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For many decades, interactions between diffuse lower-grade glioma (LGG) and brain
connectome were neglected. However, the neoplasm progression is intimately linked to
its environment, especially the white matter (WM) tracts and their myelin status. First, while
the etiopathogenesis of LGG is unclear, this tumor seems to appear during the
adolescence, and it is mostly located within anterior and associative cerebral areas.
Because these structures correspond to those which were myelinated later in the brain
maturation process, WM myelination could play a role in the development of LGG.
Second, WM fibers and the myelin characteristics also participate in LGG diffusion, since
glioma cells migrate along the subcortical pathways, especially when exhibiting a
demyelinated phenotype, which may result in a large invasion of the parenchyma.
Third, such a migratory pattern can induce functional (neurological, cognitive and
behavioral) disturbances, because myelinated WM tracts represent the main limitation
of neuroplastic potential. These parameters are critical for tailoring an individualized
therapeutic strategy, both (i) regarding the timing of active treatment(s) which must be
proposed earlier, before a too wide glioma infiltration along the WM bundles, (ii) and
regarding the anatomic extent of surgical resection and irradiation, which should take
account of the subcortical connectivity. Therefore, the new science of connectomics must
be integrated in LGG management, based upon an improved understanding of the
interplay across glioma dissemination within WM and reactional neural networks
reconfiguration, in order to optimize long-term oncological and functional outcomes. To
this end, mechanisms of act iv i ty-dependent myel in plast icity should be
better investigated.

Keywords: brain mapping, cognition, lower-grade glioma, myelin, neural networks, neuroplasticity, white matter
tracts, brain connectome
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INTRODUCTION

For many decades, oncological considerations prevailed in
the investigation and treatment of brain tumors, whereas the
central nervous system per se received less attention. However,
cerebral neoplasms and their environment, i.e., neural networks,
are intimately linked, especially in diffuse tumors such as
lower-grade gliomas (LGG) (1–3). Understanding these
interdependencies is critical. In neurosciences, recent advances
in the field of connectomics have emphasized the pivotal role of
the white matter (WM) tracts in cognition and behavior (4, 5).
Therefore, the dynamic interplay between WM fibers and LGG
should be more systematically explored in order to better predict
both the tumor progression and the reactional brain circuitry
reconfiguration, with the ultimate aim of tailoring an optimal
multistep treatment strategy for each patient.

Here, the goal is to review the implications of constant
interactions between WM tracts, with special attention to their
myelin status, and LGG concerning (i) the origins of this tumor
(ii) the patterns of dissemination of LGG within the cerebral
parenchyma (iii) the functional consequences of glioma
infi ltration (iv) the personalized management to be
continuously adapted accordingly. To this end, only diffuse
LGG have been studied, by excluding circumscribed gliomas
such as pilocytic astrocytoma, pleomorphic xanthoastrocytoma
or ganglioglioma.
SPATIO-TEMPORAL PATTERN OF
MYELINATION DURING BRAIN
DEVELOPMENT AND LGG PATHOGENESIS

Although the causative factors of LGG are still poorly known,
some data about their temporal and spatial origins have been
reported (6). Regarding its temporal origin, this tumor seems to
appear during the adolescence (7). Since the LGG velocity of
growth is linear during the initial stage of the disease (8, 9), it was
possible to extrapolate backward in time using computational
models (especially in incidental LGG) and to estimate glioma
date of birth in teenage-hood/early adulthood (7, 10).
Concerning its brain spatial distribution, LGG is mostly
localized within anterior cerebral regions (11). Thanks to a
method of graph-based spatial position mapping (12), a
probabilistic atlas of LGG locations revealed a preferential
distribution within frontal (33%), insular (37%) and temporal
(18%) areas, with very few LGG involving posterior structures
(13) – less than 2% of occipital LGG (14–16).

Interestingly, a parallel can be made with the spatiotemporal
pattern of myelination, which is a dynamic process in the
developing brain and which represents an excellent marker of
cerebral maturation (17). Advances in MRI, particularly in
diffusion tensor imaging (DTI), showed that WM myelination
occurs during ontogeny in highly orderly and predictable
patterns (18–20). Regarding its time course, whereas this
process is faster during the first decade of life, WM continues
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to mature during adolescence (21). Concerning its spatial
distribution, myelination varies across cerebral regions, with a
progression from the posterior to the anterior parts of the brain
(22, 23). Especially, myelination occurs earlier in sensory
pathways (somatosensory, vision) (24), whereas an increase in
the degree of myelination is detectable in the frontal subcortical
WM in the late phase of development (25). In addition to this
caudo-rostral gradient, myelination occurs earlier in projection
tracts than in associative fibers, showing that more complex
cerebral structures required for the highest level integrative and
executive functions are myelinated later than less complex areas
underlying basic neurological functions (26). However, although
biologically expensive hubs of the brain connectome were less
myelinated than primary cortical areas at 14 years, association
areas had faster rates of myelination over the course of
adolescence (27). Remarkably, incompletely myelinated axons
during teenage-hood and even during young adulthood (28),
resulting in variations in conduction velocities within neural
circuits, might participate in network-level neuroplasticity
through activity-dependent myelination in response to
environmental stimuli (29, 30).

Therefore, one could hypothesize that WM maturation
process might play a role in the genesis of LGG. Indeed,
myelination pattern shows spatiotemporal similarities with the
natural history of LGG, i.e., occurring during adolescence, with a
predominance of tumor location in regions which have been
myelinated later - while LGG rarely involve the sensory areas
myelinated earlier. This is in agreement with the retrogenesis
hypothesis, based upon changes in WM properties in developing
and aging brain, which postulates that late maturating tissue,
especially late myelinated axons constituting the “top of the
pyramid”, are more vulnerable to decline over the lifespan (31).
Furthermore, myelin structural and functional adaptive changes
induced by neuronal activity (32), especially in regions involved
in higher brain functions such as the prefrontal cortex (33), are
underpinned by molecular mechanisms which include
modifications in oligodendrocyte precursor cells (OPC)
proliferation (34). Importantly, neural regulation of brain
development and cancer seem to share similar mechanisms
(35). Taken into account the robust mitogenic effect of this
neuronal activity on OPC lineage, dysregulation of activity-
dependent proliferation signals might contribute to the
initiation or growth of brain tumors that molecularly resemble
OPCs (36). In reciprocity to this neuronal-activity induced
proliferation of tumoral cells (37), gliomas themselves can
increase the excitability of the surrounding neural circuits (38).
These bidirectional mechanisms of neuron-glial interactions
could participate in activity-regulated myelin plasticity (39).
This might explain why LGG incidence is elevated in
association regions with a high functional connectivity (40).
These neural hubs which seem more vulnerable to LGG
correspond to brain areas populated with presumed cells of
origin for gliomas, especially OPCs, as evidenced by a recent
probabilistic map (41). This atlas also showed that gliomas
predominantly involved cerebral regions enriched with
expression of genes associated with chromatin organization
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and synaptic signalling, making a link between genetic, cellular
and connectomic levels (41). Correlations between molecular
profile and glioma location have also been evidenced in
oligodendroglial tumors, suggesting that subtypes of
oligodendrogliomas may derive from site-specific precursors
(42). Furthermore, in a genome-wide association study of
diffusion MRI data aiming of exploring genetic variation
influencing WM microstructure, among the 25 reported
genetic risk regions of glioma, 11 were also correlated with
WM microstructure: these findings support the close genetic
relationship between glioma and WM integrity (43).

To conclude, parallel mechanisms in both normal myelin
plasticity and in glioma have been evidenced, such as the parallel
importance of the PI3K/AKT/mTOR pathway [for a review, see
(39)]. The implication of these ultrastructural mechanisms in
neural networks compensation before and after surgery of LGG
have to be explored more, especially by investigating their actual
role in the redistribution of the functional connectivity already
demonstrated at a macroscopical level (3).
WM TRACTS AND PATTERNS
OF GLIOMA DIFFUSION: THE ROLE
OF MYELIN CHARACTERISTICS

Since the seminal works by Scherer in 1938 (44), glioma cells are
known to migrate along the WM fibers, even at early stages of
disease (45, 46). DTI studies evidenced an anisotropic
dissemination of LGG with a tropism for main subcortical
bundles, such as the pyramidal tract (47), uncinate fasciculus
(UF), inferior fronto-occipital fasciculus (IFOF), arcuate
fasciculus (AF) (48–50), or the corpus callosum, leading to
bilateral invasion (51). Such patterns of tumor diffusion within
the fibers tracts resulted on the proposal of new classification
systems to distinguish various LGG according to their WM
invasiveness, for example for insular/paralimbic gliomas (52).
Determination of tumor migration fingerprint within the
connectome is essential for adapting a personalized therapeutic
strategy, especially for surgical planning [(53), see below].

Nevertheless, mechanisms underpinning glioma invasion are
still unclear, even though the need to better understand
intercommunications across tumoral and neuronal cells is now
emphasized to explain the spatial anisotropy of diffusion (54, 55).
Upregulation of genes involved in cell motility might facilitate
the spread of both LGG and high-grade gliomas alongWM tracts
and might contribute to their invasive phenotype (56).
Interestingly, the myelin status seems to play a pivotal role in
this tumoral dissemination. Indeed, glioma cells migrated along
the outer surface of myelin sheaths and/or along neuronal axons
inside myelin sheaths (56). Molecules at the level of this myelin
sheath may inhibit glioma cell migration and proliferation (46,
57). WM is a pro-differentiative niche for glioblastomas, since
glioma cells in contact with WM can acquire pre-
oligodendrocyte fate, leading to a decreased proliferation and
invasion (58). However, the neoplasm itself may damage WM,
especially by secreting mettaloproteinases able to overcome the
Frontiers in Oncology | www.frontiersin.org 3
inhibitory effect of myelin and to create suitable conditions for
tumor cell invasion (59). Moreover, Notch pathway activation
could represent an important driving force by which glioma cells
migrate within WM tracts (46). These mechanisms may explain
why glioma cells are mainly distributed along WM fibers,
particularly which exhibit a demyelineated phenotype: glioma
cells could be more likely to migrate along the surface of
unmyelinated axons or to enter axons for invasion via
unmyelinated regions, i.e., when the myelin sheath was
damaged by the neoplasm (46) . Indeed, extens ive
demyelination changes are frequent in WM tracts invaded by
glioma, as confirmed by DTI (49, 50).

In summary, it seems that myelin constitutes a protection
against glioma cells migration, but that its destruction results in
fragility sites facilitating tumor invasiveness. This hypothesis is
in accordance with the preferential spatial distribution of LGG
previously discussed, namely, in brain locations which were
myelinated later.
WM TRACTS AS A MAIN LIMITATION OF
NEUROPLASTICITY: FUNCTIONAL
CONSEQUENCES IN LGG PATIENTS

Even though LGG frequently involve highly connected
functional hubs, patients usually exhibit no or only mild
neurological disturbances at diagnosis, due to mechanisms of
neuroplasticity progressively induced by this slow-growing
neoplasm (2, 60). A recent meta-networking theory of brain
functioning revealed a dynamic organization of the central
nervous system, with perpetual succession of new equilibrium
states relying on constant changes within and between neural
networks, and allowing behavioral adaption to the environment
as well as reactional reshaping after brain lesion (61). This
flexible model breaking with the rigid localizationist dogma
explains how functional compensation is possible despite large
tumoral infiltration of cerebral areas traditionally conceived as
“eloquent” (3). Nonetheless, the neuroplastic potential is not
infinite: the WM connectivity represents a major limitation of
network reconfiguration, as evidenced by atlases of cortico-
subcortical circuits critical for brain functions identified by
intraoperative electrostimulation in LGG patients who
underwent awake surgery (5, 62, 63). While anatomo-
functional variability and plasticity are high at the cortical
level, they are very low at the level of the WM tracts (64).

For many years, WM was conceived as electrical wires
allowing a simple conduction of information: in fact, a
complex transport system with active computational properties
has recently been acknowledged (65, 66). Such a neural
computing dynamically performed by the WM fibers
themselves is highly depending on the myelination status, since
myelin around axons facilitates saltatory neurotransmission and
affects velocity of action potentials (67). Importantly, myelin
remodeling is a continuous process throughout the lifespan (68),
which depends on experience (69), i.e., on the acquisition of
complex behaviors (70). For instance, learning piano playing
March 2022 | Volume 12 | Article 855587
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(71) or juggling (72) is correlated to the enhancement of WM
microstructure in networks underlying the new skill. Activity-
dependent myelin regulation can be considered as an additional
form of neural plasticity, able to modulate spike time arrival and
coordinate neural circuit oscillations (29, 30, 33, 73). Thus,
dysregulation of myelin plasticity can have a negative influence
on neural processing by disrupting signal integration,
propagation and synchronization within and across networks
(39). This alteration in neural coherence may have direct clinical
impact in brain-damaged patients, e.g., changes in myelin status
in patients with multiple sclerosis were correlated with walking
difficulty (74).

Therefore, LGG migration within WM fibers can generate
functional consequences, partly due to a loss of activity-regulated
myelination. When the plastic compensatory capacity is
overwhelmed because of glioma-induced WM damage, epileptic
activity may occur, which usually leads to the diagnosis of LGG
(75). Even though these patients are frequently enjoying an active
life, if an extensive neuropsychological examination is performed
before any treatment, over 55% of them already experience
cognitive impairments (76). By calculating the degree of
disconnection of each associative pathway (based upon the
degree of LGG infiltration) using voxel-based and tractwise
Frontiers in Oncology | www.frontiersin.org 4
lesion-symptom analyses (77), significant relationships were
found between WM tracts invasion and performance decrease in
specific domains related to the function subserved by the network
invaded. Typically, LGG patients with involvement of the left
IFOF may exhibit a decline of semantic fluency at diagnosis (78)
(Figure 1A). Using each patients’ DTI, reduced fractional
anisotropy values in the right superior longitudinal fasciculus
(SLF) affected by the glioma were associated to visuospatial
impairments (82).

Tractwise and disconnectome-behavior analyses were also
performed after LGG surgery in order to correlate
postoperative neurocognitive scores to the residual tumor
infiltration within the WM fibers - voluntary left for
preventing severe long-lasting deficit thanks to a connectome-
based resection in awake patients (83). Lexical retrieval
impairments were predicted by postsurgical residual lesion
volume in the left inferior longitudinal fasciculus (ILF) (79). A
deterioration of theory of mind (i.e., low-level face-based
mentalizing or empathy) was linked to the degree of
disconnection by the residual tumor in the right AF (80, 84),
whereas high-level mentalizing capacity (i.e., the ability to infer
the intention of other’s) was linked to the residual infiltration in
the cingulate fasciculus (80). Some degree of postoperative
A B

C D

FIGURE 1 | Correlations between the degree of infiltration of WM tracts by the LGG and cognitive deteriorations: (A) Preoperative voxel-based lesion symptom map
for semantic fluency, evidencing significant relationship between the inferior fronto-occipital fasciculus infiltrated voxels by LGG and deficit of language semantics
[from (78) with permission]; (B) Voxel-based lesion symptom of postsurgical lasting anomia performed on residual infiltration map, showing correlations between
postoperative lexical retrieval troubles and LGG invasion of the left inferior longitudinal fasciculus [from (79) with permission]; (C) Significant relationship between
postoperative residual tumor volume in the arcuate fasciculus and decreased low-level mentalizing accuracy [from (80) with permission]; (D) Disconnectome analysis
demonstrating a significant link between postoperative persistent deficit of executive functions and the residual LGG infiltration volume in the superior longitudinal
fasciculus [from (81) with permission]. ***Statistically significant.
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anosognosia was associated with remaining tumor infiltration in
the right cingulate bundle (85). Postsurgical worsening of
executive functions was linked to residual glioma invasion
within the frontoparietal connectivity, especially with
significant correlations between decline of mental flexibility
and involvement of the layer II of the left SLF (81)
(Figures 1B–D).

To sum up, despite some potential of WM plasticity, axonal
and myelin-induced injury due to glioma migration may result in
seizure and performance decline in LGG patients, which should
be objectively assessed by a neuropsychological evaluation before
to treat, and which represents a valuable parameter in order to
predict the risk of persistent cognitive worsening, particularly
following surgical resection. It is worth noting that the brain
parenchyma infiltrated by LGG is thought to be more extensive
than the FLAIR hypersignal (86). Thus, the real invasion into
WM may be underestimated. To improve the sensitivity of
neuroimaging, quantitative analysis of DTI indices may
provide useful information for assessing tumor microstructures
and glioma cell invasion within the WM (86, 87). Indeed,
DTI values such as fractional anisotropy and perpendicular
diffusivity seem to be sensitive and specific biomarkers,
reflecting the integrity of the myelin in various pathological or
physiological processes, e.g., WM maturation, demyelination, or
dysmyelination (87–89). However, even though these data are
promising, it should be acknowledged that they have been
acquired in animal models. Therefore, further studies using
each patients’ DTI are needed in order to examine the
relationship between WM invasion by the glioma, the
consequence on myelin, and brain functions.
TOWARDS MORE CONSIDERATION OF
WM TRACTS FOR AN ADAPTED
MANAGEMENT OF LGG PATIENTS

WM infiltration is critical for elaborating an individualized
management, both regarding the timing of active treatment(s)
which should be proposed earlier (including in incidental LGG),
namely, before a too wide involvement of the WM bundles, as
well as regarding the anatomic extent of surgical resection and/or
irradiation which should take account of the subcortical
connectivity (53).

Although the risk of severe persistent neurological deficit is
almost nil in recent surgical series using awake mapping for LGG
resections, with a high rate (94% to 97%) of return to work (76,
90), extensive postsurgical neuropsychological assessments have
nonetheless revealed a subset of patients who kept some degrees
of impairment regarding higher-order cognitive functions as well
as behavior and personality (76, 85). By using tractwise and
disconnectome-behavior analyses, these subtle but objective
deficits, which may have a negative impact on quality of life,
have mostly been linked to a surgical disconnection of WM
fibers. For example, correlations were demonstrated between
damage of the left SLF as well as the left frontal aslant tract and
lasting executive decline (81); injury of the left UF and
Frontiers in Oncology | www.frontiersin.org 5
heightened schizotypal traits (91); disruption of the left IFOF
and behavior changes such as hyperactivity (85); disconnection
of the right UF as well as the right IFOF and subjective empathy
impairment (92); damage of the right AF and social cognition
(mentalizing) deterioration (84); lesion of the left ILF and lexical
access disturbances (79); or surgical disruption of the SLF/
cingulate bundle and diminished performance in the voluntary
deployment of visuospatial attention (93).

These findings confirming the low plastic capacity of the WM
fibers play a critical role in the surgical strategy, not only
regarding the principle of connectome-based resection relying
on the mapping of cortico-subcortical networks critical for brain
functions (with special emphasis on the preservation of WM
connections) (94), but also concerning the indications of
potential reoperation(s) (95). Indeed, the degree of additional
functional reorganization occurring after the first surgery and
making (or not) possible subsequent resection(s) is constrained
by the prominent LGG relapse within the subcortical
connectivity (96). Because glioma stem cells are preferentially
located along WM fibers exhibiting a demyelinated phenotype at
the invasive frontier of tumor tissues (46), the more the
neoplasm will exhibit a migratory pattern (rather than a
proliferative, bulky one), the less other(s) radical resection(s)
will be conceivable for functional issues (53).

Similarly, the neural connectivity should be taken into
consideration for adjuvant medical treatments, especially by
incorporating WM tracts as structures at risk for planning
radiotherapy (97). Delayed radiation-induced cognitive
deteriorations are frequent in long-term survivors with LGG
(98), mostly due to injury of the WM bundles, as evidenced by
correlations between behavior outcomes and DTI following
radiotherapy (99–101). For instance, attention and processing
speed decline were observed after radiotherapy of the corpus
callosum and intrahemispheric WM fibers (102); language
deterioration after radiotherapy of left-sided perisylvian WM
(103); memory decline after radiotherapy of medial temporal
WM (104); or executive function impairment following
radiotherapy of the anterior cingulate bundle (105). This
progressive disruption of the WM integrity, which occurs even
after focal radiation (106), is mainly elicited by axonal
degeneration and demyelination (107–109). This was
confirmed by DTI studies which showed increased radial
diffusion (100, 108), a radiological marker associated with
histologic evidence of demyelination (110).

Furthermore, regarding mechanisms underlying the “chemo-
brain” phenomenon, namely, chemotherapy-related cognitive
impairment (111, 112), an experimental mouse model showed
that these neuropsychological effects may be due to depletion of
white matter OPC (113), with a block of activity-regulated
myelination induced by methotrexate (114).
CONCLUSIONS AND PERSPECTIVES

While neglected for a long time, WM tracts are of utmost
importance in glioma patients, since their infiltration is one of
the main causes of poor outcome. From an oncological
March 2022 | Volume 12 | Article 855587
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perspective, a more extensive glioma involvement of WM fibers
was correlated to tumor relapse (115), decreased progression-free
survival and shorter overall survival (116). From a functional
perspective, glioma diffusion alongWM pathways which represent
the skeleton of the “minimal common brain” (with a low potential
of neuroplasticity) (5, 62), is linked to a higher risk of cognitive
decline, partly due to a deficit in activity-dependent myelination
(39). Such a migratory pattern within the subcortical connectivity
should lead to adapt the therapeutic strategy, by tailoring “à la
carte” both the surgical resection according to functional
boundaries mapped in awake patients as well as the irradiation
planning (79, 97). Therefore, incorporation of these connectomal
constraints is critical in the quest for optimization of the onco-
functional balance via individualized multistage management of
LGG patients, especially by proposing earlier treatment(s) before a
too large diffusion of tumoral cells (53). In this sprit,
Frontiers in Oncology | www.frontiersin.org 6
neurooncologists must refine their understanding of activity-
dependent myelin plasticity regulated by oligodendrocyte/OPC
dynamics (69, 117, 118), which seems to be a cornerstone in LGG
origin and dissemination. To this end, recent models of 3D
anisotropic migration have been elaborated (119, 120), which
could be helpful to identify new therapeutic targets in order to
inhibit glioma invasion along WM (46, 48, 120, 121). Another
promising treatment avenue would be to promote remyelination
(122), which might result in possible cognitive improvement, as
shown in animal model of chemo-brain (114).
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