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Introduction
Prostate cancer screening with prostate-specific 
antigen (PSA) has contributed to a >50% reduc-
tion in death from prostate cancer,1 yet it has also 
resulted in a major problem of overdiagnosis and 
overtreatment of non-aggressive prostate cancer.2 
As a result, focus has shifted to preferential diag-
nosis and treatment of aggressive prostate can-
cers. New diagnostic tests including blood- and 
urine-based biomarkers, genetic tests, and 
improved imaging modalities have great potential 
to save lives while at the same time reduce the 
problem of overdiagnosis. However, the optimal 
usage of the massive amount of data generated by 
these new tests remains a major clinical and 
research challenge. Artificial intelligence (AI)-
based systems will play a major role in addressing 
this challenge.3,4

AI models are computational approaches that 
learn patterns from existing data to enable 

predictions in new, unseen data. Earlier AI models 
used, what is often referred to as, ‘traditional’ 
machine learning approaches, which were often 
executed in two steps. First, domain-experts 
(human experts in the subject matter) carefully 
designed features to extract quantitative variables 
from the data specific to the task, for example, 
tumor volume or shape. Second, these hand-
crafted features were fed into computational mod-
els to learn which features were useful and how to 
combine them to maximize accuracy in classifying 
data in categories (e.g. benign nodules vs malig-
nant tumors). Once trained, such AI models could 
generate predictions in new, previously unseen 
data. Recent advances in the computing power of 
graphics processing units (GPUs) have enabled 
the development of deep learning models. Deep 
learning models alleviate the need for hand-crafted 
features, thereby working in a completely auto-
mated manner to both identify the features and use 
them for the desired downstream task. Deep 
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learning models have revolutionized the field of AI 
through unprecedented performance that often 
exceeds human performance, particularly in tasks 
related to image analysis.

Development of medical AI models (in particu-
lar, deep learning models) that learn and predict 
from medical data to assist diagnosis, prognosis, 
and clinical decision-making for a variety of dis-
eases is an active area of research.5–7 Research on 
AI-assisted prostate cancer diagnosis is also evolv-
ing rapidly and has the potential to facilitate all 
aspects of the current standard diagnostic path-
way (Figure 1). Although there exists a large body 
of research literature surrounding the use of AI in 
prostate cancer diagnosis, most of these methods 
are not yet ready for clinical deployment. Several 
challenges exist that impede the deployment of 
these widely researched AI tools for diagnostic 
support in the clinic.

Clinicians and AI researchers working on prostate 
cancer should develop a thorough understanding 
of this emerging interdisciplinary domain to suc-
cessfully herald AI-enabled precision medicine, 

with a goal of revolutionizing the diagnosis and 
treatment of prostate cancer.

Here, we provide a systematic overview of the 
relevant literature involving the use of AI for 
prostate cancer diagnosis on medical images 
(Figure 1). In particular, we discuss existing AI 
literature for

1. Detecting prostate cancer on radiology 
images (magnetic resonance and ultra-
sound imaging).

2. Detecting prostate cancer on histopathol-
ogy images.

3. Supporting tasks for prostate cancer detec-
tion. We then discuss challenges associated 
with implementing these AI-enabled diag-
nostic tools in the clinic, and possible solu-
tions to overcome them.

Potential of AI in prostate cancer diagnosis
Medical images play an important role in prostate 
cancer diagnosis. For many years, this involved 
transrectal ultrasound alone to guide systematic 

Figure 1. Potential of AI to assist prostate cancer diagnosis on imaging. AI models can help in detecting 
and characterizing cancer aggressiveness on non-invasive radiology images (MRI and ultrasound), as well 
as on histopathology images acquired through prostate biopsy. Aggressive cancer is shown in yellow, and 
indolent cancer in green in the ‘AI for cancer diagnosis’ panel. AI models can also help in supporting tasks for 
cancer detection, namely prostate gland segmentation, MRI-ultrasound registration, and MRI-histopathology 
registration.
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biopsy. More recently, magnetic resonance imag-
ing (MRI) has been shown to greatly improve 
prostate cancer detection.8,9 MRI-ultrasound 
fusion biopsies are increasingly used to target 
lesions outlined on MRI by radiologists. MRI-
ultrasound fusion biopsies improve detection of 
clinically significant prostate cancer over ultra-
sound-guided systematic biopsies alone.8,10–13 
Finally, prostate tissue obtained through biopsy 
is subjected to histopathological analysis to iden-
tify the presence and grade prostate cancer. 
Urologists plan treatment based on the aggres-
siveness of prostate cancer, with a primary objec-
tive of treating aggressive cancer and reducing 
over-treatment of indolent cancer.

Numerous opportunities exist for optimizing 
this workflow (Figure 1), such as improving 
detection of cancer on ultrasound and MRI, 
reducing inter-observer variability among radi-
ologists, and assisting pathologists in identifying 
and grading cancer on histopathology images. 
Moreover, AI models can help cancer diagnosis 
by facilitating supporting tasks in cancer detec-
tion that are labor- and experience-intensive, 
such as prostate gland segmentation, MRI-
ultrasound registration, MRI-ultrasound fusion 
biopsies, and MRI-histopathology registration 
for developing cancer detection models. This 
review categorizes the existing studies on AI 
models to facilitate prostate cancer diagnosis as 
described below:

1. AI models for prostate cancer detection and 
characterization of cancer aggressiveness.
(a) On prostate MRI.
(b) On prostate ultrasound images.
(c)  On histopathology images collected 

through prostate needle biopsies.
2. AI models for supporting tasks in cancer 

detection.
(a)  Prostate gland segmentation on MRI 

and ultrasound images to facilitate 
MRI-ultrasound fusion biopsies.

(b)  MRI-ultrasound registration to facilitate 
MRI-ultrasound fusion biopsies.

(c)  MRI-histopathology registration for 
ground truth labeling of cancer detec-
tion models.

The following sections briefly summarize relevant 
AI studies in each of these areas, highlighting 
strengths, weaknesses, variabilities, potential, and 
scope for use in clinical care.

AI models for prostate cancer detection and 
characterizing cancer aggressiveness
AI models can help detect cancer and character-
ize cancer aggressiveness on three kinds of images 
widely used in the clinical workflow of prostate 
cancer diagnosis: (1) MRI, (2) ultrasound, and 
(3) histopathology images of prostate biopsy tis-
sue (Figure 1).

Implications of accurate prostate cancer detec-
tion and aggressiveness characterization on imag-
ing: accurately detecting, localizing, and 
characterizing lesions as aggressive or indolent 
using AI methods on non-invasive images (e.g. 
MRI and ultrasound) may significantly impact 
patient management and treatment planning. 
Non-invasive imaging can be used in conjunction 
with clinical variables (PSA density, race, prior 
biopsy history, etc) in routine clinical care to 
decide when biopsy is needed and how treatment 
is performed. For example, patients with aggres-
sive prostate cancer accurately detected and local-
ized on non-invasive images can be targeted with 
MRI-ultrasound fusion biopsies with more preci-
sion and using fewer biopsy needle samples. 
Patients with no cancer or with indolent cancer 
according to non-invasive images could safely 
avoid biopsy, thereby minimizing the unnecessary 
side-effects of invasive biopsy procedures (pain, 
bleeding, and infection).8 Accurate selective iden-
tification of aggressive and indolent prostate can-
cer on non-invasive imaging can help prioritize 
and enable timely treatment planning for aggres-
sive prostate cancer patients. Location and extent 
of aggressive cancer on non-invasive imaging can 
also help guide treatment decisions, that is, 
whether to perform radical prostatectomy or focal 
therapy or active surveillance.

Accurate automated cancer aggressiveness grading 
on prostate histopathology images acquired 
through invasive biopsy procedures can help allevi-
ate inter- and intra-pathologist variability in 
Gleason grading, and also significantly reduce time 
required from pathologists. Such standardization 
of pathologist interpretations and time savings will 
eventually facilitate disease management.

Cancer detection on prostate MRI
MRI is increasingly used to detect prostate can-
cer, guide MRI-ultrasound fusion biopsies, and 
plan treatment.14 Currently, it is considered to be 
the most sensitive non-invasive imaging modality 
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that enables visualization, detection, and localiza-
tion of prostate cancer. However, the often subtle 
visual differences between benign and cancerous 
tissue on MRI make radiologist interpretations of 
MR images challenging. Despite adoption of 
PIRADS (Prostate Imaging-Reporting and Data 
System),15 problems remain with false negatives 
(12% of aggressive cancers missed during screen-
ing,8 34% of aggressive and 81% of indolent can-
cers missed in men undergoing prostatectomy10), 
false positives (>35% false-positive rate8), and 
high inter-reader variability (inter-reader agree-
ment κ = 0.46−0.78 [inter-reader agreement 
κ = 0.46−0.7816,17]. As a result, many unneces-
sary biopsies continue to be performed. Moreover, 
MRI-ultrasound fusion-targeted biopsies are usu-
ally supplemented with systematic biopsies, lead-
ing to increased risks (infection, bleeding, and 
pain), as well as over-detection and over-treatment 
of indolent cancers.

Detecting cancer and simultaneously character-
izing cancers as aggressive or indolent on MRI 
is an unmet clinical need. Such selective 

identification of aggressive and indolent cancer 
on MRI could help identify men with aggressive 
prostate cancer, and reduce unnecessary biopsies 
in men without cancer or with indolent prostate 
cancer. Several studies have investigated the use 
of AI for prostate cancer detection on MRI with 
encouraging performance. A body of literature 
exists surrounding the use of AI to predict the 
likelihood of a patient having prostate cancer 
without explicitly detecting lesions,18 or the likeli-
hood of biochemical recurrence in a patient after 
radical prostatectomy.19 These studies use MR 
images, with or without clinical variables like age, 
PSA-density, PIRADS scores, etc. In this review, 
we only focus on methods for detecting cancer in 
patients without known cancer and further sub-
divide AI models into two major tasks (Figure 2):

 • Lesion classification: This group of AI mod-
els classify radiologist-outlined lesions 
(regions of interest) into categories (i.e. can-
cer or benign, clinically significant cancer or 
benign, or different Gleason grade groups) 
(Figure 2(a)); Table 1). AI models for lesion 

Figure 2. AI models for prostate cancer detection on MRI can be subdivided into two major tasks: lesion 
classification and lesion detection. Lesion classification involves classifying a radiologist-outlined lesion  
(region of interest) into categories (cancer vs benign, clinically significant cancer vs benign or indolent, or 
Gleason grade groups). Lesion detection involves detecting and characterizing cancer aggressiveness on the 
entire prostate MRI.
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Table 1. AI models for prostate lesion classification on MRI.

Study Input data Cohort 
size

Data type Algorithm Training 
labels

Evaluation 
labels

Evaluation 
metric

Source code 
availability

Algohary et al.20 T2w, ADC 231 Retrospective, 4 inst. TML Biopsy Biopsy ROC-AUC, Acc. No

Antonelli et al.21 T2w, ADC 
DWI, DCE

164 Retrospective, 1 inst. TML Biopsy Biopsy ROC-AUC, 
Se. at 50% 
threshold of Sp.

No

Bleker et al.22 T2w, ADC 
DWI, DCE

206 Retrospective, public 
data set

TML Biopsy Biopsy ROC-AUC, Se., 
Sp.

No

Bonekamp et al.23 T2w, ADC 
DWI

316 Retrospective, public 
data set

TML Biopsy Biopsy ROC-AUC, Se., 
Sp.

No

Chen et al.24 T2w, ADC 381 Retrospective, 1 inst. TML Biopsy Biopsy ROC-AUC, Acc., 
Se., Sp.,

No

Akamine et al.25 DWI, DCE 52 Retrospective, 1 inst. Hierarchical 
clustering

RP RP Acc. No

Kwon et al.26 T2w, ADC, 
DWI, DCE

344 Retrospective, public 
data set

TML biopsy biopsy ROC-AUC, Se., 
PPV

No

Chaddad et al.27 T2w, ADC 112 Retrospective, 1 
inst., public data set

TML Biopsy Biopsy ROC-AUC No

Hectors et al.28 T2w 64 Retrospective, 1 inst. TML RP RP ROC-AUC No

Xu et al.29 T2w 331 Retrospective, 1 inst. TML RP RP ROC-AUC, 
decision curve 
analysis

No

Viswanath et al.30 T2w 85 Retrospective, 3 inst. TML RP RP ROC-AUC No

Transin et al.31 ADC, DCE 74 Retrospective, 1 inst. TML Biopsy/
RP

Biopsy/RP ROC-AUC, Se., 
Sp.

No

Zhang et al.32 T2w, ADC 159 Retrospective, 2 inst. TML Biopsy Biopsy ROC-AUC No

Deniffel et al.33 T2w, ADC, 
DWI

499 Retrospective, 1 inst. DL Biopsy Biopsy ROC-AUC, 
decision-curve 
analysis

No

Song et al.34 T2w, ADC, 
DWI

185 Retrospective, public 
data set

DL Biopsy Biopsy ROC-AUC, Se., 
Sp., PPV

No

Takeuchi et al.35 T2w, ADC, 
DWI

334 Retrospective, 1 inst. DL Biopsy Biopsy ROC-AUC, Net-
benefit curve, 
NPV

No

Yuan et al.36 T2w, ADC 244 Retrospective, 2 inst. DL Biospy Biospy Acc., Prec., 
Recall, F1-
score

No

Aldoj et al.37 T2w, ADC, 
DWI, DCE

200 Retrospective, public 
data set

DL Biopsy Biopsy ROC-AUC, Se., 
Sp.

No

Zhong et al.38 T2w, ADC 140 Retrospective, 1 inst. DL RP RP ROC-AUC, Acc., 
Se. Sp.

No

Abraham and 
Nair39

T2w, ADC, 
DWI

112 Retrospective, public 
data set

DL Biopsy Biopsy ROC-AUC, 
quadratic wtd. 
kappa, PPV

No

Acc, accuracy; ADC, apparent diffusion coefficient; AI, artificial intelligence; DCE, dynamic contrast enhanced; DL, deep learning; DWI, diffusion weighted imaging; 
inst., institution; MRI, magnetic resonance imaging; NPV, negative predictive value; PPV, positive predictive value; Prec, precision; ROC-AUC, receiver operating 
characteristics – area under the curve; RP, radical prostatectomy; Se, sensitivity; Sp, specificity; T2w, T2-weighted MRI; TML, traditional machine learning.
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Table 2. AI models for prostate lesion detection on MRI.

Study Input data Cohort 
size

Data type Algorithm Training labels Evaluation labels Evaluation 
granularity

Evaluation 
metric

Source code 
availability

Saha et al.40 T2w, ADC 
DWI

2732 Retrospective, 2 
inst., PIRADS or 
biopsy

DL Radiologist, w/o 
path. confirm.

Radiologist, w/o & 
with path. confirm. 
from biopsy

Lesion-
level, 
patient-
level

ROC, FROC Yes

Yu et al.41 T2w, ADC 
DWI

1745 Retrospective, 4 
inst., PIRADS or 
biopsy external 
validation on public 
data set

DL Radiologist, w/o 
path. confirm.

Radiologist, w/o & 
with path. confirm. 
from biopsy

Lesion-
level, 
patient-
level

FROC, DSC, 
ROC-AUC

No

Schelb et al.42 T2w, DWI 312 Retrospective, 1 
inst., biopsy

DL Radiologist, path 
confirm. from 
biopsy

Radiologist, path 
confirm. from 
biopsy

Sextant-
level, 
patient-
level

Se, Sp, 
Prec, NPV, 
ROC

Yes

Sumathipala 
et al.43

T2w, ADC 
DWI

186 Retrospective, 6 
inst., RP or biopsy

DL Radiologist, 
path. confirm. 
from RP or 
biopsy

Radiologist, path 
confirm. from RP or 
biopsy

Patient-
level

ROC-AUC No

Bhattacharya 
et al.44

T2w, ADC 75 Retrospective, 1 
inst., RP

DL Pathologist, 
automated 
registration

Pathologist, 
automated 
registration

Pixel-level, 
lesion-level

ROC-AUC, 
Se, Sp

No

Sanyal et al.45 T2w, ADC 
DWI

77 Retrospective, 1 
inst., biopsy

DL Radiologist, path 
confirm. from 
biopsy

Radiologist, path 
confirm. from 
biopsy

Pixel-level ROC-AUC Yes

Jin et al.46 T2w, ADC, 
DWI, DCE

34 Retrospective, 1 
inst.

TML Pathologist, 
automated 
registration

Pathologist, 
automated 
registration

Pixel-level ROC-AUC Yes

McGarry 
et al.47

T2w, ADC, 
DWI, DCE

48 Prospecitvely 
recruited, 1 inst., 
RP

TML Pathologist, 
automated 
registration

Pathologist, 
automated 
registration

Lesion-
level

ROC-AUC No

Cao et al.48 T2w, ADC 417 Retrospective, 1 
inst., 4 scanners, 
RP

DL Radiologist, 
path confirm., 
cognitive 
registration 
with RP

Radiologist, path 
confirm., cognitive 
registration with RP

Lesion-
level

FROC No

De Vente 
et al.49

T2w, ADC 162 Retrospective, 1 
inst., public data 
set, biopsy

DL Semi-automated 
region growing 
from targeted 
biopsy centroid

Semi-automated 
region growing 
from targeted 
biopsy centroid

Pixel-level, 
lesion-level

Quadratic 
weighted 
kappa-
score

No

(Continued)

classification often use traditional machine 
learning, which involves extracting hand-
crafted features from the region of interest, 
and then using a classifier to attempt to clas-
sify what category that lesion falls into. 
Hand-crafted features assess texture, shape, 
volume, or image-based radiomic features. 
Some of the traditional machine learning 
classifiers include artificial neural networks, 
random forests, support vector machines, or 
logistic regression-based classifiers. With 
the increasing success of deep learning–
based methods, several lesion classification 
methods were also developed that can 

classify lesions using deep neural networks, 
without the need to select and extract hand-
crafted features. If successfully deployed in 
the clinic, automated lesion classification 
methods would allow a physician to select a 
region of interest on an MRI slice and 
receive AI assistance in determining whether 
that region is likely to be cancerous.

 • Lesion detection: This group of AI models 
use all the images from a prostate MR exam 
as inputs, and detect, localize, and/or strat-
ify cancer aggressiveness on the entire pros-
tate MRI (Figure 2(b); Table 2). Often, 
these lesion detection methods provide a 

https://journals.sagepub.com/home/tau
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Study Input data Cohort 
size

Data type Algorithm Training labels Evaluation labels Evaluation 
granularity

Evaluation 
metric

Source code 
availability

Seetharaman 
et al.50

T2w, ADC 424 Retrospective, 1 
inst., biopsy & RP

DL Automated 
Gleason 
patterns from 
RP, automated 
registration

Automated Gleason 
patterns from RP, 
radiologist labels 
with path confirm. 
from targeted 
biopsy

Pixel-level, 
lesion-level, 
Patient-
level

ROC-AUC, 
Se, Sp

Yes

Bhattacharya 
et al.51

T2w, ADC 443 retrospective, 1 
inst., biopsy & RP

DL Pathologist 
& automated 
Gleason 
patterns from 
RP, automated 
registration

Automated Gleason 
patterns from RP, 
radiologist labels 
with path confirm. 
from targeted 
biopsy

Pixel-level, 
lesion-level, 
patient-
level

ROC-AUC, 
PR-AUC, 
Se, Sp, 
Prec, NPV, 
F1-score, 
DSC, Acc

Soon to be 
released

Zhang et al.52 T2w, ADC 358 Retrospective, 1 
inst., biopsy

DL Retrospective 
radiologist 
outline from 
biopsy path.

Retrospective 
radiologist outline 
from biopsy path.

Pixel-level DSC, Se, 
Prec, VOE, 
RVD

No

Alkadi et al.53 T2w 19 retrospective, 1 
inst. (public), biopsy

DL Radiologist, path 
confirm. from 
biopsy

Radiologist, path 
confirm. from 
biopsy

Pixel-level Acc, IoU, 
Recall, 
DSC

No

Arif et al.54 T2w, DWI, 
ADC

292 Retrospective, 1 
inst., biopsy

DL Radiologist, path 
confirm. from 
biopsy

Radiologist, path 
confirm. from 
biopsy

Patient-
level

Acc, IoU, 
Recall, 
DSC

No

Mehralivand 
et al.55

T2w, DWI, 
ADC

236 Retrospective, multi 
inst., biopsy

TML Radiologist, path 
confirm. from 
biopsy or RP

Radiologist, path 
confirm. from 
biopsy or RP

Lesion-
level

AUC, Se, 
PPV

No

Netzer et al.56 T2w, DWI 1488 Retrospective, multi 
inst., multi scanner 
biopsy

DL Radiologist, path 
confirm. from 
biopsy or RP

Radiologist, path 
confirm. from 
biopsy or RP

Patient-
level, 
sextant-
level

ROC-AUC, 
Se, Se

No

Duran et al.57 T2w, ADC 318 Retrospective, 
2 inst., different 
scanners, external 
validation on public 
data set

DL Radiologist, 
cognitive 
alignment with 
RP

Radiologist, 
cognitive alignment 
with RP

Lesion-
level

FROC, 
Cohen’s 
Quadratic 
kappa

Yes 
(claimed)

Acc, Accuracy; ADC, apparent diffusion coefficient; AI, artificial intelligence; confim., confirmation; DCE, dynamic contrast enhanced; DL, deep learning; DSC, dice coefficient; DWI, diffusion-
weighted imaging; FROC, free-response receiver operating characteristics; inst., institution; IoU, Intersection over Union; MRI, magnetic resonance imaging; NPV, negative predictive value; path., 
pathology; PIRADS, Prostate Imaging-Reporting and Data System; PPV, positive predictive value; PR-AUC, precision recall–area under the curve; Prec, Precision; ROC-AUC, receiver operating 
characteristics–area under the curve; RP, radical prostatectomy; RVD, relative volume difference; Se, Sensitivity; Sp, Specificity; T2w, T2-weighted MRI; TML, traditional machine learning; VOE, 
volumetric overlap error; w/o, without.

Table 2. (Continued)

pixel-level probability of cancer distribution 
for the prostate, highlighting areas of the 
prostate which are highly suspicious for 
cancer. While earlier lesion detection meth-
ods used traditional machine learning,58 
recent studies almost always use deep 
learning-based models. If successfully 
deployed in the clinic, automated lesion 
detection methods would automatically eval-
uate an entire MRI exam and provide a 
physician with outlines of all areas that are 
suspicious for cancer.

Existing AI studies for prostate cancer detection 
on MRI (both lesion classification and lesion 
detection) have used a variety of traditional 

machine learning and deep learning approaches. 
These AI models also vary greatly in the follow-
ing ways:

(a)  Ground truth labels used for training and 
evaluation (biopsy or radical prostatec-
tomy, radiologist outlines with or without 
pathology confirmation, pathologist out-
lines etc.).

(b)  Evaluation criteria (patient-level, lesion-
level, or pixel-level evaluation, evaluation 
metrics, etc.).

(c)  Data set size and type (cohort size, input 
MRI sequences, data from single or mul-
tiple institutions, and retrospective or 
prospective data etc.).

https://journals.sagepub.com/home/tau
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Unfortunately, direct comparison across the 
many published AI models for prostate cancer 
diagnosis on MRI is not possible due to (1) the 
wide variability in labels, evaluation criteria, and 
data for trained models, (2) the lack of access to 
published models and source code for pre- and 
post-processing and training, and (3) the lack of 
large publicly available multi-institution MR 
imaging data for independent model testing.

The following sections summarize the methodo-
logic variability that limits direct comparison 
across models:

(a)  Ground truth labels for training and eval-
uation: AI models for prostate lesion clas-
sification mostly use radiologist outlines as 
inputs, and pathology confirmation from 
prostate biopsy or surgery as ground 
truth. However, AI models for prostate 
lesion detection differ widely in the ground 
truth labels used for training and evalua-
tion. These approaches for ground truth 
labeling include:
1. Radiologist outlines of PI-RADS 3 or 

above lesions with43,45,48 or with-
out40,41,59 pathology confirmation.

2. Pathologist outlines of cancer (with-
out grade information) on whole-
mount histopathology images 
mapped onto pre-operative MRI 
using MRI-histopathology registra-
tion approaches.44,47

3. Automated Gleason pattern labels on 
whole-mount histopathology images 
from deep learning algorithms,60 
mapped onto MRI through automated 
MRI-histopathology registration.50,51

While the first ground truth labeling approach 
trains models to perform PIRADS scoring like a 
radiologist, the latter two approaches allow for 
detection of cancers that may not have been seen 
by a radiologist. Training a model using radiolo-
gist outlines without any pathology confirmation 
may lead to high rates of false-positive findings. 
Conversely, obtaining pathology confirmation 
should reduce false-positives because it enables 
training using only cancerous areas. Pathology-
confirmation may include either targeted biopsy 
results from radiologist-outlined lesions,45 or post-
operative whole-mount histopathology images 
from radical prostatectomy patients through cog-
nitive registration or manual matching.43,48 For 
the latter two approaches of ground truth labeling, 

MRI-histopathology registration approaches are 
used to map labels from whole-mount histopa-
thology images onto pre-operative MRI (see sec-
tion “MRI-histopathology registration for ground 
truth labeling of cancer detection models”).

All label types used to train AI models for prostate 
cancer detection have advantages and disadvan-
tages. Radiologist outlines without pathology con-
firmation are easier to obtain in large numbers 
from routine clinical care (and arguably more fea-
sible to predict), but they include many false posi-
tives,61,62 routinely underestimate tumor extent,63 
and may miss cancers completely (up to 34% of 
aggressive cancers in men undergoing radical 
prostatectomy are missed on MRI).8,10 Unlike 
radiologist annotations, pathologist outlines on 
whole-mount histopathology images capture the 
complete extent of cancer, but mapping patholo-
gist outlines onto pre-operative MRI requires 
accurate MRI-histopathology registration 
approaches. These MRI-histopathology registra-
tions are labor- and experience-intensive (see sec-
tion “MRI-histopathology registration for ground 
truth labeling of cancer detection models”). 
Moreover, it is impossible for pathologists to anno-
tate large data sets of whole-mount histopathology 
images with gland-level annotations of cancer and 
Gleason pattern to train machine learning models 
on prostate MRI. Automated Gleason pattern 
labels derived from deep learning on pathology 
images60 have recently shown64 to perform with 
similar accuracy to experienced pathologist labels, 
while circumventing the constraints of labor, time, 
and variability associated with human-annotated 
labels. Moreover, when cancer detection models 
for MRI are trained using automated pixel-level 
Gleason pattern labels on whole-mount histopa-
thology images, they can selectively identify aggres-
sive and indolent cancer components, even in 
mixed lesions; this is intractable with any human-
annotated labels on MRI.50,51,64

(b)  Data type and size: The input data to train 
AI models typically consists of one or more 
MR sequences [T2w-MRI, apparent diffu-
sion coefficient (ADC) Maps, diffusion-
weighted images (DWI), dynamic 
contrast-enhanced (DCE) sequences]. 
While most studies used MR images or 
features derived from MR images as inputs, 
two recent studies, CorrSigNet44 and 
CorrSigNIA,51 presented a radiology-
pathology fusion approach to identify MRI 
features correlated to pathology features of 
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cancer, and used these correlated MRI fea-
tures to detect and localize aggressive and 
indolent cancer on MRI. These studies44,51 
showed that algorithms leveraging radiol-
ogy-pathology fusion to identify pathology 
features on non-invasive imaging per-
formed better than algorithms that used 
MR-derived features alone. Recent  
studies40,59,65,66 also show that adding 
prior knowledge about cancer distribu-
tion in the different prostate zones to the 
AI models improves cancer detection 
and localization.

The size of data sets used to train and validate AI 
models also varies significantly, ranging from as 
low as 19 patients53 to 2732 patients40 (Tables 1 
and 2). Most studies used retrospective data, 
either from public data sets,22,23,26,27,34,37,39,53 sin-
gle institutions,21,31,33,44,50,51 or multiple institu-
tions.20,40,43 In general, studies using large data 
sets tend to have lower quality labels, while those 
with smaller data sets tend to have high-quality 
labels. For example, two recent studies40,59 used 
≈2000 patients and radiologist labels without 
pathology confirmation to develop and validate 
their methods. One of these two studies59 also 
showed that a large data set of radiologist labels 
without pathology confirmation could be used to 
successfully train an AI model to detect clinically 
significant cancer on prostate MRI.

Studies have also used patient populations with dif-
ferent distributions of the disease to train and vali-
date AI models. While some studies used patients 
with aggressive prostate cancer that underwent 
radical prostatectomy,43,48 others used patients 
from a population undergoing MRI-based screen-
ing who had varying distributions of cancer or no 
cancer.23,40,45 To test generalizability, some studies 
trained AI models using one group of patients, and 
tested on a different group, including patients with 
different disease distributions50,51 or different label 
types.40,59 Due to the difficulty in acquiring large 
data sets of pathology-confirmed cancer labels to 
train AI models, a study67 proposed a weakly super-
vised learning approach to alternatively learn the 
normal appearance of prostate MRIs using 1145 
negative MRI scans, and then use this baseline 
model to predict pixel-wise suspicion of prostate 
cancer. Another recent study68 proposed a self-
supervised learning approach where the AI model 
first learns prostate MRI features from unlabeled 
data, and then further fine-tunes the learned mod-
els to detect cancer using limited labeled data.

(c)  Evaluation criteria: Evaluation methods 
and metrics vary based on the task (lesion 
classification, lesion detection), as well as 
the granularity of the available labels. 
Evaluation of cancer detection models 
can be on a patient-level (whether the AI 
model correctly detects a person as hav-
ing prostate cancer or not), lesion-level 
(whether the AI model correctly detects/
classifies individual lesions, while not 
incorrectly predicting false positives), or 
pixel level (whether the AI method cor-
rectly classifies all the prostate MRI pixels 
into benign, cancer, or cancer aggressive-
ness subtypes). The definition of the eval-
uation metrics also differ across studies, 
for example, Sumathipala et al.43 used a 
lesion-level evaluation where the negative 
class was defined using 3 × 3 voxels, while 
other studies42,50,51 used different sextant-
based lesion-level evaluations in line with 
how prostate biopsies are conducted in 
the clinic. Several evaluation metrics have 
been used in existing studies, including 
but not limited to, the area under the 
receiver operating characteristics curve 
(ROC-AUC), area under the precision-
recall curve (PR-AUC), free-response 
receiver operating characteristics (FROC), 
sensitivity (Se), specificity (Sp), F1-score, 
accuracy, positive predictive value (PPV), 
negative predictive value (NPV), and dice 
coefficient. Such wide variability in evalu-
ation methods and metrics raises the need 
for definition of a set of clinically relevant 
standardized evaluation criteria which can 
be used to uniformly validate and com-
pare all AI models for cancer detection.

Summary. AI models for prostate cancer detec-
tion on MRI show great promise, but they are not 
ready for clinical deployment. There remains a 
wide variability in methods, labels, and evaluation 
criteria among these AI models, limiting compari-
son. Most of these AI models have been developed 
and validated on single institution, retrospective 
and small patient data sets, and lack tests to assess 
generalizability in larger, heterogeneous patient 
data. In order to reap the benefits of these AI mod-
els in clinical care, there remains the need for 
developing publicly available anonymized large 
patient data sets, publicly available source code 
and trained models, standardized evaluation crite-
ria, external validation, multi-reader studies to 
assess performance of AI models, and prospective 
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Table 3. AI models for prostate cancer detection on ultrasound.

Study Cohort 
size

Input 
data

Data type Algorithm Training labels Evaluation 
granularity

Evaluation 
metric

Source code 
availability

Task

Sedghi 
et al.89

157 TeUS Retrospective, 
1 inst.

DL Radiologist, 
path confirm. 
from biopsy

Lesion level Se, Sp ACC, 
AUC

No Lesion 
detection

Azizi 
et al.90

163 TeUS Retrospective, 
2 inst.

DL Radiologist, 
path confirm. 
from biopsy

Lesion level Se, Sp ACC, 
AUC

No Lesion 
classification

Azizi 
et al.72

157 TeUS Retrospective, 
1 inst.

DL Radiologist, 
path confirm. 
from biopsy

Lesion level Se, Sp ACC, 
AUC

No Lesion 
classification

Azizi 
et al.91

155 TeUS Retrospective, 
1 inst.

DL Radiologist, 
path confirm. 
from biopsy, 
biopsy length

Patient level AUC, MSE No Lesion 
classification

Han 
et al.92

51 TRUS N/A TML Biopsy Patient level, 
Lesion level

Se, Sp ACC, 
ROC-AUC

No Lesion 
detection

Wildeboer 
et al.80

50 TRUS, 
SWE, 
DCE-US

Retrospective, 
1 inst.

TML RP, Biopsy Pixel level, 
Lesion level

ROC-AUC No Lesion 
detection

Moradi 
et al.93

16 RF time 
series

Retrospective, 
1 inst.

ML RP Patient level Se, Sp ACC, 
ROC-AUC

No Lesion 
classification

Imani 
et al.94

14 RF time 
series

Retrospective, 
1 inst.

TML RP, Biopsy Patient level Se, Sp ACC, 
ROC-AUC

No Lesion 
classification

Hassan 
et al.88

1151 TRUS Retrospective, 
1 inst. public 
data set

TML & DL Biopsy Patient level ACC No Lesion 
classification

Acc, accuracy; AI, artificial intelligence; AUC, area under the curve; confirm., confirmation; DCE-US, dynamic contrast-enhanced ultrasound; DL, deep learning; 
inst., institution; MSE, Mean Square Error; path, Pathology; RF, radio frequency; ROC-AUC, receiver operating characteristics–area under the curve; RP, radical 
prostatectomy; Se, sensitivity; Sp, specificity; SWE, shear-wave elastography; TeUS, temporal enhanced ultrasound; TML, traditional machine learning; TRUS, 
transrectal ultrasound.

trials (see Section “Challenges in AI for PCa” for 
more details).

Cancer detection on prostate ultrasound images
Prostate cancer is most commonly diagnosed 
using grayscale transrectal ultrasound-guided 
biopsy.69,70 While grayscale ultrasound accurately 
identifies the prostate gland, low signal-to-noise 
ratio and artifacts (e.g. speckle and shadowing) 
prevent clinicians from reliably differentiating 
cancerous from non-cancerous regions. The 
detection rate of prostate cancer on grayscale 
ultrasound images is reported to be as low as 
40%.71–73 When visible on ultrasound, cancers 
most often appear hypoechoic74 because they 
reflect significantly less sound echoes than nor-
mal tissue. To supplement grayscale ultra-
sound, other new ultrasound-based imaging 
techniques such as shear-wave elastography,75–77 
color doppler ultrasound,77 contrast-enhanced 

ultrasound,78 micro-ultrasound,79 and their com-
bination have been proposed. These alternative 
ultrasound-based imaging modalities provide 
enhanced image resolution and better visualiza-
tion of the prostate compared to grayscale ultra-
sound, and enable prostate cancer detection with 
better sensitivity compared to grayscale ultra-
sound.80 In particular, high-frequency micro-
ultrasound images are showing promise in 
detecting clinically significant prostate cancer with 
similar or higher sensitivity, similar specificity, and 
much lower cost in comparison to MRI.81–85 As 
such, research on development AI models for 
prostate cancer detection on micro-ultrasound 
images is also growing.86,87

Although grayscale transrectal ultrasound is 
widely used for prostate biopsy in clinical settings, 
only one AI study88 focused on prostate cancer 
detection on grayscale ultrasound images. Most 
AI models for prostate cancer detection used new 
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ultrasound-based imaging modalities (Table 3). 
These models used a variety of AI methods, rang-
ing from traditional machine learning to deep 
learning (Table 3). Some other studies investi-
gated the role of radio-frequency time-series 
data93,94 to detect prostate cancer using tradi-
tional machine learning. Moreover most of these 
studies focused on the task of lesion classification 
(classifying a physician-outlined region of interest 
into benign vs cancerous tissue)72,90,91,93,94 while 
only a few focused on lesion detection (detecting 
and localizing cancer on the entire ultrasound 
image).80,89,92

Summary. Prostate cancer detection on ultra-
sound images using AI models remains poor, and 
miminal AI literature exists employing AI 
approaches on grayscale ultrasound. Develop-
ment of AI-based approaches for prostate cancer 
detection on ultrasound represents a significant 
research opportunity. Generalizability of these 
methods also needs further investigation since 
most of these methods have been evaluated on 
small patient cohorts with retrospective data from 
single institutions. Privacy-protecting data shar-
ing and public availability of source code and 
trained models are imperative to improve the per-
formance of AI models on ultrasound (see section 
“Challenges in AI” for PCa for more details).

Cancer detection on prostate histopathology 
images
Gleason grading95 on histopathology images is 
the strongest predictor of prostate cancer 
aggressiveness and recurrence. However, 
Gleason grading suffers from significant inter- 
and intra-pathologist variability.96–98 While sub-
specialized genitourinary pathologists achieve 
high concordance in Gleason grading, such 
expertise is not universally available. The emer-
gence of technology to digitize glass slides into 
whole slide images (WSIs) has revolutionized the 
field of computational pathology by enabling 
computer-assisted diagnostic support to patholo-
gists. AI models on prostate histopathology 
images have been developed to distinguish cancer 
from non-cancer regions99,100 and for automated 
Gleason grading.60,101–108

AI models for pathology images also suffer from 
challenges associated with limited labeled data 
sets. In addition, pathology images are extremely 
large, which leads to additional challenges in 
processing them, as well as in generating labeled 

data sets. To put this in perspective, a single 
whole-mount histopathology slice from a radical 
prostatectomy patient in uncompressed form is 
2–4 Gigabytes (GB) in size, and a single patient 
data with several whole-mount slices is often 
more than 20 GB in size. Even in compressed 
form, a single patient data with several histopa-
thology slices (biopsy or whole-mount) can 
occupy an average storage size of 2–3 GB.109 
When compared to natural images, around 470 
whole slide images contain approximately the 
same number of pixels as the entire ImageNet110 
data set (the public data set of over 14 million 
natural images used to train AI models for clas-
sification of natural images).102 As such, several 
studies considered only a subset of the complete 
pathology image, or tissue microarrays111–113 for 
development and validation of AI models.

In this review, we only include studies that con-
sidered digital histopathology images derived 
from prostate needle core biopsies or radical 
prostatectomies. Most recent studies on cancer 
detection and Gleason grading on histopathol-
ogy images use deep learning models. Similar to 
AI models for prostate cancer detection on MRI, 
AI models for prostate cancer detection on his-
topathology images also differ in (a) ground 
truth labels for training and validation, (b) data 
type and size, and (c) evaluation criteria (see 
Table 4).

Labels for training and evaluating AI models for 
Gleason grading on prostate histopathology 
images are derived either from pathology 
reports,102,104,114 or from pixel-level annotations 
from experienced pathologists.60,101,105 Digital 
histopathology images to train AI models may 
either be derived from prostate needle core biop-
sies60,101–106 or radical prostatectomy107,108 speci-
mens. The data set size varies widely (Table 4), 
mostly depending on the label used for training 
and evaluation. AI models trained with pixel-level 
Gleason pattern labels from experienced patholo-
gists typically have smaller data set sizes,101,106,108 
whereas those developed with patient-level labels 
from diagnostic reports have larger data set 
sizes.102,104

Evaluation of AI models are either on a pixel-
level (whether the AI method correctly predicts 
Gleason patterns for each pixel of the image), 
region-level (whether the AI method assigns the 
correct Gleason score to a given region of the 
digitized histopathology image), or slide-level 

https://journals.sagepub.com/home/tau


Volume 14

12 journals.sagepub.com/home/tau

TherapeuTic advances in 
urology

Table 4. AI models for cancer detection and Gleason grading on prostate histopathology whole slide images (WSI).

Study Input 
data

Cohort 
size

Data type Algorithm Training 
labels

Evaluation 
labels

Evaluation 
granularity

Evaluation 
metric

Code 
availability

Lucas 
et al.101

WSI, 
biopsy

38 slides Retrospective, 
1 inst.

DL Pathologist, 
pixel-level

Pathologist, 
pixel-level

Patch-based Se, Sp,  
F1-score

No

Campanella 
et al.102

WSI, 
biopsy

15,187 
slides

Retrospective, 
multiple inst.,

DL Reported 
diagnosis

Reported 
diagnosis

Slide-level ROC-AUC Yes

Bulten 
et al.96

WSI, 
biopsy

1410 
slides

Retrospective, 
multiple inst.,

DL Pathologists’ 
reports

Pathologists’ 
reports, 
Consensus 
reference 
standard by 3 
expert urologic 
pathologist

slide-level ROC-AUC, 
F1-score, Acc, 
Prec, Rec, Sp, 
NPV

Yes

Nagpal 
et al.107

WSI, 
RP

1557 
slides

Retrospective, 
multiple inst.

DL Slide-level & 
region-level 
annotations by 
pathologists

Slide-level & 
region-level 
annotations by 
pathologists

slide-level ROC-AUC No

Pinckaers 
et al.114

WSI, 
biopsy

5949 
slides

Retrospective, 
multiple inst. 
retrospective

DL Pathologists’ 
reports

Pathologists’ 
reports, 
Consensus 
reference 
standard by 3 
expert urologic 
pathologist

slide-level ROC-AUC Yes

Ström 
et al.103

WSI, 
biopsy

1474 
patients, 
9001 
slides

Prospectively 
collected, 
multiple inst.

DL Annotations 
by single 
experienced 
urological 
pathologist

Annotations by 
23 experienced 
urological 
pathologist

slide-level ROC-AUC, 
Se, Sp, 
cancer length 
measurement, 
Cohen’s kappa

No

Marginean 
et al.105

WSI, 
biopsy

195 
patients, 
735 slides

Retrospective, 
1 inst., same 
slide different 
scanners

DL Pixel-level 
annotations by 
2 experienced 
pathologists

Pixel-level 
annotations by 
2 experienced 
pathologists

Pixel-level 
slide-level

Correlation, 
Se, Sp

No

Kott et al.106 WSI, 
biopsy

80 
patients, 
85 slides

Retrospective, 
1 inst.

DL Pixel-level 
annotations by 
pathologists

Pixel-level 
annotations by 
pathologists

Patch-level Acc, Se, Sp, 
Prec

No

Li et al.108 WSI, 
RP

70 
patients, 
543 slides

Retrospective, 
1 inst.

DL & TML Pixel-level 
annotations by 
pathologists

Pixel-level 
annotations by 
pathologists

Pixel-level Overall Pixel 
Acc. IoU

No

Ryu et al.60 WSI, 
biopsy

1833 
slides

Retrospective, 
2 inst.

DL Pixel-level 
annotations by 
1 experienced 
pathologist

Slide-level 
annotations by 
3 experienced 
pathologists, 
difficulty-level

Slide-level Cohen’s kappa, 
Tumor length

No

AI, artificial intelligence; DL, deep learning; inst., institution; IoU, intersection over union; NPV, negative predictive value; Prec, precision; ROC-AUC, receiver operating 
characteristics–area under the curve; RP, radical prostatectomy; Se, Sensitivity; Sp, specificity; TML, traditional machine learning; WSI, whole slide images.

(whether the AI method assigns the Gleason 
score for the entire slide). Patient-level Gleason 
scores are often derived from slide-level predic-
tions. Like with MRI, evaluation metrics for 
histopathology images vary based on the label 
type and evaluation granularity. For example, 
pixel-level evaluation is only possible when 
detailed pixel-level labels are available as in 
Figure 3, and evaluation metrics may measure 
the degree of overlap or correlation between 

labels and predictions, sensitivity and specific-
ity at a very fine granularity (pixel-level) (Figure 
3(b)–(d)). However, in most cases, such 
detailed pixel-level labels are unavailable as 
these are impractically time-consuming for 
pathologists, and evaluation is performed on a 
coarser granularity (region-, slide-, or patient-
level) using pathologist reports. Evaluation 
metrics for such evaluation may include ROC-
AUC, Sensitivity, Specificity, Cohen’s kappa 
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Figure 3. The AI-predicted60 automated aggressive (Gleason pattern 4, green) and indolent (Gleason Pattern 3, blue) cancers visually 
match the manual cancer annotations by an expert pathologist (black, yellow, orange, red). (a) Whole mount histopathology image 
with (b–d) Close-up into the two cancer lesions. (c) Cancer labels manually outlined by an expert pathologist (black outline) shows 
high agreement with overall cancer (combined blue and green) predicted by the AI model. (b, d) It is impractically time-consuming 
for a human pathologist to manually assign pixel-level Gleason patterns (yellow, orange, red) to each gland in detail as done by the 
AI model (blue, green).

etc., but on a region-, slide-, or patient- level. A 
study to investigate the appropriate approach to 
evaluate AI classification methods on prostate 
histopathology images113 found that AI models 
trained using data with multiple expert anno-
tations yielded more accurate performance 
than models trained with single expert annota-
tion. Moreover, patient-based cross-validation 
provided more realistic and unbiased evalua-
tions of AI models than patch-based cross- 
validation-based evaluation methods.113

Several studies have compared the performance 
of (a) AI models versus pathologists, and (b) 
pathologists with and without AI assis-
tance.103,104,107,114–118 Most of these multi-reader 
and AI-assisted studies confirm the value of AI 
models in diagnostic pathology; they show 
increased sensitivity without statistical reduc-
tion in specificity, and reduced inter- and intra-
observer variability. Recent results from the 
Prostate cANcer graDe Assessment (PANDA) 
challenge118 show that AI models for Gleason 
grading are generalizable to different patient 
populations across the world and achieve strong 
concordance with expert genitourinary pathol-
ogists (see Section “Challenges in AI” for PCa 

for more details). Paige Prostate (Paige AI, 
New York, USA)119 recently received approval 
from the Food and Drug Administration (FDA) 
as the first ever AI-based clinical pathology 
solution.119 Independent studies on Paige 
Prostate showed generalizable performance on 
external test sets,116 and significant sensitivity 
improvement (74%–97%)115 of non-genitouri-
nary specialist pathologists without prior expe-
rience in digital pathology when assisted by 
Paige Prostate. Although non-genitourinary 
pathologist sensitivity improvements were 
noted for cancers of all sizes and Grade Groups, 
the most pronounced improvements were noted 
for smaller and lower-grade (Grade Groups 1, 
2, and 3) cancers.115

Gleason grading, while standardized, is con-
stantly being tweaked. This means that AI 
models either need to evolve, or the data need 
to be linked to hard clinical endpoints, like 
recurrence and death. For successful clinical 
deployment of AI models, regulatory authori-
ties (e.g. FDA) need to design strategies where 
AI models must also evolve with clinical knowl-
edge, rather than being frozen with locked-in 
variables.
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The accurate performance of AI models on pros-
tate histopathology images motivated their use as 
labeling strategies for training prostate cancer 
detection methods on MRI.50,51,66 These AI mod-
els on prostate histopathology images generate 
precise, gland-level annotations, that are not fea-
sible for human pathologists (Figure 3). These 
automated pixel-level Gleason pattern labels, 
together with accurate MRI-histopathology regis-
tration (see section “MRI-histopathology regis-
tration for ground truth labeling of cancer 
detection models”), enable AI-based radiology-
pathology fusion for selective identification of 
aggressive and indolent cancer on MRI.50,51 This 
is not possible using human annotations on MRI.

Summary. AI models for prostate cancer detec-
tion and Gleason grading on histopathology 
images have demonstrated excellent performance 
comparable to expert genitourinary pathologists. 
When compared to AI models for radiology 
images, AI models for histopathology images have 
undergone more rigid experimentation and vali-
dation using larger, heterogenous patient data 
sets. Multi-reader studies and evaluation on 
external validation sets demonstrate that these AI 
models have generalizable performance in hetero-
geneous patient populations from across the globe 
and have the potential to help pathologists in the 
clinic by improving sensitivity of non-genitouri-
nary specialist pathologists, and helping reduce 
inter- and intra-pathologist variability in Gleason 
grading.

AI models for supporting tasks in cancer 
detection
Supporting tasks for cancer detection include 
tasks that are labor-, time-, or experience-inten-
sive, but form an integral part of the clinical 
workflow to detect cancer. These supporting 
tasks include prostate gland segmentation and 
MRI-ultrasound registration to guide fusion 
biopsy procedures. Another supporting task is 
MRI-histopathology registration for patients 
who underwent radical prostatectomy. MRI-
histopathology registration is necessary to study 
correlations between pre-operative MRI and 
post-operative histopathology images of the pros-
tate and for deriving accurate ground truth labels 
for training cancer detection AI models on MRI. 
While several AI models exist for these support-
ing tasks, only a few are being commercially used 
in the clinic for support, or as pre-processing 
steps for AI cancer detection models.

Prostate gland segmentation to facilitate  
MRI-ultrasound fusion biopsies
Targeted MRI-ultrasound fusion biopsy work-
flow relies on accurate prostate gland segmenta-
tions on T2-weighted MRI and ultrasound 
images.120 However, manually outlining the 
prostate is a time-consuming and tedious task.121 
Automated methods have the potential to reduce 
the manual effort, time, and variability associ-
ated with prostate gland segmentations on MRI 
and ultrasound images during clinical biopsy 
procedures.

AI for prostate gland segmentation on MRI: Many 
studies have proposed deep learning models to 
segment the prostate on MRI.121–134

As with AI models for cancer detection tasks, AI 
models for prostate segmentation on MRI are 
mostly trained and validated on small data sets 
(40–250 patients),123–131 often with retrospec-
tive, single-center data124,131–133 without valida-
tion in external cohorts.124,131,132 The trained 
models and the source code to pre-process the 
data and train the model are often not publicly 
available,123–125,127,128,130,132,133,135 limiting the 
comparison between these models, as well as 
their usage. The better-performing models 
achieved Dice scores (metric of similarity 
between manual and AI-predicted segmenta-
tions) of at least 0.90 in internal and 0.80 in 
external data sets.121–123,125–127,130 A recent study 
that prospectively implemented an AI model for 
prostate segmentation in a urology clinic found 
that AI performance was more accurate and 17 
times faster than trained radiology techni-
cians.121 Finally, FDA-cleared commercial 
AI-based solutions for prostate gland segmenta-
tion are also available to optimize the clinical 
workflow.136–139

AI for prostate gland segmentation on ultrasound 
images: AI models for prostate gland segmenta-
tion on grayscale transrectal ultrasound images 
have used both traditional machine learning,140–143 
as well as deep learning–based approaches.144–151 
To further improve the segmentation of challeng-
ing regions (e.g. apex and base), studies have 
explored the use of prior shape information as sta-
tistical shape models,152,153 and temporal infor-
mation for transrectal ultrasound images.154,155 
Although these methods demonstrated good per-
formance, most of these studies included small 
patient cohorts from a single institution and a sin-
gle manufacturer, thus providing limited evidence 
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about generalizability across data from other 
institutions and different imaging devices.

Summary. AI models for prostate gland segmen-
tation on MRI and ultrasound have demonstrated 
promising results, but external validation on large 
patient cohorts are needed for wide clinical imple-
mentation. Moreover, source code and trained 
models must be shared publicly to derive the max-
imum benefits of the best-performing approaches.

MRI-ultrasound registration to facilitate MRI-
ultrasound fusion biopsies
Registration of preoperative MRI and intra-oper-
ative ultrasound is necessary for guiding  
MRI-ultrasound fusion biopsy,156,157 focal ther-
apy,158,159 and radiotherapy planning on MRI.160 
However, registration of the two different imag-
ing modalities, MRI and ultrasound, is compli-
cated due to (a) the difference in the underlying 
MR and ultrasound imaging processes, and (b) 
the deformation between the two imaging proce-
dures. In an attempt to improve registration 
between the two modalities, several studies used 
pre-defined corresponding anatomical struc-
tures.156–159,161,162 Some approaches used deform-
able transformations161 to model patient 
movement, surrounding organs, for example, 
bladder and rectum, or interaction with surgical 
instrument, for example, biopsy needles and 
ultrasound probes. Others used AI models with-
out constrained transformation models,156–158 or 

prior knowledge in modeling soft tissue 
motion.163,164

AI models have also been proposed to learn simi-
larity measures165 or transformation models from 
either biomechanical simulations (which empha-
size biologically meaningful registration)159 or 
shape populations.166 A popular class of methods 
utilize prostate gland segmentations on both MR 
and ultrasound images before registering the 
resulting point sets162 (Figure 4). AI models pro-
cessing point set data167 for registration often rep-
resent corresponding structures without detailed 
voxel-level correspondence.156,157,164 An advan-
tage of using point set is its robustness to scan-
ning protocols, largely thanks to well-established 
independent segmentation algorithms, and argu-
ably even faster inference.157 While most above 
methods discuss registration between 3D MR 
and 3D transrectal ultrasound images, there have 
also been advances in aligning 3D MRI to 2D 
ultrasound which is much easier to obtain.168 A 
summary of the related references in this section 
are listed in Table 5.

Summary. AI methods have the potential of com-
pletely automating the MRI-ultrasound registra-
tion task. The best-performing AI-based 
MRI-ultrasound registration methods achieved 
average target registration errors of ≈2–3 mm,161,164 
although with relatively large variance. Anatomical 
information, such as prostate gland segmentations 
or surface points help improve AI performance in 

Figure 4. AI can help in supporting tasks for cancer detection like prostate gland segmentation on MRI and ultrasound (left), and 
MRI-ultrasound registration (right). The AI-predicted prostate segmentations on MRI and ultrasound can help in automated MRI-
ultrasound registration which aligns the two modalities, mapping lesions from MRI onto ultrasound. MRI-ultrasound registration 
helps guide systematic and targeted fusion biopsy procedures.
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MRI-ultrasound registration. However, of the 
studies performed to date, all have shortcomings. 
These shortcomings include retrospective design, 
lack of prospective evaluation, and development 
and validation using single institution data. Sev-
eral MR and ultrasound manufacturers173,174 have 
integrated tools to assist with MRI-ultrasound 
registration, although these are still semi-auto-
mated and require human input in real-time.

MRI-histopathology registration for ground 
truth labeling of cancer detection models
Several AI models of prostate cancer detection on 
MRI43,44,48,50,51 derive ground truth labels from 
whole-mount prostate histopathology images 
through accurate registration with pre-operative 

MRI (Table 6). Pathologist labels mapped from 
histopathology images onto MRI through image 
registration is considered the most accurate labe-
ling strategy64 for training AI cancer detection 
models.

MRI-histopathology registrations are performed 
either cognitively, manually, or automatically. In 
cognitive methods,43,48 researchers mentally pro-
ject cancer labels from histopathology images 
onto the corresponding MRI slices without quan-
titative spatial alignment of the two modalities. 
Manual registration involves spatially aligning the 
MRI and histopathology images on a case-by-
case basis by human experts. Cognitive and man-
ual registration approaches are known to be 

Table 5. AI models for registration between MRI (T2w) and ultrasound (TRUS) images.

Study Number of 
subjects

Data type Approach Prostate 
segmentation

Evaluation 
metric

Source code 
availability

Hu et al.166 143 Retrospective DL No TREs, TDR, 
RMSE

No

Hu 
et al.161,169

76 Retrospective DL Yes; manual TREs, DSC Yes

Hu et al.163 76 Retrospective DL Yes; manual TREs, DSC No

Ghavami 
et al.162

59 Retrospective DL + TML Yes; DL DSC, GVE, 
TREs

No

Hu et al.158 80 Retrospective DL Yes; manual TREs, DSC Yes

Haskins 
et al.165

679 Retrospective DL + TML No TREs No

Guo et al.170 679 Retrospective DL Yes; manual TREs, SRE Yes

Saeed 
et al.159

320 Retrospective DL Yes; manual MAE No

Baum 
et al.156,157

108 Retrospective DL Yes; manual TREs, CD, 
HD

No

Zeng et al.171 36 Retrospective DL Yes; manual TREs, DSC No

Zeng et al.160 36 Retrospective DL Yes; DL TREs, DSC No

Song et al.172 528 Retrospective DL Yes; manual SRE Yes

Fu et al.164 50 Retrospective DL Yes; DL TREs, DSC, 
MSD, HD

No

Guo et al.168 619 Retrospective DL No TREs, NCC Yes

AI, artificial intelligence; CD, chamfer distance; DL, deep learning; DSC, dice score coefficient; HD, Hausdorff Distance; 
GVE, gland volume error; MRI, magnetic resonance imaging; MAE, Mean Absolute Error; MSD, Mean Square Distance; 
NCC, normalized cross correlation; RMSE, Root Mean Square Error; SRE, surface registration error; T2w, T2-weighted 
MRI; TDR, tumor detection rate; TML, traditional machine learning; TREs, target registration Errors; TRUS, transrectal 
ultrasound.
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Table 6. MRI-histopathology registration approaches (not exhaustive) for generating ground truth cancer labels on MRI.

Study Number 
of 
subjects

Pathology type Registration 
type

Intermediate 
modality

Require 2D slice 
correspondences

Prostate 
sectioning

Source code 
availability

Chappelow 
et al.175

25 Whole-mount Traditional 
automated

None Yes Manual No

Ward et al.176 13 Whole-mount Traditional 
automated

Fiducial 
markers

Yes Image-
guided

No

Kalavagunta 
et al.177

35 Pseudo-whole 
mount

Traditional 
automated

Manual 
landmarks

Yes Sectioning 
box

No

Reynolds 
et al.178

6 Whole-mount Traditional 
automated

Ex vivo 
MRI + Manual 
landmarks

Yes Sectioning 
box

No

Li et al.179 19 Pseudo-whole 
mount

Traditional 
automated

None Yes Manual No

Losnegård 
et al.180

12 Whole-mount Traditional 
automated

None No Manual No

Wu et al.181 17 Whole-mount Traditional 
automated

Ex vivo 
MRI + fiducial 
markers

Yes 3D-printed 
mold

No

Rusu et al.182 157 Whole-mount Traditional 
automated

None Yes 3D-printed 
mold

Yes

Shao et al.183 152 Whole-mount Deep 
learning

None Yes 3D-printed 
mold

Yes

Sood et al.184 106 Whole-mount Traditional 
automated

None No 3D-printed 
mold

No

Shao et al.185 183 Whole-mount Deep 
learning

None Yes 3D-printed 
mold

No

MRI, magnetic resonance imaging.

labor-intensive, requiring highly skilled experts in 
both radiology and pathology. As such, these 
approaches can only been applied to small patient 
data sets. Moreover, these methods failed to map 
MRI-invisible or hardly visible lesions from histo-
pathology images onto MRI. In traditional auto-
mated approaches, MRI, and histopathology 
images are directly registered by using customized 
image similarity loss functions,175,179,182,186 fiducial 
markers,176 or the use of intermediate ex vivo imag-
ing modalities to facilitate the registration.181,187 
Many of these methods rely on patient-specific 
3D-printed molds derived from preoperative 
MRI135 to maintain slice correspondences between 
MRI and histopathology images, while others 
directly register the MRI and histopathology vol-
umes without the need for MRI-histopathology 
slice correspondences.180,188–190 However, the 

absence of accurate slice correspondences can lead 
to partial volume artifacts. A recent study used  
3D super-resolution of MRI and histopathology 
images prior to performing a 3D registration to 
alleviate issues with partial volume artifacts.184

Although traditional automated approaches are 
advantageous over manual and cognitive registra-
tion, they are often time-consuming, requiring 
several minutes to register data from a single 
patient. Recent deep learning models183 greatly 
speed up the registration process. Traditional 
automated approaches generally require manual 
prostate gland segmentation to facilitate the regis-
tration. To avoid this step, a recent deep learning 
model proposed a weakly supervised registration 
approach that avoids the need for prostate seg-
mentation at inference.185
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Summary. Registration of pre-operative MRI 
with post-operative histopathology images is 
complicated due to the inherent difference of the 
two modalities, and their acquisition processes. 
Nonetheless, it is an important task for deriving 
accurate ground truth labels for cancer detection 
models on MRI. Although several automated 
MRI-histopathology registration approaches have 
been developed, only a few studies on AI-based 
prostate cancer detection44,47,50,51 use automated 
registration methods to derive ground truth 
labels. There remains the need to publicly share 
source code, trained models, and benchmarking 
data sets to compare different registration 
approaches, and to enable their usage in deriving 
accurate cancer labels.

Challenges in AI for PCa
AI models have great potential to improve diag-
nosis and management of prostate cancer and to 
bring precision medicine to patients. For exam-
ple, AI models may help accurate and timely 
detection of aggressive cancer, reduction of can-
cer-related deaths, and avoiding unnecessary 
invasive biopsies and their associated side-effects. 
In addition, AI models may help streamline sup-
porting tasks for cancer detection that are labor-, 
time-, and experience-intensive.

Despite promising outcomes of AI research in 
prostate cancer diagnosis, most methods are not 
ready to be used in clinical care. In the United 
States, only one prostate cancer detection system, 
the ‘Paige Prostate’, has received FDA approval 
for in vitro diagnostic use for detecting cancer on 
histopathology images of prostate biopsies.119 
Other commercially available FDA-cleared or 
European CE-marked applications (OnQ 
Prostate137, PROView136 Quantib Prostate,138 qp-
Prostate139) mostly focus on supporting tasks 
such as prostate segmentation, volumetry compu-
tation, or PSA density calculation.

Reducing the gap between academic research and 
translation of these AI models for diagnostic sup-
port in the clinic will require addressing the fol-
lowing challenges:

(a) Limited labeled data:

In order to be robust, generalizable, and unbi-
ased, AI models must be trained and validated 
with large data sets with accurate labels, which 
capture variability in patient populations and 

imaging acquisition. For example, the AI models 
for natural image recognition tasks that have 
achieved performance exceeding humans, have 
been trained and validated with ≈14 million 
images in the publicly available ImageNet data 
set.191 However, due to privacy concerns of medi-
cal data-sharing, AI models for prostate cancer 
diagnosis are mostly trained with small data sets, 
often from a single institution having patient pop-
ulations with specific socio-economic or racial 
distributions, or images acquired with certain 
scanners and acquisition protocols. AI models 
trained on a homogeneous patient population or 
imaging data may not generalize to different 
demographics or different kinds of scanners.192 
Studies to test generalizability of AI models on 
prostate cancer in different racial, socio-eco-
nomic, or ethnic patient populations are limited, 
thereby raising the question of unbiased and 
robust applicability of these AI-based models 
support in the clinic.

Development of robust, generalizable, and 
unbiased AI systems may require consolidated 
efforts from medical institutions across the 
globe to enable privacy-protecting medical data 
sharing.

Research on federated learning-193,194 or incre-
mental learning-based195 AI models that enable 
improvement of AI models through sharing and 
constantly updating the model, rather than shar-
ing of data, is another possible solution. Finally, 
self-supervised,68,196 weakly supervised,67,102 
semi-supervised,197,198 few-shot199 learning tech-
niques may be used to further improve robustness 
of AI models that are developed with large data 
sets, but without accurate labels (i.e. thousands of 
prostate MRIs in Picture Archiving and 
Communication System–PACS) that lack anno-
tations about where cancer is located in the 
images).

(b)  Limited multi-reader studies to assess 
AI-assisted performance of clinicians:

There are relatively few multi-reader studies that 
assess how AI models perform in comparison to 
clinicians. Moreover, only a few studies exist 
that analyze if the use of AI models can help 
standardize or improve human-reader perfor-
mance.55,104,115,117,200 This would be particularly 
useful in assessing the potential of AI in resource-
lacking institutions, or for less-experienced radi-
ologists or pathologists.
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Multireader studies for prostate MRI interpreta-
tion42,55,200,201 in limited patient populations 
demonstrated the utility of AI in providing 
diagnostic support to radiologists by improving 
sensitivity and positive predictive value of 
patient-level and lesion-level cancer detection. 
Multireader studies for prostate histopathology 
image interpretation103,104,117 demonstrated that 
AI models performed similarly to highly experi-
enced genitourinary pathologists. Furthermore, 
AI-assisted pathologists outperformed the stan-
dalone AI system and the unassisted patholo-
gists, by reducing inter- and intra-pathologist 
variability in Gleason grading. These multi-
reader studies unequivocally confirm the benefits 
of clinician-AI synergy, but the need remains for 
more extensive and carefully designed studies 
with larger, varied, multi-center patient popula-
tions to completely assess the clinical readiness of 
the AI models, particularly for radiology images. 
Moreover, research needs to be conducted on 
making the technology user-friendly and ensur-
ing that it does not negatively affect clinical 
workflow.

(c)  Limited prospective evaluations: Most AI 
models on prostate cancer have been 
trained and evaluated with retrospective 
data; only a few have focused on prospec-
tive evaluation.103,121 To deploy AI mod-
els for diagnostic support in the clinic, 
models trained with retrospective data 
must be evaluated in a prospective set-
ting. Moreover, clinical trials that evalu-
ate AI models for prostate cancer 
detection on non-invasive imaging need 
to be designed and explored.

(d)  Lack of standard evaluation criteria: 
Variability in evaluation criteria used in 
existing AI studies makes it difficult to 
compare the different automated 
approaches with one another. Definition 
of a unified, clinically relevant standard to 
evaluate AI models is required to assess 
the best-performing, robust, and unbiased 
AI system for clinical deployment. While 
patient outcome like death or recurrence 
can be considered as hard clinical end-
points for evaluation, such long-term out-
come data are often unavailable since 
prostate cancer is a slow-progressing dis-
ease. Making the source code and trained 
models of published studies publicly avail-
able helps in testing different approaches 
on independent data sets, often without 

the need to share the data, or with differ-
ent evaluation criteria.

A possible way to encourage participation of the 
AI community in prostate cancer research and to 
enable comparison, validation, and benchmark-
ing of AI models for cancer detection could be 
through organization of grand challenges. Grand 
challenges provide large, publicly available data 
sets for training AI models, and also allow com-
parison and validation of AI models through well-
curated, representative test data sets and defined 
clinically relevant evaluation metrics. The 
Prostate cANcer graDe Assessment (PANDA) 
Challenge118 was organized with the aim of test-
ing the generalizability and clinical-readiness of 
AI models for Gleason grading on prostate biospy 
histopathology images. More than 10,000 histo-
pathology images were made publicly available 
through the challenge, and 1290 AI developers 
from 65 countries participated in this challenge. 
On an independent validation set of 2009 biop-
sies, the AI models generalized across different 
patient populations, imaging parameters and ref-
erence standards, achieving strong agreements 
with expert genitourinary pathologists. Results 
from the PANDA challenge suggest that AI mod-
els for histopathology images are robust enough 
to be implemented in clinical trials.118

Grand challenges for MR images have included 
relatively smaller patient cohorts with lesser diver-
sity. The ProstateX and ProstateX-2 challenges202 
were organized with the aim of developing AI 
models that can enable cancer detection and 
aggressiveness characterization on prostate MR 
images. The ProstateX challenges included 
smaller patient cohort (346 patients) scanned at a 
single institution (Radboud University Medical 
Center) using two different Siemens scanners. 
The PROMISE-12 challenge134 was organized 
with the aim of developing AI models that can seg-
ment the prostate gland. It included 100 patients 
from four different institutions and different scan-
ners and scanning protocols. The NCI-ISBI 2013 
challenge on automated segmentation of prostate 
structures203 was organized to segment the pros-
tate peripheral zone and central glands, in addi-
tion to the whole prostate gland. The NCI-ISBI 
challenge included 80 patients from two different 
institutions, scanned with two different scanners 
and scanning protocols. These studies show that 
AI models for prostate MR interpretation still 
need development and external validation. Multi-
institution collaborations are needed to drive 
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more extensive grand challenges on prostate MRI 
and ultrasound images. Such grand challenges 
will encourage AI model-development on larger 
and heterogenous patient data sets. Moreover, 
these challenges will also allow testing generaliz-
ability and clinical readiness of AI models.

Limitations of this study
This study has several limitations. First, this is 
not an exhaustive review. While we curated rele-
vant literature to cover the breadth and depth of 
the different applications of AI models in prostate 
cancer diagnosis, the multitude of research publi-
cations in the different facets of this field and the 
limited review space forced us to be selective. 
Second, we could not provide a comparative 
analysis of the different methods due to the vari-
ability in data sets and evaluation criteria. Third, 
we did not provide extensive details of the AI 
models. Our aim in this study was to provide a 
broad overview of the potential of AI models in 
prostate cancer care and make it generally com-
prehensible to both clinical and technical readers. 
We described algorithms as belonging to two 
major categories – traditional machine learning 
and deep learning based approaches. Fourth, we 
did not discuss automated systems that use clini-
cal data, genomic data, or newer imaging modali-
ties such as prostate-specific membrane antigen 
(PSMA) PET scans.

We focused on three major imaging modalities 
(MRI, ultrasound, and histopathology) most com-
monly used in routine clinical care and did not 
cover newer imaging modalities that are showing 
benefit in prostate cancer detection. One such 
modality is Gallium-68 PSMA-11 PET-CT 
scans.204 Recent studies demonstrate that PSMA 
PET-CT scans can significantly improve prostate 
cancer detection and treatment planning, are more 
accurate than conventional imaging with CT and 
bone scanning,205 add value to MRI for diagno-
sis,206 and may enable better prediction of pre-
operative pathological outcomes than 
MRI.207–209 There is an opportunity for AI to 
address shortcomings of these new imaging modal-
ities, but due to its recent FDA approval, only a 
few published AI models32,210,211 exist for prostate 
cancer detection using PSMA PET currently.

Conclusion
AI models for prostate cancer detection on 
imaging are showing great promise and 

encouraging performance. Yet, AI models on 
radiology images need further development and 
validation on larger and diverse patient popula-
tions, standardized evaluation criteria, multi-
reader studies, and prospective evaluation to 
make them robust, generalizable, and unbiased. 
AI models on histopathology images have 
undergone more rigid experimentation on larger 
data sets and multi-reader evaluations, as com-
pared to radiology images. These studies sug-
gest that AI models on histopathology images 
are generalizable to different patient popula-
tions across the globe and can assist pathologists 
in the clinic by reducing intra- and inter-pathol-
ogist variability in Gleason grading. AI models 
for supporting tasks have the potential of reduc-
ing manual labor- and time-investments, par-
ticularly as more images are acquired and 
processed daily in clinical care. However, 
research needs to be done on best practices to 
integrate AI predictions in the clinical workflow 
in a seamless way, to enable clinician–AI syn-
ergy and precision medicine. AI-enabled preci-
sion medicine may eventually help in reducing 
disparity and advancing health equity in pros-
tate cancer management.
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