis E 44.44 (40.17–48.71) 100.00 (100.00–100.
Mumps 88.73 (86.01–91.45) 99.78 (99.38–100.0
Epidemic hemorrhagic fever 60.61 (56.41–64.81) 100.00 (100.00–100.
Hand, foot and mouth disease 93.55 (91.44–95.66) 98.36 (97.27–99.45
Dengue fever 48.15 (43.86–52.44) 96.35 (94.74–97.96
Measles 96.67 (95.13–98.21) 96.73 (95.20–98.26
H1N1 influenza 65.79 (61.71–69.87) 98.34 (97.24–99.44

The 95% confidence intervals were given in parentheses.
AUC= area under the receiver operating characteristic curve.

5

4. Discussion
A novel classification model was established for discriminating
common infectious diseases in this study. Themodel can diagnose
25 common infectious diseases in Zhejiang province based on
Total accuracy (%) AUC M-index

00) 97.31 (95.92–98.70) 1.000 (0.999–1.000)
) 97.31 (95.92–98.70) 0.985 (0.972–0.999)
00) 97.11 (95.67–98.55) 1.000 (1.000–1.000)
) 99.04 (98.20–99.88) 0.996 (0.988–1.000)
00) 99.03 (98.19–99.87) 0.998 (0.996–1.000)
00) 98.08 (96.90–99.26) 0.983 (0.971–0.995) 0.960 (0.941–0.978)
0) 98.27 (97.15–99.39) 0.997 (0.995–1.000)
00) 97.50 (96.16–98.84) 0.997 (0.994–1.000)
) 97.50 (96.16–98.84) 0.987 (0.977–0.997)
) 93.85 (91.79–95.91) 0.613 (0.438–0.788)
) 96.73 (95.20–98.26) 0.990 (0.983–0.997)
) 95.96 (94.27–97.65) 0.982 (0.969–0.995)

http://www.md-journal.com
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symptoms and signs, abnormal lab test results, epidemiological
features, and incidence rates. By using standard validation
methods, we affirmed that the model had good discrimination
performance.
Bayesian approach is widely adopted in epidemiology and

clinical studies on developing discrimination or diagnostic
models, due to its adequate capability in classifying multiple
categories and suitability for large databases.[11] The infectious
disease diagnosis module contained in the well-known Global
Infectious Disease and Epidemiology Network (GIDEON) was
developed based on Bayesian formula.[5,6] An evaluation study of
GIDEON showed the accuracy was 64% of the 129 fevers with
infectious etiology.[18] Another study indicated the correct
diagnoses ranked first for 52% when diagnosing febrile illnesses
in Japanese returning travelers.[19] Although the accuracy of
GIDEON is acceptable, better predictive performance is needed.
Furthermore, the data of symptoms and signs in GIDEON does
not perfectly match those of the Chinese population, limiting its
application in China. Therefore, some researchers tried to
construct classification models especially for the Chinese
population.[20–22] Unfortunately, the predictive accuracies were
undesirable. Moreover, the models designed in those studies were
not validated appropriately. Most of them did not conduct ROC-
AUC analysis and provided poor statistical description (e.g., lack
of confidence intervals). In our study, the model was established
based on data from the Chinese population, which are permitted
for use in field investigation of infectious disease outbreaks in
China. By using standard validation methods, the model
presented relatively excellent discrimination performance.
The major problem in developing an infectious disease

diagnosis program is difficulty in obtaining reliable and accurate
individual level training data. For the majority of statistical
approaches, it is essential to acquire adequate sample size of
individual level data within each category or disease. Neverthe-
less, it is unrealistic particularly when there are many outcome
categories or diseases taken into consideration in modeling
process. Fortunately, naïve Bayesian algorithm can overcome this
challenge, in which the aggregated data instead of individual level
data is sufficient for modeling. In our study, the conditional
probabilities of symptoms and signs as well as abnormal lab test
results, were estimated based on the frequencies of corresponding
predictors derived from a certain amount of literature. Each
literature of an epidemic or outbreak investigation possessed a
certain amount of patients. Consequently, it could be assumed
that a large enough sample size has been achieved within each
disease (see Table 1).
To select the most likely diagnoses among the multiplicity of

possible diseases is another major challenge for modeling,[18] by
the fact that some symptoms and signs are quite similar among
diseases affected same organ systems. The majority of diseases
could be correctly discriminated in our model. Whereas, the
sensitivity is below 50% for hepatitis E and dengue fever,
although the sensitivity cannot entirely reflect the discrimination
performance. Patients with hepatitis E may present with few
clinical features. In our validation dataset, more than one third of
patients with hepatitis E (7/18) were asymptomatic, who were
discriminated with pulmonary tuberculosis as 1st ranking by the
model. It is worth noting that the correct diagnosis of hepatitis E
retained in top 3 ranking for all these patients. Furthermore,
symptoms and signs of dengue fever are partially nonspecific,
resulting in other 6 diseases ranked 1st which were actually
incorrect. The correct diagnosis of dengue fever appeared in top 3
6

ranking for 59.26% (15/28). According to our results, we think
the output list of diseases ranking is helpful for users. Many
previous studies[18,19,23] used the correct diagnoses appeared on
the differential diagnosis lists or in the top 5 ranking as arbitrary
indicators for evaluation. The validation results of 1st ranking
performance in ourmodel seem somewhat better than those using
more tolerant indicators in previous studies. Besides the
sensitivity, other parameters for validation demonstrated well
discriminative capability of the model.
There are several advantages in this study.
(1)
 The quantitative results are provided on the output list of
model. All possible diseases can be listed and ranked from the
highest probability to the lowest probability. Existingmedical
decision-support programs are often inadequate in achieving
a match to the most likely diagnosis.[24] It was suggested that
a given disease was usually retained in the top 5 ranking when
its probability exceeded 1%.[18] As a consequence, the list of
predicted diagnoses is valuable in reminding users of
alternative diseases that might otherwise have been ig-
nored.[25] We have further assessed the top 3 ranking
performance of our model, in which correct diagnosis in top 3
ranking was treated as correct discrimination. It was found
that the sensitivity achieved 100% in 7 of 12 diseases, and
also increased in rest 5 diseases than that using 1st ranking as
correct discrimination before.
(2)
 Various types of information were utilized as predictors to
discriminate the causative disease, including the incidence
rates and hundreds of symptoms and signs, abnormal lab test
results, and epidemiological features. Bayesian algorithm
used in our study is suitable for such a large database with
plenty of predictors. Meanwhile, by incorporating prior
information on disease incidence, Bayesian classifiers have the
potential to estimate disease probability better than other
common machine-learning methods.[26]
(3)
 Data on incidence rates and epidemiological features was
collected from a national surveillance system of infectious
disease,[13] which guaranteed the data quality. In addition,
the method for obtaining conditional probabilities ensured
the enough sample size and adequacy for modelling.
(4)
 Standard statistical methods are utilized to validate the
discrimination performance of the model, encompassing
sensitivity, specificity, total accuracy, AUC and M-index.
Seeing that 1-vs-rest measure for calculating former four
parameters may be dominated by highly prevalent categories
in the rest group,[17] M-index was calculated as an alternative
measure in this study. Both of two measures demonstrated
that our model gained a notably high level of discriminative
ability across multiple infectious diseases.

Several methodological issues and limitations need to be
mentioned. First, validation dataset involved the cases of 12
diseases only, due to the limited data resources in individual level
we finally collected. Therefore, the discrimination performance
was not able to be evaluated among other diseases, although the
validation results were satisfactory in current 12 diseases. So we
expect more validation data of other diseases. Second, the model
is limited to discriminate infectious diseases already included in
the database. Data on other diseases can be included to extend the
application range of the model in future. Third, real-time updates
of incidence rates should be carried out in future uses of the
model. Meanwhile, data on conditional probabilities also needs
to be updated regularly from information in latest literature.
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Forth, the conditional probabilities of symptoms and signs as well
as abnormal lab results of each disease differ between countries.
Since the model was designed for application among Chinese
population, only the data reported in Chinese literature was used.
Moreover, data on incidence rates of Zhejiang province was used
for modeling, and the application of model can be generalized
nationwide if that of China was used instead. Fifth, the prior
probabilities (incidence rates) may vary during different stages of
an outbreak, while our model assumed that the prior probability
was constant in a specific event. Last, the data of conditional
probabilities is collected from different sources, and the quality of
literature may not always be perfect for all diseases. Nevertheless,
the publishing process of the included literature at least guarantee
the data quality adequate for model construction.
5. Conclusion

In this study, we constructed a classification model based on
Bayesian classifier to discriminate common infectious diseases
within Zhejiang province. After entering symptoms and signs,
abnormal lab test results, epidemiological features and city of
disease origin, the probabilities of diseases can be calculated and
an output list of possible diseases ranked from the highest to the
lowest probability can be provided. This model offers excellent
discrimination performance, which is expected to be beneficial to
epidemiological field investigators in determining the cause of an
outbreak and to provide clues for laboratory pathogen screening.
6. Ethical approval and consent to participate

The data, including the incidence rates and epidemiologic
features, was collected from CISDCP. It was exempt from the
requirement for ethical approval and informed consent according
to the Law of the People’s Republic of China on Prevention and
Treatment of Infectious diseases.
The data, including symptoms and signs, and abnormal lab test

results, was collected from previous published literature. Thus no
ethical approval and informed consent is required.
The data for model validation was collected from the

investigation in response to public health emergency. As such,
it was exempt from the requirement for ethical approval and
informed consent according to the Law of the People’s Republic
of China on Prevention and Treatment of Infectious diseases.
Personal details of patients was anonymized and de-identified
prior to analysis.
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