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Abstract
Anatomical substructures of the human brain have characteristic cell-types, connectivity

and local circuitry, which are reflected in area-specific transcriptome signatures, but the

principles governing area-specific transcription and their relation to brain development are

still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic

origin of brain regions, but the processes and genes that preserve an embryonic signature

in regional expression profiles were not quantified. Furthermore, it is not clear how embry-

onic-origin signatures of adult-brain expression interplay with changes in expression pat-

terns during development. Here we first quantify which genes have regional expression-

patterns related to the developmental origin of brain regions, using genome-wide mRNA

expression from post-mortem adult human brains. We find that almost all human genes

(92%) exhibit an expression pattern that agrees with developmental brain-region ontology,

but that this agreement changes at multiple phases during development. Agreement is par-

ticularly strong in neuron-specific genes, but also in genes that are not spatially correlated

with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in

early-evolved genes. We further find that pairs of similar genes having high agreement to

developmental region ontology tend to be more strongly correlated or anti-correlated, and

that the strength of spatial correlation changes more strongly in gene pairs with stronger

embryonic signatures. These results suggest that transcription regulation of most genes in

the adult human brain is spatially tuned in a way that changes through life, but in agreement

with development-determined brain regions.

Author Summary

Genome-wide measurements of gene expression across the human brain can reveal new
principles of brain organization and function. To achieve this, we aim to discover which
genes are differentially expressed and in what brain regions. We found that almost all
genes in the adult human brain bear a developmental ‘footprint’ which determines their
areal expression-pattern based on the developmental ontology of brain regions, while at
the same time their spatial expression pattern changes during life. Furthermore, pairs of
paralog genes and similar genes with stronger embryonic footprint, tend to be more
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strongly correlated (or anti correlated) suggesting that their expression is more strongly
spatially tuned, and this tuning changes in development.

Introduction
The human brain is organized in a hierarchy of multiple substructures, whose cell composition
and circuitry are believed to allow each substructure to carry out its distinct function. While
physiological and histological differences and similarities between structures have been inten-
sively studied [1–4], the molecular profiles giving rise to those differences are far from being
understood. Specifically, it is not known which principles govern the expression patterns of
genes across the adult brain and what determines their spatial organization. Recent high-reso-
lution genome-wide transcriptome profiling studies allow addressing these questions [5,6].
The current paper explores the role of development in determining adult expression patterns.

In early development of the vertebrate nervous system, the posterior part of the neural tube
develops into the spinal cord, and its anterior part divides into three primary vesicles: the pros-
encephalon, the mesencephalon and the rombencephalon. The prosencephalon further devel-
ops into two secondary vesicles: the telencephalon and the diencephalon. The most posterior
vesicle, the rombencephalon, forms two secondary vesicles as well, the metencephalon, and the
myelencephalon. These five vesicles are aligned along the rostral-caudal axis of the developing
brain and establish the primary organization of the central nervous system (Fig 1A) [7].

During early development, several gene families exhibit distinct spatial expression patterns
[8], including, for example, genes involved in axon guidance and in segmentation and
compartmentalization of brain regions [9,10]. Genes including netrins, semaphorins, and
ephrins function as molecular signatures, guiding axons to form long-range connections [11–
13]. Patterning genes [14], like the Hox gene family, play a crucial role in forming brain regions
[15]. Some genes, including Hox genes, were shown to retain unique expression patterns
related to tissue specificity across the adult body [16–18]. Many other genes, change their
expression patterns during development, both before or after birth [19–21]. However, for most
genes that are not directly involved in brain development, it is usually not known which pro-
cesses determine their spatial expression pattern across the adult brain.

Zapala and colleagues [22] studied areal expression across the adult mouse brain by cluster-
ing brain regions based on the expression levels of ~2000 genes. They found that the pattern of
gene expression in a brain region was correlated with the position of that region along the ante-
rior-posterior axis of the neural tube. Regions with similar expression profiles often shared a
common embryonic origin. One possible explanation of this finding would be that brain
regions sharing an embryonic origin contain similar cell-types, which in turn express shared
gene markers. For example, pyramidal neurons are the main excitatory neurons both in the
neocortex and in the hippocampus. The agreement between embryonic origin and expression
similarity may therefore be explained by a small number of cell-type specific gene markers.
Indeed, French et al. have shown that regions with similar expression profiles tend to have sim-
ilar neuronal connectivity patterns [23]. Ko et al. have shown that neuron-specific and astro-
cyte-specific gene markers show distinct patterns of expression across brain regions [24].
Grange et al. have estimated the spatial densities of 64 cell types in the mouse brain and identi-
fied genes with a localized pattern of expression [25]. The question remains however, how
genome-wide is the agreement of expression-pattern with embryonic origin and how does this
agreement develop during the lifetime of an organism.
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It is also not clear to what extent expression differences are pronounced between sub regions
of the major brain structures. Specifically, the cortex is sometimes viewed as largely homoge-
neous in various properties, including neuronal density, connectivity patterns and distribution
of cell-types, properties which were shown to be consistent across cortical sub-regions [4,26].
Also, cortical microcircuits can be induced to perform processing tasks that are naturally per-
formed in other regions [27–30]. These views are in agreement with the results of Ko et al.
[24], where clustering brain voxels based on their expression profile showed that the cortex is
significantly different from other structures, but is largely homogeneous by itself. However, the
level of homogeneity of cortex expression patterns has not been quantified directly so far.

To quantify the relation between expression patterns across the adult human brain and the
embryonic origin of the corresponding brain regions on a gene-by-gene basis, we analyze two
genome-wide mRNA expression datasets. For each gene separately, we computed an index that

Fig 1. Brain-region ontology and the BRO-agreement score. (A) Illustration of the ontology region tree showing 16 brain structures studied. The full
ontology contains 1534 regions, not shown. (B) A 3Dmodel brain illustrating 16 brain regions using the same colors as in A. The left cortex is not
shown in order to expose the inner structures. (C) Hierarchical clustering of 16 human brain structures. Agglomerative linking of regions by their
average expression profile yields a tree structure that agrees the with ontology tree. The color above the region namematches the colors in the region
ontology tree in Fig 1A. (D) The joint distribution of expression distances and ontology distances across all pairs of tissue samples, as computed for the
gene NEUROD1. The two distance measures are strongly correlated (Spearman ρ = 0.65, n = 6.85M, p-value < 10−15), showing that the spatial
expression pattern agrees with the ontology.

doi:10.1371/journal.pcbi.1005064.g001
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measures how its expression pattern in the adult agrees with a brain-region ontology based on
embryonic brain development. Surprisingly, we found that almost all genes exhibit a spatial
expression pattern that significantly agrees with the brain-region ontology. This effect is partic-
ularly strong in neuron-specific genes as expected, but also in many genes that serve more
generic functions. This suggests that the brain tunes the areal expression pattern of genes in a
way that strongly depends on embryonic development, and this holds even for genes that par-
ticipate in brain-wide functions. Furthermore, pairs of genes sharing related functions tend
to be spatially more anti-correlated if their expression pattern agrees with the brain-region
ontology.

Results
To characterize distinct gene expression patterns across the adult human brain, we analyzed
genome-wide expression measurements from two sources. First, a set of 3702 samples from 6
adult post-mortem human brains [5], and second, a set of 491 samples from 20 adult post-mor-
tem human brains [6]. See Methods for details on both datasets. In the results below, we refer
to these datasets as ABA6-2013 and Kang-2011.

Spatial pattern of expression and agreement with brain-region ontology
We evaluated how expression of each individual gene across the brain agrees with an ontology
of brain regions provided by the Allen Institute (http://human.brain-map.org) [31]. This ontol-
ogy is coarsely based on brain development, covering both developing and adult human brain
structures. The fine structure of the ontology, including cortical parcellation, is based on classi-
cal cytoarchitecture. Instead of analyzing expression variability across regions using a ‘flat’
representation of regions, the ontology allows to take into account the ‘structured’ similarities
among regions stemming from the shared embryonic origin of regions. We used the full tree
ontology which contained 1534 brain regions. Brain samples from the ABA6-2013 dataset were
associated with 414 ontology regions, and those from the Kang-2011 dataset were associated
with 16 regions of the ontology (see Methods S2 and S3 Tables). Fig 1A depicts the region-
ontology tree at a coarse resolution for visualization purposes. Nodes in the tree are colored
blue-to-red, roughly corresponding to position of regions on the anterior-posterior axis. Fig 1B
depicts the same regions on a 3D model of a human brain using the corresponding colors.

In the mouse brain, regions that share similar expression patterns group in a way that
matches the region ontology [22,32]. To test if these result are reproduced in human, we clus-
tered brain regions based on the full-genome expression profile (see Methods). The resulting
clustering agrees with the findings in the mouse. Fig 1C shows the hierarchical clustering of 16
brain regions from ABA6-2013, where brain regions with a common developmental origin,
share similar expression patterns. However, this clustering depends on the joint expression
patterns of all genes, and the question remains: which genes and processes contribute to this
effect?

To quantify how the expression pattern of each individual gene agrees with the region ontol-
ogy, we defined an index, which we call Brain-Region Ontology agreement score (BRO-agree-
ment score), calculated as follows. For a given gene, we consider all pairs of tissue-samples, and
for each pair we computed two measures of distances. The first, expression distance, is the
absolute difference of expression values in the two samples. The second, ontology distance, is
the distance between the corresponding regions in the ontology tree. The BRO score for each
gene is defined as the spearman correlation between the two distances computed for all tissue
pairs. It provides a measure of the agreement between expression difference and ontology dis-
tance (for more details see Methods). We also tested a second index based on triplet ranking
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which yielded similar results (see Methods). To illustrate the use of the BRO score, consider the
expression pattern of the gene NEUROD1, a transcription factor involved in regulation of brain
development. Fig 1D depicts the joint distribution of the ontology distance and the expression
distance computed for NEUROD1 expression measured at all tissue pairs. The two distance
measures are strongly correlated, with a BRO score of 0.65, suggesting that the variability in the
expression of NEUROD1 across the adult brain is largely explained by the position of the region
in the development region ontology.

BRO scoreðgene iÞ :¼spearman corrða;bÞ2all sample pairsðdtreeða; bÞ; dexpressionðai; biÞÞ

We computed the BRO index for every gene in the ABA6-2013 dataset based on a fine-reso-
lution ontology of 414 brain regions (see Methods). To assess significance, the BRO score of
each gene was compared to a randomized BRO score obtained by permuting the expression
profile of the gene across regions. We find that 92% of genes significantly agree with the brain-
region ontology more than random (FDR–corrected, q-value< 0.01). Using the triplets score
(see Methods), 95% of the genes in this dataset were significant. This surprisingly-high fraction
suggests that most genes have distinct areal expression patterns across the adult brain, and that
these patterns are largely determined by the embryonic origin of the brain regions they are
expressed in.

To test reproducibility and robustness of these results, we compare the BRO index obtained
for every gene in the two microarray datasets (see Methods), covering a total of 26 postmortem
brains. Fig 2A shows the joint distribution of BRO-agreement scores (light dots) computed in
ABA6-2013 (abscissa, 414 regions) and Kang-2011 (ordinate, 16 regions). It also shows the dis-
tribution of the baseline random distribution that was generated using permutation test (Fig
2A, dark dots, see Methods). We further tested that the effect was robust across subjects (see
Methods and supplemental S7 Fig) and compared the results obtained with the BRO index to
those obtained with ANOVA (see Methods).

In the Kang-2011 dataset, Fig 2A and 2D, 66% of the genes have significant BRO scores
(same as with the triplets method). The BRO scores for the two datasets are significantly corre-
lated across the two datasets (Spearman ρ = 0.53, p-value< 10-16, n = 16947, Fig 2A). The dif-
ferences between the two datasets in the fraction of genes that reach the significance threshold
is due to the smaller number of tissue samples in Kang-2011 and due to the limited coverage of
non-cortical regions, since only 144 samples out of 491 (29%) were from non-cortical regions
in Kang-2011, compared to 2187 out of 3702 (59%) in ABA6-2013. See full details in supple-
mentary S1 Table. We provide BRO scores for all genes as a supplementary data file (S1 Data).
We also quantified BRO scores in mouse, but due to multiple differences between the datasets,
direct comparison of the results is hard (S1 Text).

Variability across regions and samples may be due to tissue-wide effects such as fluctuations
in sampling, biases in cell density or variability in cell-type proportions, and these may be cor-
related with the developmental ontology. To test for a possible effect of cell density fluctuations
across samples, we repeated the experiment after scaling each sample by its mean expression
across genes. Fluctuations in the mean expression across samples were small (coefficient of var-
iation, CV = std/mean = ~2.5%) and did not have a significant effect on BRO scores (Spearman
ρ = 0.997 comparing with and without scaling). Similar results were obtained when normaliz-
ing to a set of highly-stable genes (see Methods) (CV = ~3%). This type of normalization is
effective when expression of the gene is highly stable and the relation between cell density and
number of transcript is largely linear.

As a second control, we aimed to test if BRO scores simply reflect the proportions of glia-
neuron mixture, which varies across the brain. Since estimating cell-type proportions is

On Expression Patterns and Developmental Origin of Human Brain Regions

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005064 August 26, 2016 5 / 25



challenging [25], and not yet available in human, we tested the relation between BRO-agree-
ment scores and correlation with known cell-type specific markers, by quantifying how well
the spatial variability of a gene can be explained by known neuronal and glial markers (see
Methods). For neuronal markers, the median explained variance was 0.14 (median absolute
deviation of 0.12, maximum explained variance = 0.26), and similar results were obtained with
glial markers. One interpretation that is consistent with these finding, is that the mixture pro-
portions of cell types in a sample, based on the markers available to us today, has a limited
explaining power of spatial variability. It should be noted however, that cell type specific mark-
ers have both a limited sensitivity and limited specificity, and do not reflect perfectly cell type
proportions. These results suggest that BRO-agreement is not a mere reflection of neuron-to-
glia mixture proportions.

The transcriptome of the cerebellum is known to differ substantially from that of the rest of
the brain [5,21,33]. This is apparent in Fig 1C, where the cerebellum is well separated from
other regions. To test how strongly the cerebellum contributes to the high BRO agreement
scores, we recomputed the scores while excluding cerebellar samples. Even with cerebellar

Fig 2. Distribution of BRO-agreement scores of individual genes. (A) Heatmap showing the joint distribution of BRO-agreement scores of all
genes in 16 regions of ABA6-2013 (absica) and Kang-2011 (ordinate). Colors correspond to the density. (B) A scatter plot showing BRO-agreement
scores for the two datasets in A. Each light-grey dot corresponds to a single gene (a total of 17K genes). Dark-grey dots correspond to permuted data
(see Methods). The BRO scores are significantly correlated across the two datasets (Spearman, ρ = 0.53, n = 16947, p-value<10−16). (C)Marginal
distribution of BRO scores in the ABA6-2013 dataset. BRO scores for most genes are significantly greater than randomized scores. (D) Same as C,
for the Kang-2011 data. (E) BRO-agreement scores traced through life based on the full developmental dataset in Kang-2011. Samples are
aggregated based on the developmental stages defined in [6]. Numbers above the line denote the number of subjects in each age group.

doi:10.1371/journal.pcbi.1005064.g002
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samples excluded, 90% of genes are BRO-significant. An intuition for the robustness of the
BRO can be gained from a principle component analysis (PCA) in a subsequent section. The
non-cerebellar structures are aligned along an anterior-posterior dimension when projected
onto the first two principal components. The order along this axis agrees with their place of ori-
gin in the neural tube and is captured by the BRO-score.

The BRO-agreement score reflects how strongly adult expression pattern of a gene may be
driven by the ontology, which was coarsely based on brain development. It is natural to test
how BRO-agreement scores change during life. We therefore computed the per-gene BRO-
agreement scores in subjects of multiple ages based on the data of [6]. Samples were grouped as
in [6], and covered postnatal and embryonic age groups starting at 13 post-conception week,
all having a common set of brain regions. When considering ages from late embryonic develop-
ment to adulthood, the mean BRO score follows an “hourglass” pattern, with BRO scores being
lowest around birth (Fig 2E). This developmental pattern is in agreement with previous studies
which analyzed aerial variability in the mouse [21] and human [19] brain. Based on these pre-
vious studies, the elevated BRO scores in embryonic development are due to higher areal vari-
ability in neural and brain development functions, while the postnatal rise in BRO scores is due
to elevated variability in signaling and plasticity functions. The life-long BRO-agreement pro-
file has two major differences from previous studies, namely, the BRO scores of both very early
and very late stages are significantly lower, deviating significantly from the hourglass pattern.
These differences are captured here because the scores are computed separately for very early
embryonic and very late-life stages.

Functional characterization of genes and their BRO-agreement scores
What genes and functions achieve the highest BRO scores? To answer this question, we first
tested functional enrichment of gene ontology (GO) categories [34]. We used a threshold-inde-
pendent approach based on ranking genes by their BRO (mHG [35]). The top enriched biologi-
cal processes (S4 Table) are all brain related, and mainly belong to two families of functions:
cell-to-cell signaling like synaptic transmission, and development-related categories like neu-
ron differentiation and neurogenesis. The first family, genes in cell-signaling categories,
included both genes from generic signal transduction pathways and receptors of more specific
neuromodulator systems. For instance, the two genes with highest BRO score in synaptic trans-
mission were RASGRF2 –which coordinates activation of MAPK signaling, and CAMK2A—
which is involved in calcium signaling). The 3rd and 4th genes in that category were genes cod-
ing for serotonin receptorsHTR2A andHTR4. Finally, some of the top ranked genes are related
to brain-related disorders: G-protein signaling regulator RGS4, serotonin receptor HTR2A and
the postsynaptic protein encoder–NRGN are related to schizophrenia. HTR2A, CHH9 are
related to autistic disorders.

To understand better which genes achieve the highest BRO scores, we further studied gene
families and functions that are of particular interest: genes expressed in specific cell types, and
genes involved in regulation of brain development.

First, it has been suggested that genes that are expressed distinctively in specific cell types,
contribute significantly to expression differences among brain regions [24]. Specifically, the
combined expression of neuronal gene markers was shown to correspond to the major subdivi-
sions of the brain [24]. Cahoy et al [36] identified genes that are enriched in specific cell types
in the mouse brain and can be used as cell-type specific markers. Operating under the assump-
tion that the human orthologs of those markers have preserved spatial expression patterns,
their BRO-scores provide a way to test quantitatively how strongly neuron-specific genes agree
with the brain region ontology. Fig 3A depicts three subsets of cell-specific gene markers, all of
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which are in particularly strong agreement with the tree structure: markers for neurons, astro-
cytes and oligodendrocytes. Cell-type specific genes have higher BRO scores than other genes
on average (Fig 3A bottom). Interestingly, neuron-specific gene markers agree more strongly
with the region-ontology than the average gene (p-value< 10−70,Wilcoxon comparing the
median of the distributions of BRO scores of neuron-specific genes, median = 0.33 and the gen-
eral population of genes, median = 0.11) while oligodendrocytes-specific and astrocyte-specific
markers are far less so (oligodendrocytes median = 0.19, Wilcoxon, p-value = 10−5, astrocytes

Fig 3. The distribution of BRO-agreement scores on different subsets of genes. The two top panels show a scatter plot of BRO scores in ABA6-
2013 and Kang-2011. The corresponding lower two panels show the (marginal) distributions in the ABA6-2013 dataset. (A) Cell-type specific genes have
higher agreement scores than all genes (Wilcoxonon tail test; neurons median = 0.33: p-value < 10−70 oligoodendrocytes median = 0.19: p-value = 10−5,
astrocytes median = 0.16: p-value = 10−3). (B) Axon guidance genes receive higher scores than general genes (Wilcoxon median = 0.21; p-value = 10−7).
Hox genes are less in agreement with region-ontology than the full set of genes. 21 Hox genes are BRO significant (67%) (compared to the randomized
scores, with alpha = 0.01). PAX2, PAX3 and PAX6 obtain high BRO scores.

doi:10.1371/journal.pcbi.1005064.g003
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median = 0.16, Wilcoxon, p-value = 10−3). These results are in agreement with Ko et al.
[24,37,38], which showed that the combined expression pattern of genes that are cell specific
agrees with the region-ontology. The analysis above extends their results by showing that the
region-ontology agreement occurs at the level of individual genes and is prevalent across cell-
specific markers (neurons: 270/271 which are 99% of the neuronal markers are BRO signifi-
cant; astrocytes: 151/160 which are 94% of the astrocytes markers; oligodendrocytes: 103/106
which are 97% of the oligodendrocytes markers).Using the same set of markers, Tan et al.
showed that genetic markers for neurons and oligodendrocyte are on the opposite ends of the
first principal component [37]. This means that while neurons and oligodendrocyte are similar
in that they both agree with the developmental ontology, they also show a very distinct pattern
of spatial expression.

Fig 3B depicts the distribution of BRO scores for three gene families involved in regional
specificity during brain development: axon guidance genes, Hox genes, and Pax genes. Genes
involved in early brain developmental have been shown to have regional expression patterns in
the adult [39,40][23]. Here, we find that genes involved in axon guidance have very high BRO
scores (Higher than the average gene, Wilcoxon, median = 0.21 p-value = 10−7) (Fig 3B bot-
tom). This suggests that beyond their embryonic role, genes involved in axon guidance may
assume other functional roles in the adult brain. Second, Hox genes play a major role in ante-
rior-posterior patterning across the body and across the brain during development and largely
retain these patterns in the adult body [16]. Their role in the adult brain is less clear. Here we
find that many Hox genes have BRO scores above the random set, but on average, their scores
are lower than the average gene (Wilcoxon, median = 0.03 p-value = 10−9). This suggests that
unlike other gene groups discussed above, Hox genes are less involved in regional patterns in
the adult brain. These view is also supported by Takahashi et al. which observed that while
Hox genes show an expression gradient through the entire adult body, only one third of Hox
genes are differentially expressed in brain-specific tissues [16].

Finally, we examined Pax genes. These genes are involved in early regionalization of the
embryo brain and were suggested to play a role in differentiation and maintenance of specific
subsets of cells in the adult brain [41,42]. It has been shown before that genes important for
brain developmental have regional expression patterns in the adult [39,40], including genes
involved in brain connectivity [23].

Here we find that three Pax genes, PAX2, PAX3 and PAX6, obtain significantly large BRO
scores (Fig 3B). Interestingly, PAX6 is a major determinant of regionalization in the mamma-
lian brain [9,10,42]. It was shown to be essential to cortex development, to mark cortex region-
alization and to regulate radial migration of neuronal precursors [39,43,44]. The differential
areal expression pattern of PAX6 in the adult raises the hypothesis that PAX6 continues to play
a region-specific role in the adult brain.

Evolutionary gene age and BRO-agreement
The above results suggest that spatial regionalization of human brain expression is present
both in brain-specific functions and also in more generic processes that can be found in simpler
organisms. Importantly, spatial regionalization of the nervous system is not unique to mam-
mals or vertebrae, and some of the mechanisms controlling spatial patterning are shared across
evolutionary-remote species [45]. For instance, Hox genes, whose expression exhibit anterior-
posterior gradients in mammals, also hold spatial information in species that diverged from
the human lineage early in evolution [46–48]. The natural question therefore arises: how is
brain regionalization of a gene related to the evolutionary age of that gene? For instance, one
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may hypothesize that genes with high BRO agreement would be genes those that evolved
recently, in organisms having a nervous system similar to the mammalian brain.

To test this hypothesis, we compare the BRO index with an index quantifying the evolution-
ary age genes [49]. Surprisingly, we found that evolutionary-older genes have on average higher
BRO scores than evolutionary-recent genes (Fig 4) (Cellular organisms: median = 0.129; Pri-
mates: median = 0.068, Wilcoxon p-value = 10−6). These older genes are also active in signaling
pathways and other basic functions in the cell (S4 Table). The top BRO-scoring genes have
orthologs across a wide variety of species, and participate in functions that are not specific to
neural processes. Presumably, these genes were conserved as the result of a pressure to preserve
these basic functions. For example, the gene ENC1 encodes an actin-binding protein involved
in regulation of neuronal process formation and in differentiation of neural crest cells. As
another example, CAMK2A is involved in calcium signaling as part of the NMDAR signaling
complex. At the same time, CAMK2A has an early evolutionary origin and has orthologs even
in rice. On the other range of the evolutionary timeline, genes associated with speciation of pri-
mates obtain lower BRO scores on average. These results suggest that genes with strong BRO
scores and spatial patterns are not necessarily specific to neural processes, but rather that the
brain spatially tunes the expression of genes involved in fundamental molecular functions.
With that said, it is also possible that these newer genes exhibit more refined differences across
brain regions, but that these changes are not captured by the current coarse-scale analysis (also
compare with [50]).

Source of spatial variability in expression
Expression variability has many contributing factors, including subject-to-subject variability,
regional variability and experimental noise. The above results suggest that the variability
between brain regions is significant for most genes. But, how large is regional variability com-
pared to other sources of expression variability? To answer this question, we used principal

Fig 4. Evolutionary-older genes have on average higher BRO-scores. (A) The median BRO score as a function of the evolutionary age of genes.
Older genes receive on average higher BRO scores than evolutionary recent genes. (B) Focus on the distribution of BRO scores for the oldest gene
group and of the most recent (primates) gene group. Genes in the cellular organisim group have a median BRO-score of 0.129, while genes in the primate
group have a median BRO-score of 0.068. The two distributions are signifatcly different.(Wilcoxonon two-tail test: p-value = 10−6).

doi:10.1371/journal.pcbi.1005064.g004
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component analysis (PCA) to extract the main axes of variability in the data (see Methods).
Interestingly, the PCA of the human expression was also analyzed previously by Tan et al. [31].
Tan et al. used PCA to embed genes in a low dimension space that preserved much of the gene-
to-gene variability. In that space, they found that neurons and oligodendrocytes are on the
opposite end of the first principal component. Here we address the complementary analysis,
looking for the dimensions that preserve the sample-to-sample variability.

Fig 5A shows the projection of brain samples onto the 1st and 2nd principal components,
which together account for 34% of the variance (S3 Fig). Samples are colored by the brain
region from which they were taken. Brain regions are well separated in this projection, in a way
that matches the anterior-posterior axis and the BRO. The isolated cluster of samples on the
left belongs to the cerebellum, which is well known to exhibit a unique molecular and cellular
organization [21,51,52]. This analysis shows that the BRO is a major determinant of variability
in human brain transcriptome.

As a comparison, Fig 5B shows the same projection on the two top PCs, but this time the
samples are colored by the subject from which each sample was taken. Expression differences
between people are pronounced mostly in frontal regions (top right samples), but are dramati-
cally weaker than the differences between brain regions. Subject-to-subject differences are
more pronounced when projecting on the 3rd and 4th principal components (S2 Fig).

To quantify the relative contribution of subject identity and region of origins to expression
variability, we computed the fraction of variance explained by these two features. For every
gene, we examined it expression across samples separately and computed the fraction of
explained-variance (See Methods) (S8A Fig). The subject-identity explains 0.13 (+/- 0.12) of a
gene’s expression-variance, while the region explains 0.28 (+/- 0.21) of a gene’s expression-var-
iance. Together, both sources explain nearly half of the sample variability (median at 0.43 +/-
0.18). Region and subject identity explain “different” component of the variance: the fraction
of variance explained by region is inversely correlated with the variance explained by subject
id. (Spearman ρ = -0.51 S8B Fig). Using the same dataset, Hawrylycz et al. recently took the
complementary track and searched for stable expression-patterns across subjects [53]. They
showed that genes with conserved patterning across subjects display strong relationships to
anatomical structure, functional connectivity and other features of the human brain.

Fig 5. Projection of the samples from the human6 dataset on the 1st and 2nd principal componenets with two coloring schemes. (A) The
samples are colored according to the position of the corresponding embryonic region, using the same color scheme as in Fig 1A. (B) The samples are
colored according to one of the six donors.

doi:10.1371/journal.pcbi.1005064.g005
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BRO agreement and spatial variability in paralogs and functionally-
related genes
With many genes exhibiting spatial expression that matches the developmental origin of brain
regions, the question remains if and how expression variability is used by the brain to tune the
functional properties of cells and circuits. One particularly interesting aspect of such tuning is
how the brain controls the expression of similar genes, including paralog and other function-
ally-related gene pairs. In many cases, the brain is known to switch from expressing one para-
log variant to another variant. Such switches have been studied mostly in the context of
development and synaptic pathways, including the widely studied switch in NMDA receptors
from subunit NR2A to NR2B [54–57]. These developmental switches can be traced to occur
within a brain region, and in some cases well after birth [54,56]. Here we study spatial switching
in pairs of genes, where genes coding for different protein variants are expressed in different
brain regions.

We set to study the relation between spatial expression switching and developmental origin
of regions, using the per-gene BRO-agreement score. To study fine spatial tuning, we aimed to
focus on pairs of genes that share similar functions. To collect such gene pairs we used two
approaches. First, we used a set of paralog genes defined by Ensembl (denoted ensemble-based
paralogs). Second, to further focus on genes with putative similar function, we collected pairs
of genes that share the same functional role in cellular pathways, as captured by KEGG. We
also required that these gene pairs have a significant sequence similarity and denote this set
Kegg-based pairs (see Methods). Both sets were restricted to brain-related synaptic pathways.

We first compared the distribution of spatial correlation strengths of similar gene pairs,
quantified by log(p-values) on ABA6-2013 data. We found that both the KEGG-based gene
pairs and the Ensembl-based paralogs are significantly more spatially anticorrelated than ran-
dom gene pairs (Fig 6A). Furthermore, KEGG-based gene pairs are more anticorrelated than
Ensembl paralogs in these pathways (Fig 6A). The spatial correlations of KEGG-based pairs
are fairly consistent when compared to the correlation using the same gene pairs in adult brains
from the Kang-2011 dataset, considering they were measured by different labs and in different
brain regions (Fig 6B).

Next, we compared the strength of spatial correlation of each pair of genes with their com-
bined BRO-agreement scores, and found a strongly significant correlation between the two
(KEGG-based set, Spearman with log(p-value), ρ = 0.36 p-value< 10-42, n = 1496). More sur-
prisingly, when considering anti-correlated gene pairs, pairs with high BRO-scores tend to be
more strongly anti-correlated (Spearman rho = -0.27 p-value<10−9 n = 1496). This effect is not
simply due to some pairs having more variable expression across the brain, since the depen-
dency on BRO is significantly stronger (p-value<10−42) than the dependency on spatial
variability (p-value< 0.01, quantified using the standard deviation across samples). One inter-
pretation of these findings is that the brain tunes the expression of pairs of functionally-related
pairs of genes, such that they are expressed differently in brain regions, and that this tuning is
in strong agreement with the developmental origin.

Together with the BRO results, these findings suggest that correlated spatial expression may
be formed early in development. To test this hypothesis we computed the spatial correlations
for each subject in the Kang-2011 data, which allows tracing how spatial correlations develop
with age. We then searched for KEGG-based pairs whose spatial correlations follow a trends,
and found that 17% of the pairs exhibit a significant trend (257/1496, FDR corrected p-
value<0.01, F-test from fitting a linear regression model, as compared with the constant
model). Far fewer pairs of Ensembl paralogs exhibit a significant trend (6.8% of the pairs 240/
3503).

On Expression Patterns and Developmental Origin of Human Brain Regions

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005064 August 26, 2016 12 / 25



Fig 6. (A) Distribution of gene pairs with anti-correlated spatial expression.Kegg-based gene pairs include 1496 pairs with
(1) sequence similarity > 30%, and (2) sharing a sub-component in one of 17 KEGG synaptic pathways (see Methods).
Ensembl-based paralogs include 3503 pairs of paralogs (as defined by Ensembl) where both genes in a pair are included in
one of same 17 pathways (see Methods). Baseline corresponds to the distribution expected at random. (B) Consistency of
spatial correlations across two datasets ABA2013 and Kang-2011. The spatial correlations of paralog pairs across the two
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Fig 6C shows the top pair in the KEGG-based pairs set (p-value of trend< 10−4). It corre-
sponds to a pair of Serotonin receptor genes, HTR2A and HTR1F from two different receptors
(5-HT1, 5-HT2). Interestingly, their spatial correlation is negative prenatally and is around
zero around birth. However, it continuously grows throughout life, reaching high positive cor-
relation at adulthood. This pattern is interesting for several reasons. First, the gradual increase
in correlations throughout life is not likely to be caused by changes in cell proportions, since
there is a significant change in correlation between childhood and adulthood. Second, other
genes in the Serotonin system exhibit different patterns. Fig 6D shows a pair of genes coding
for Serotonin receptors HTR5A and HTR2C. Here the early embryonic positive correlation is
replaced by a negative correlation around birth, which remains quite stable during life. Fig 6E
and 6F show similar patterns in two pairs of Ensembl paralogs, CACNA1A vs CACNA1D two
genes coding for Calcium channels, and HTR7 vs.HTR5A, two serotonin receptors. HTR7 is
known to be involved in both early and post-natal development [58].

One possible interpretation of the prevalence of high BRO-agreement scores is that the
expression patterns of many are determined early in development, and are preserved through
life and in the adult brain. Alternatively, it is also possible that gene-expression changes in a
dynamic way through life, but keep following patterns that agree with the embryonic origin of
regions. To test these two hypotheses, we quantified the relation between the strength of
expression changes of pairs through life, and the BRO scores of the gene pair. We find that the
two are positively correlated (ρ = 0.14, p-value<10–7, S9A Fig, for KEGG-based pairs, and, ρ =
0.17, p-value<10–21, S9B Fig for Ensembl-based paralogs), namely, pairs of genes with higher
BRO scores actually tend to exhibit more changes in their spatial correlations, consistent with
the second hypothesis. These results are consistent with the view that spatial expression pat-
terns in the adult are not a mere reflection of the brain structure as determined in early devel-
opment, but are tuned to use genes coding for different protein variants in a differential way
across the brain.

Discussion
To characterize the areal patterns of gene expression in the human brain, we analyzed two
datasets of mRNA expression from post-mortem adult donors. For each gene, we computed an
index that measures how its expression pattern agrees with a hierarchical ontology of brain-
regions, based on their developmental origin. We find that 92% of human genes exhibit an
expression pattern that significantly agrees with the known brain-region ontology. The fact
that such a large fraction of the human genome is differentially expressed across brain regions
suggests that control of expression in the brain is largely region-specific.

When focusing on genes that are expressed specifically in neurons, glia and oligodendro-
cytes, we find that cell-type specific genes tend to strongly agree with the tree-structured ontol-
ogy. This suggests that not only do these markers differ between regions, as suggested by Ko
et al. [24], but that they also follow a specific pattern of expression which corresponds to the
embryonic origin of the region and to a larger extent than the average gene. Interestingly,

dataset, show a significant agreement (Spearman ρ = 0.48, p-value < 10−78). Each point correspond to the median correlation
across adult subjects, in one gene pair (total of 1496 pairs). (C-F) Examples of development of spatial correlations in the
Serotonin system. (C) The pair of genes coding for Serotonin receptorsHTR2A andHTR1F exhibit a continuous rise in spatial
correlation, riding from slightly negative in early embryonic development to strong positive correlation. (D) The pair of genes
coding for Serotonin receptorsHTR5A andHTR2C show a sharp transition from positive to negative spatial correlation in early
development, which is then preserved through life. (E) The paralogsCACNA1A andCACNA1D exhibit a rise in spatial
correaltion (F) The paralogsHTR7 and HTR5A show a continuous change in spatial correation, from positive corealation
during embryonic development to negative one at adulthood.

doi:10.1371/journal.pcbi.1005064.g006
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significant BRO scores are not limited to neurons, which are often known to differ across brain
regions, but are also observed in glia-specific genes, which are often viewed as performing
brain-wide and generic functions.

Having adult expression patterns that strongly agree with the developmental brain region
ontology could have various interpretations. First, adult spatial expression patterns could be
determined by the embryonic origin of each region, for example because brain regions differ by
their cell-type profiles, or due to the expression of region-specific markers. Alternatively, adult
expression may reflect delicate tuning of expression where different brain regions utilize differ-
ent protein variants, optimized for the function of each brain region. We find evidence that
support the second alternative. First, gene with high BRO-scores tend to change their expres-
sion more during development. Second, pairs of functionally-related genes (participating in a
similar role in synaptic pathways) have stronger spatial anti-correlation than paralogs in those
pathways. Finally, in those pairs of functionally related genes, pairs with higher BRO scores
tend to have stronger spatial anti-correlation.

The approach we presented has various limitations. Transcriptome data measured from
brain tissues involves a mixture of various cell types whose proportions and conditions are not
known. Developing demixing approach to infer proportions from the mixture [25] is an impor-
tant challenge, can be based on single-cell transcriptomics (as in Darmanis et al 2015), and is
likely to significantly change our understanding of brain transcriptome.

Genes involved in patterning and axon guidance clearly exhibit regional patterns during
early development [59]. The above results show that their expression continues to be governed
by the region ontology in the adult brain, long after their developmental role has been com-
pleted. As one specific example, consider a gene from the top BRO-scorers in the ABA6-2013
dataset, FEZF2 (forebrain embryonic zinc finger protein 2), a transcription repressor involved
in specification of subcerebral projection neurons [60,61]. FEZF2 is believed to play a role in
layer and neuronal patterning of subcortical projections and axonal fasciculation and was
shown to regulate axon targeting of layer 5 subcortical projection neurons, where axons of
FEZF2 deficient mice failed to reach their targets [62]. In the adult human brain, our results
show that FEZF2 retains strong areal differences in adulthood, and is strongly expressed in the
cortex, less so in the midbrain and the least in the hindbrain (S6 Fig). Indeed, the mouse variant
of FEZF2 is known to be expressed in adult projection neurons [62]. Importantly, these results
suggest that FEZF2 assumes another functional role in the adult cortex. Indeed, it has been
shown that projecting neurons in the mouse motor cortex expressing Fezf2 have distinct physi-
ological characteristics [63]. The abundance of genes that retain their areal differential expres-
sion in adulthood suggests that this may be the general case, and many genes that play a role in
brain development later assume new roles that affect the function of the adult brain.

The fraction of genes having distinct areal expression pattern has been previously estimated
using a different method (ANOVA). In the Kang-2011 data, it was found to be on the order of
hundreds of genes in the adult human brain (Pletikos et al. [19], Fig 2B). In the ABA6-2013
data 84% of the genes were found to have differential expression across brain regions [5].
ANOVA estimates are sensitive to differences in the mean expression of regions, regardless of
the region ontology, and could capture genes whose expression pattern in some brain regions
is different from others. As such, they are more sensitive to genes that are uniquely expressed
in one or few region. The BRO-score can therefore be viewed as a complementing measure,
which is sensitive to global areal-differential expression that is consistent with the brain region
ontology.

The fact that the expression of most genes in the adult brain is governed by earlier develop-
ment stages suggest that many studies which deal with regional differential expression should
be carefully interpreted. For example, combining samples taken from ontology-distant regions
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would lead to large expression variance, reflecting the developmental origin of the structures
tested. Furthermore, areal differential expression should be measured compared to a baseline
expression profile that takes in to account the region ontology.

The results in this paper suggest that spatial expression patterns in the adult human brain
are controlled in a way that follows the embryonic origin of regions, but at the same time that
spatial patterns of related genes may change during development in a correlated way. It
remains to be discovered which transcription control mechanisms maintain these distinct areal
expression patterns.

Methods

Gene expression measurements
We analyzed gene expression data from two sources. First, a set of 3702 microarrays provided
by the Allen Human Brain Dataset (ABA6-2013) from human.brain-map.org [5]. We mapped
58692 microarray probes to genes based on mapping provided by the Allen Institute. When
multiple probes were available for a gene, we selected the probe that was most consistent across
the 6 human subjects; suggested by human.brain-map.org. Specifically, when we analyzed
genes with multiple probes, we first computed the expression correlation across regions of each
probe, then averaged the correlation scores across all pairs of subjects and chose the probe that
was most correlative. Overall, we analyzed 20773 transcripts. The number of samples per
donor ranged from 363 to 946, for a total of 3702 tissue samples.

The second dataset was a set of 1340 microarray samples collected by Kang and colleagues
from 57 postmortem brains containing expression values for 17565 genes [6]. We refer to this
dataset as Kang-2011. We limited the analysis to donors that are older than 12, yielding a total
of 20 donors and 491 tissue samples.

The Kang dataset was also used for the analysis of BRO-agreement over development (Fig
2E). For this analysis we also used the pre-natal subjects and early-childhood subjects. The sub-
ject ages range from 13 post conception weeks to 82 years. We grouped the subjects into 12
age-groups following the original Kang paper, and computed BRO scores per age group.

Brain region ontology
We used the brain region ontology hierarchy provided by the Allen institute human.brain-
map.org containing 1534 regions organized in a hierarchical manner. From the full set of
regions we used two ontologies: A fine region-ontology with 414 regions which had measure-
ments that were associated with them, and a coarse region-ontology with 16 brain regions. The
list of 16 gross regions is given in supplemental S2 Table. The coarse part of the ontology
(upper part in Fig 1A) was largely based on brain development while the fine parcellation of
regions was based more on cytoarchitecture. The results we report are based on the coarse 16
region-ontology. We report below results for both coarse and fine grained ontologies. Measure-
ments from the Kang-2011 dataset were obtained from 16 regions. We mapped those regions
to 16 regions of the Allen ontology, and the mapping is given in supplemental S3 Table.

BRO-agreement scores
The BRO-agreement score was computed separately for each gene as follows. For each pair of
samples (a,b), we define their tree similarity as the distance (number of edges) between the
regions in the ontology hierarchy tree dtree(a,b). We define their expression similarity as the
absolute difference between the expression values of the two samples for the current gene (i)—
dexpression(ai,bi). We computed the two distances over all pairs of tissue samples, and computed
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the Spearman correlation between the two as the BRO score.

BRO scoreðgene iÞ≔spearman corrða;bÞ2all sample pairsð dtreeða; bÞ; dexpressionðai; biÞ Þ

To generate random scores, we calculate Bro-agreement scores of permutated vectors.
Genes with a BRO-score above the top 1% of the permuted scores were considered significant.

We also tested a second ontology-agreement score based on triplet ranking. We randomly
selected 106 sample triplets (a, b, c) and computed the fraction of times that a triplet is ranked
with the same ordering in both the tree and the expression distance measures:

BRO triplet gene ið Þ≔ #ðdtreeða; bÞ < dtreeða; cÞÞ&ðdexpressionða; bÞ < dexpressionða; cÞÞÞ
#ðdtreeða; bÞ < dtreeða; cÞÞ

This score gave similar results which are not shown here.
To handle biases that could arise from different scales in the samples we also checked a nor-

malized version of the Bro-agreement. In this normalized version we first normalized each
sample to zero mean and unit variance and then computed the BRO-agreement. The results
were robust to this change and we choose to present the un-normalized BRO-agreement scores.
To handle biases that could arise from the number of regions in the ontology, we used two dif-
ferent granularities of the ontology tree. The first uses 16 gross regions and the second uses the
entire tree (414 regions).

Combining scores from multiple subjects
We tested two ways to combine expression measures from multiple subjects into a single BRO
score. First, we simply aggregated all samples of all subjects from a given region, and computed
the BRO agreement score. Second, in the ABA6-2013 dataset, the number of samples per sub-
ject is large enough, such that a BRO score can be computed separately for each subject. We
then computed a global BRO score of a gene as the average over the 6 individual-subject BRO
scores. 94% of the genes were significant compared to random, according to the first score, and
92% according to the second method. For consistency with the Kang-2011 data, the figures use
the first method. We report the more conservative estimate of significant genes as 92%.

We computed BRO-scores which uses the fine region-ontology. The upper branches in this
ontology are more developmental oriented and the lower branches are more cytoarchitecture-
driven. Using this ontology 89% of the genes are BRO significant. The BRO scores of the fine
region-ontology and of the coarse 16 region-ontology are very similar with a spearman correla-
tion of 0.98.

To test if these results are sensitive to the number of region available in ontology tree, we
repeated the analysis of the ABA6-2013 dataset at a coarser resolution of 16 regions. Using this
coarse resolution, 95% of the genes were BRO significant. To test if the number of BRO signifi-
cant genes is sensitive to the number of available samples, we randomly subsampled subsets of
size 500 samples, which decreased the fraction of BRO significant genes to 51% ± 2% (supple-
mentary S1 Table).

Robustness across subjects
The percent of BRO-significant was tested for robustness using the ABA6-2013 dataset, where
hundreds of samples are available for each subject. For each gene, we calculated its BRO-score
but this time for each subject separately. The fraction of genes with a significant BRO score (p-
value< 0.01) is stable across the individual subjects, yielding 89%, 90%, 76%, 91%, 83% and
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86% (supplementary S7 Fig). The fraction of significant genes at the group level is slightly
higher; suggesting that the groups score manages to remove some of the inter-subject noise.

ANOVA analysis
Expression variability of a single gene across regions is sometimes captured by comparing the
mean expression level in each region using ANOVA [5,6]. This approach would find a gene as
significant even if it is differentially expressed in a single region, or if it is expressed in a set of
regions regardless of their position in the ontology tree. Hence in principle, the BRO agreement
index poses a stronger requirement of agreement with the ontology. When computing
ANOVA across 414 regions of the ABA6-2013 dataset, and using the average scores for each of
the 6 subjects, 86% of the genes (17895 out of 20773) were significantly differentially expressed
across regions (FDR-corrected q-value< 0.01), 83% of these genes (17266 out of 20773) were
also BRO-significant. 8% of the genes (1719 out of 20773) had BRO-significant scores but not
ANOVA-significant, most likely because the BRO index combined weak affects across multiple
nodes of the tree.

For each gene, we computed one-way ANOVA on samples expression levels. The p-values
reported are under the null hypothesis that samples are drawn from regions which have the
same mean expression. We computed ANOVA separately for each human subject and report
the average ANOVA score across subjects for each gene. Similar to the BRO scores we per-
formed ANOVA on the fine grained ontology and on the coarse ontology. We then corrected
the p-values for multiple comparisons using FDR.

Cell type-specific markers
For the genome wide analysis of BRO scores We used the human orthologs of the set of genes
characterized by Cahoy et al. [36], who used microarrays to profile expression patterns in puri-
fied populations of neurons, astrocytes and oligodendrocytes. For testing how spatial variability
could be explained by cell-type specific markers, we used a set of known markers collected
from various sources including [36]. For neuronal markers we used EMX1,MAP2, GRIA2,
DLG4, DLG3, NRGN, STMN2, SYT1, CELF4, CELF5, CELF6. For glia markers we used GFAP,
MBP, SLC1A2, SLC1A3, DLG4, DLG3,MAP2. To compute the dependence of spatial variability
on those markers we fitted a quadratic function for each of the genes separately using a least
square loss, and computed the explained variance R2, compared to a constant model.

Sets of gene pairs
We studied two sets of gene pairs: Ensembl paralogs and KEGG-based gene pairs. For the first
set, we used the paralogs available from Ensembl (ensembl.org, May 2016), and limited to gene
pairs that had an Entrez id and were included in synaptic and brain related pathways as
described by KEGG. Specifically, these included 17 pathways with KEGG accession numbers
04020, 04724, 04725, 04726, 04727, 04728, 04730, 05010, 05012, 05014, 05016, 05030, 05031,
05032, 05033, 05034, 04080.

Second, for KEGG-based gene pairs, we created a set of gene pairs designed to capture func-
tionally-related genes, by collecting gene pairs that reside within the same functional element
in KEGG pathway repository. These KEGG elements group together proteins with common
functionally and interaction partners. We found these KEGG elements to be usually more
functionally-coherent than protein families, and at the same time less specific than protein
sub-families. We further required that pairs have sequence similarity above 30% (See also
[64]).
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Trends in spatial correlation
To find pairs whose spatial correlation has a trend, we fitted a linear regression model with
least square loss with age as the predicting variable and spatial correlation as the predicted vari-
able. Significance of the trend was measured based on the F statistic of the explained variance
and was FDR corrected for multiple hypotheses.

Hox, Pax and axon guidance genes
We used the set of genes that belong to the human axon guidance pathway. The set was manu-
ally curated by KEGG (www.genome.jp/kegg). The Hox genes used are:HOXA1,HOXA10,
HOXA11, HOXA2, HOXA3, HOXA4, HOXA5, HOXA6, HOXA7, HOXA9, HOXB1,HOXB13,
HOXB3,HOXB4,HOXB5, HOXB6,HOXB9,HOXC10, HOXC12, HOXC13,HOXC4, HOXC5,
HOXC8,HOXC9, HOXD1,HOXD12,HOXD13,HOXD3, HOXD4,HOXD8, HOXD8, and
HOXD9. The Pax genes used are: PAX1, PAX2, PAX3, PAX4, PAX5, PAX6, PAX7 and PAX8.

Highly stable gene
A set of 11 genes collected by Eisenberg et al. [65] and available at (http://www.tau.ac.il/~elieis/
HKG/).

Hierarchical clustering analysis
We used agglomerative hierarchical with average linkage and Euclidean distance over 3702
samples from ABA6-2013 obtained from six subjects. Samples from the same brain regions
were first averaged to create a single profile for each region.

Principal component analysis
We used all 3702 samples from ABA6-2013 to compute the covariance matrix of gene expres-
sion levels, and then computed the top principal component of the expression covariance
matrix.

Explained sample-variance analysis
For each gene, we evaluated how much of its expression variance (over samples) can be
explained using two sources of information: The region the sample was taken from and the
identity of the subject the sample was extracted from. The explained variance was computed
for each gene by fitting linear model using each of these sources of information, and using both
of them together.

Gene enrichment analysis
For robustness, we combined two BRO-score of each gene by multiplying the BRO-score com-
puted with the Kang-2011 data with that computed with the ABA-2013 data. We performed
the ranked based enrichment analysis using Gorilla (http://cbl-gorilla.cs.technion.ac.il/).

Gene age-index
We used the gene age-index published by Domazet-Lošo and Tautz [66].

Supporting Information
S1 Table. Sensitivity of the number of BRO significant genes in the ABA6-2013. Sensitivity
to the number of regions in the ontology tree depth was assessed by using two ontologies with
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different resolutions: A fine-resolution ontology that contained 414 regions and a coarse-reso-
lution ontology of 16 gross regions. Sensitivity to the number of available samples was assessed
by computing the BRO score using random subsets of 500 samples.
(XLS)

S2 Table. Names of brain regions and their corresponding symbols ABA ontology [31].
(XLS)

S3 Table. Region notations.Mapping the notation of regions in Kang-2011 and in the Allen
Institute region ontology ABA6-2013 [5,6].
(XLS)

S4 Table. Top 10 ranking of GO biological processes enriched in genes with high BRO
scores. Enrichment was computed using mGH [35] testing for enriched biological processes
using the full ranked list of BRO-score genes. All top processes are brain-related, with high
enrichment for cell signaling and neural development.
(XLS)

S1 Fig. Correlation between tissues. Pearson correlation between expression vectors of all
pairs of tissue samples. Samples are ordered first by gross region than by donor. Samples from
regions that are close in the developmental region ontology are highly correlated in their
expression profile. Within each region, samples are also correlated with other samples from the
same donor.
(TIF)

S2 Fig. Projection of samples from ABA6-2013 dataset onto the 3rd and 4th principal com-
ponenets as in Fig 5, with two coloring schemes. (A) Each point is a tissue sample. Samples
are colored based on the position of the corresponding embryonic region. (B) Colors correp-
sond to donor identity. A significant fraction of the sample variance across the 3rd and 4th prin-
cipal components is explained by subject-to-subject variablity.
(TIF)

S3 Fig. Fraction of variance explained by the top principal components, as in S2 Fig. The
first two principal components caputre 34% of the variance. Adding the 3rd and 4th principal
components explain more than 51% of the sample-to-sample variance.
(TIF)

S4 Fig. Distribution of cortex-BRO-agreement scores in ABA6-2013 and Kang-2011. Color
scheme and x-axis scale matche those of Fig 2. (A) A scatter plot showing BRO-agreement
scores for the two datasets. Each light-grey dots corresponds to a single genes (a total of 17K
genes). Dark-grey dots correspond to permuted data (see Methods). (B)Marginal distribution
of BRO scores in the ABA6-2013 dataset. In the ABA6-2013 dataset, 11% of the genes (2207 out
of 20773) are BRO-significant in the cortex. BRO score was also computed separately for each
subject, using the ABA6-2013 dataset. With these per-subject scores, the number of BRO-sig-
nificant genes varied considerably across the six subjects (30%, 33%, 5%, 37%, 16% and 18%),
and the correlation of BRO scores between subjects is on average lower (mean Spearman Cor-
relation of cortex BRO scores of a pair of subjects is 0.23 ± 0.13, compared with 0.76 ± 0.08 for
the whole brain). (C)Marginal distribution of BRO scores in the Kang-2011 dataset. The large
fraction of BRO-significant genes observed in ABA6-2013 was not found in the Kang-2011
dataset, where the two distributions largely overlap.
(TIF)
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S5 Fig. The distribution of cortical BRO-agreement scores on various subsets of genes.
Color scheme and x-axis scale match those of Fig 3. (A, B) Neurons and astrocytes receive
significantly higher agreement scores than all genes (Wilcoxon one tail test; neurons:
p-value = 10-9, astrocytes: p-value = 10−22). Oligoodendrocyte genes are in less agreement with
region-ontology than the full set of genes. Comparing these BRO scores to a randomized scores
we find that 45% of the neuronal markers are cortex-BRO significant, 69% of the astrocytes
markers are cortex-BRO significant and that 7% of the oligodendrocytes markers are cortex-
BRO significant;). (C, D) Axon-guidance genes receive higher scores than genes on average
(Wilcoxon one tail test, p-value = 10−3). Hox genes are less in agreement with region-ontology
than the full set of genes (still significantly larger than random). PAX2 and PAX6 obtain high
BRO scores.
(TIF)

S6 Fig. FEZF2 (ZNF312) expression pattern corresponds with the brain region ontology.
FEZF2 shows a clear transtion of its expression levels. The samples from the cortex show high
experssion values where the samples midbrain has less and the samples of the hindbrain has
the least expression. (A) The mean expression levels of the FEZF2 within different region in
the human brain (the color scheme as consitant with that of Fig 1A. (B)We embed the samples
in a 3D space using its MRI standartize location where the color of each sample shows the
expression level of FEZF2. The scatter shows a transiation from high expression levels in the
cortex to lower expression levels in the inner brain structures and to the hindbrain.
(TIF)

S7 Fig. The distribution of BRO-scores computed separately for each subject in ABA6-
2013. The percent of BRO-significant genes (p-value< 0.01) is stable when computed for each
subject separately: 89%, 90%, 76%, 91%, 83% and 86%).
(TIF)

S8 Fig. Region information explains more of the sample variance than subject identity. The
joint information of subject id and region id explains almost half of the sample variance. For
each gene, we represented the identity information as 1-hot-vectors, and computed the
explained sample-variance by fitting a linear model (A) Distributions of explained variance
across genes, as explained by region, subject or both. (B) The joint distribution of both the
explained variance from region and from subject identity.
(TIF)

S9 Fig. BRO score is positively correlated with pairs of genes which show a significant
trend in development. Trend significance of change in spatial correlation through life was
quantified using the standard F-test comparing residual of a linear regression model with a
constant model. Pair BRO score is the minimum BRO scores of the two genes in the pair. (A)
We computed the developmental trend for each pair of genes from the KEGG-based set. We
found that BRO-agreement scores are (weakly but significantly) positively correlated with hav-
ing a significant trend. Each dot corresponds to one brain related sequence-similar pair. 17% of
pairs (257/1496) had FDR-corrected significant (q<0.01) linear trend of their spatial correla-
tion, as illustrated in Fig 6. (B) Similarly, we found that the developmental trend of paralog
pairs which are brain related is also positively correlated with the BRO score. 6.8% of the brain
related paralog-pairs show a significant trend (240/3503).
(TIF)

S10 Fig. (A) 2D scatter of BRO scores for genes with a matching homolog in mouse (Zapala
et al.[22]) and human (ABA2013) and a random baseline (B) 2D heat map of the joint
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distribution of BRO-scores for mouse and human. (C) The distribution of BRO-scores in
mouse and a random baseline, showing that the fraction of BRO significant genes is smaller in
the mouse dataset (30%) than in humans.
(TIF)

S11 Fig. (A) The Allen ontology used for the human analysis. (B) The Allen ontology used for
the mouse analysis. Both follow ontologies first devide the brain into the 5 embrionic vesiceles
and then go into more detailed regionalization. The leaf regions are not the same since the data
was gathered in different experiments each with a unique focus.
(TIF)

S1 Text. Supplemental analysis text. BRO in the human cortex and a comparsion between the
BRO in human and in mouse.
(DOCX)

S1 Data. A list of per gene BRO score. The table containt: Gene symbo, Gene Entrez-ID, BRO
score that is the product of the BRO of ABA6-2013 and Kang-2011, BRO score computed from
the ABA6-2013 dataset, BRO score computed from the Kang-2011 dataset. A mark per gene
which indicates it involvment in one of these 11 classes: cell-cell signaling, synaptic transmis-
sion, neuron differentiation, neuron projection development, generation of neurons, axon
development, neuron development, schizophrenia, autistic disorder, seizures,epilepsy, sub-
stance related disorders.
(CSV)
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