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Background: In recent years, researchers have focused on functional ingredients,
functional foods, and nutraceuticals due to the rapidly increasing interest in bioactive
components, especially in bioactive peptides. Dairy proteins are a rich and balanced
source of amino acids and their derived bioactive peptides, which possess biological
and physiological properties. In the dairy industry, microbial fermentation and enzymatic
hydrolysis are promising methods for producing bioactive peptides because of their
rapid efficiency, and mild reaction conditions. However, these methods utilize less raw
material, take long reaction time, result in low yields, and low activity products when
used alone, which pose industry to seek for novel methods as pretreatments to increase
the yield of bioactive peptides.

Scope and Approach: This review emphasizes the production of peptides from the
dairy proteins and discusses the potential use of novel technologies as pretreatments to
conventional methods of bioactive peptides production from dairy proteins, including the
mechanisms of novel technologies along with respective examples of use, advantages,
limitations, and challenges to each technology.

Key Findings and Conclusion: Noteworthily, hydrolysis of dairy proteins liberate wide-
range of peptides that possess remarkable biological functions to maintain human
health. Novel technologies in the dairy industry such as ultrasound-assisted processing
(UAP), microwave-assisted processing (MAP), and high pressure processing (HPP) are
innovative and environmentally friendly. Generally, novel technologies are less effectual
compared to conventional methods, therefore used in combination with fermentation
and enzymatic hydrolysis, and are promising pretreatments to modify peptides’
profile, improve the yields, and high liberation of bioactive peptides as compared
to conventional technologies. UAP is an innovative and most efficient technology as
its mechanical effects and cavitation change the protein conformation, increase the
biological activities of enzymes, and enhance enzymatic hydrolysis reaction rate.

Keywords: dairy proteins, bioactive peptides production, green technologies, ultrasound-assisted extraction,
fermentation, enzymatic hydrolysis
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HIGHLIGHTS

- Novel technologies are innovative, environmentally friendly,
and promising pretreatments.

- Mechanisms and applications of novel technologies as
pretreatments have been discussed.

- Novel technologies coupled with conventional methods are
energy efficient and result high extraction yield and rate
have been reviewed.

- Potential bioactivity and functions of dairy proteins
have been discussed.

- Ultrasound assisted processing showed most efficient
applications in dairy industry have been outlined.

INTRODUCTION

Bioactive peptides are specific peptide motifs of 2–20 amino acids
embedded in parent proteins that possess the ability to alter or
influence metabolic activities in the human body because of their
particular fragments in proteins (1, 2). Bioactive peptides offer
several biological functionalities such as free radicals inhibition,
thrombosis inhibition, and immunity improvement (3). There
are two main methods of bioactive peptides production by
microbial fermentation and enzymatic hydrolysis of proteins.
A wide range of bioactive peptides can be produced using
different cleavage specificities of the proteolytic enzymes (4).
Usually, bioactive peptides consist of less than 20 amino acids
and 10 kDa molecular weight. Their functionalities also depend
upon the sequence of amino acids, their compositions, and
molecular weights (5). Milk proteins contain several peptides
that exert strong biological properties and are widely studied
as a source of bioactive peptides (6, 7). Many studies have
reported the availability of bioactive peptides in milk, fermented
dairy products, and various types of cheese (8–10). Milk derived
bioactive peptides are associated with many health beneficial
effects, including immunomodulation, antithrombotic activity,
antihypertension, antimicrobial activity, and opiate activity
(11, 12).

The bioactive peptides are separated, identified, and purified
by employing high-performance liquid chromatography (HPLC)
(5). However, characterization of peptides is carried out
by the protein hydrolyzed fractionation method (13) and
functional properties of peptides are assessed by the amino acid
composition of the bioactive peptide (14). For fractionation,
the ultrafiltration membrane system is the preliminary step
to separate the required molecular weight fractions from
hydrolyzates (15). Figure 1 illustrates and summarizes the
process of bioactive peptides production from dairy proteins,
including source preparation, extraction, and hydrolysis of
protein (denaturation), fractionation of desired peptides through
gel-filtration chromatography (GFC), their purification by
HPLC, and identification through liquid chromatography-mass
spectrometry (LC-MS/MS).

The dairy industry relies on microbial fermentation and
enzymatic hydrolysis to produce bioactive peptides, which
alone give low yields of peptides. Various novel technologies

are evolving, coupled with conventional methods to generate
high yields of bioactive peptides from dairy proteins quickly
and at a low cost. Figure 2 illustrates and summarizes the
conventional and green novel technologies employed in the dairy
industry to produce bioactive peptides. Ultrasound, microwave
(16) and high-pressure processing (17) are the efficient, novel,
green technologies, but these are emerging technologies with
attention to dairy industry, and their promising effects have
been entirely understood when employed as pretreatments.
Ultrasound waves break, weaken, or clean the electrostatic
and hydrophobic interactions of milk proteins through shear
forces and cavitation and bring conformational changes in
proteins (18, 19). Microwave heating has many benefits like easy
operation, less processing, and high efficient energy, making
it suitable in continuous food processing (20). High-pressure
processing (HPP) is a potential technique used as a pre-treatment
method to release bioactive peptides by enhancing the enzymatic
digestibility of proteins due to conformational changes in
proteins that influence their functional properties boosting their
digestibility. It has also been applied to milk and milk products
(21, 22).

This review emphasizes the production of peptides from dairy
proteins and discusses the potential use of novel technologies
in context to conventional methods of bioactive peptides
production from dairy proteins, including the mechanisms and
their respective examples of use, advantages, limitations, and
challenges to each technology.

MILK AND FERMENTED DAIRY
PRODUCTS: SOURCE OF BIOACTIVE
PEPTIDES

Milk and dairy products comprise various essential nutrients
such as bioactive agents (antioxidants), minerals, omega-3
fatty acids, linoleic acid, oleic acid, and vitamins, making
them nutritious foodstuff (23). Oxidative stress and damage
to the body can be prevented by consuming antioxidant-rich
foods (24). Milk and its products are a well-known source of
antioxidants as they contain: significant amounts of daidzein
polyphenolic metabolites, antioxidative enzymes, i.e., glutathione
peroxidase, catalase, superoxide dismutase, and sulfur-containing
amino acids, i.e., carotenoids, vitamins A and E, cysteine, and
methionine (25). Generally, bovine milk protein is comprised
of lactoferrin, caseins, immunoglobulins, beta-lactoglobulin (β-
LG), alpha-lactalbumin (α-LA), fractions of protease-peptide,
and some whey proteins (transferrin and serum albumin) as main
fractions (26). Figure 3 shows the major bioactive components of
milk with biological properties.

Milk contains various useful molecules encompassing
bioactive peptides (27, 28). Dietary proteins contain bioactive
peptides in them, which are naturally found inactive in parent
protein sequences and liberated only during food processing
or gastrointestinal digestion. Peptides work as regulatory
compounds with hormone-like activity after liberation. In
dairy, milk proteins are the potent source of bioactive peptides
which exert various biological functions, i.e., antioxidant,
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FIGURE 1 | Schematic diagram of the production of bioactive peptides from dairy products.

FIGURE 2 | Novel and conventional methods of bioactive peptides production from dairy proteins.
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FIGURE 3 | Major milk components with bioactive potential.

antimicrobial, anticancer, and anti-hypertensive factors (29,
30). As cited in Table 1, many researchers have assessed the
biological activities of bioactive peptides from various milk
sources, including camel and bovine casein hydrolyzates (31),
buffalo casein (32), camel whey protein hydrolyzate (33), camel
milk lactoferrin (34), goat milk (35), yak milk (36), goat milk
(37), buffalo milk (38), skim milk (6) camel milk (39), whey
protein hydrolyzate (40), UHT treated milk (41), and milk
and dairy products (42) by using various microorganisms
and microbial enzymes for proteolysis. The bioactive peptides
are liberated during gastrointestinal digestion (in vivo), milk
products’ manufacturing, and proteolysis (in vitro).

Reportedly, fermented milk products contain phosphor-
peptides, ACE-inhibitory peptides, and casomorphins (43).
Bovine α-lactalbumin and β- casein have shown bioactive
peptide sequences like LDQW, INYW, and NSLP, FP, HQP,
respectively (44, 45). Another in vitro study revealed two
antioxidative peptide sequences KVLPVPEK and AVPYPQR, by
following milk casein hydrolysis (46). However, digestion and
fermentation of goat milk can also release antioxidative
peptide sequences like EALEKFDK and EALEKFDK
(47, 48).

Cheese is a widely used fermented milk product. Many
studies have reported that cheese is a vital source of wide-
range of biologically active substances such as proteins and
all essential amino acids (except cysteine and methionine),
minerals, vitamins, and short-chain fatty acids (49, 50). Cheese
contains bioactive compounds with biological activities such as
peptides, conjugated linoleic acid (CLA), exopolysaccharides, γ-
aminobutyric acid (GABA), vitamins, and organic acids, and fatty
acids. According to in vitro and in vivo studies, these bioactive
compounds may have antiproliferative, antimicrobial, and
antioxidant activities and inhibit ACE (angiotensin-converting

enzyme) (51, 52). As shown in Table 2, many bioactive peptides
have been identified in different fermented dairy products,
such as Iranian ultrafiltered white cheese (53), fermented milk
(54), cultured dairy product (55), Hard cow milk cheese (56),
fermented casein (57), Prato cheese (58), fermented whey
proteins (59), commercial fermented milk (60), goat milk Tulum
cheese and cow milk Tulum cheese (61), cow and buffalo cheddar
cheeses (62), fermented milk (Lassi) (63), yogurt (64), symbiotic
yogurt (65), and curd and whey (66).

CONVENTIONAL METHODS OF
PRODUCTION

In the dairy industry, the conventional methods for producing
bioactive peptides are microbial fermentation and enzymatic
hydrolysis, summarized in Table 1.

Microbial Fermentation
Fermentation is a primeval preservation method that utilizes
lactic acid bacteria proteolytic systems as an efficient approach
to produce bioactive peptides from food. Generally, lactic
acid bacteria fermentation is carried out both naturally and
under controlled conditions, which improve technological and
nutritional properties of food and ultimately develops texture
and flavor in them (67, 68). Usually, the milk fermentation
is carried out by Lactobacillus strains; till now, most known
bioactive peptides have been isolated through milk cultures
(27). Because different milk sources (cow, buffalo, goat, yak,
camel, or mare) have distinctive proteins, different bioactive
peptides are produced on hydrolysis of casein and whey proteins
usage of the same Lactobacillus strain (69). Lactic acid bacteria
fulfill their need for essential and growth-promoting amino
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TABLE 1 | Bioactive peptides released from milk proteins by various microorganisms and microbial enzymes.

References Microorganisms/Microbial
enzyme

Protein fragment Amino acid sequence Bioactivity

Mudgil et al. (31) Alcalase and pronase E NR FLWPEYGAL, LPTGWLM, MFE, GPAHCLL
HLPGRG, QNVLPLH, PLMLP

Anti-diabetic [inhibition
of α-amylase (AA),
α-glucosidase (AG),
and dipeptidyl
peptidase IV (DPP-IV)]

Shanmugam et al. (32) Pepsin, trypsin, chymotrypsin
and their combination

α S1 Casein HIQKEDVPSER, EDVPSER ACE inhibitory

α S2 Casein EQLSTSEENSK, NPWDQVK,
YQGPIVLNPWDQVK, RNAVPITPTL,
NAVPITPTLNR, NAVPITPTL

β Casein IHPFAQTQSL, YQEPVLGPVR, VLPVPQK,
YPVEPFTESQSL

κ Casein YIPIQYVLSR, YPSYGLNYYQQKPVAL,
HPHPHLSF

Baba et al. (33) Pepsin NR PAGNFLMNGLMHR, PAVACCLPPLPCHM,
MLPLMLPFTMGY, PAGNFLPPVAAAPVM

α-amylase and
α-glucosidase inhibitory

Khajeh et al. (34) S. aureus, P. aeruginosa, and
A. baumannii

NR IAGKCGLVPVL, AASKKSVRW,
CTTSPAESSKCAQ, ECIQAISTEKADAVT,
LRPIAAEV, GTENNPQTH, KSCHTGL, . . .,
RRCSTSP

Antimicrobial

Panchal et al. (35) Lactobacillus fermentum (M2) NR SCQDQPTTLAR, TIDMESTEVFTKK,
YIQKEDVPSER

Antioxidative

Liu et al. (36) Alcalase Trypsin Yak-CN RELEEL, GKEKVNEL, LPVPQ, HPHPHL,
VLPVP, VPYPQ

Antioxidative

Parmar et al. (37) L. fermentum (M5) (KU366365)
L. paracasei (M16) (KU366368)
L. rhamnosus (NK2)
(KR080695) L. casei (NK9)
(KR732325) L. fermentum
TDS030603 (MTCC 25067)

CASA1_CAPHI
Alpha-S1-casein OS

LARPKHPINHRGLSPE, ENSGKTTMPLW ACE inhibitory
Antihypertensive

CASA2_ CAPHI
Alpha-S2-casein OS

TEEEKNRLNFLKKISQY,
PEEIKITVDDKHYQKALNEI

Zhao et al. (38) Dregea sinensis Hemsl.
protease.

αS1- CN (f106–117) YLGYLEQLLRLK Antimicrobial

Guzmán-Rodríguez
et al. (6)

Lactobacillus casei SHIROTA β-CN κ-CN NR Iron binding
Antithrombotic

Wali et al. (39) Trypsin Pepsin Alcalase Papain NR RLDGQGRPRVWLGR
TPDNIDIWLGGIAEPQVKR
VAYSDDGENWTEYRDQGAVEGK

Antioxidative

Jiang et al. (40) Trypsin α-La (113–117),
(115–123), (109–122),
(94–108), (99–114),
(63–79), (80–98)

KILDK, LDQWLCEKL,
ALCSEKLDQWLCEK,
KILDKVGINYWLAHK,
VGINYWLAHKALCSEK,
NDQDPHSSNICNISCDK,
FLDDDLTDDIMCVKKILLDK

Antioxidative

β-Lg (149–162),
(61–75), (125–141),
(102–124)

LSFNPTQLEEQCHI WENGECAQKKIIAEK
TPEVDDEALEKFDKALK
YLLFCMENSAEPEQSLACQCLVR

Özturk and Akin (60) Lactobacillus casei Shirota
Lactobacillus johnsonii LA1

α-La β-Lg NR Antithrombotic

Elkhtab et al. (41) Lactic acid bacteria strains κ-CN LVESPPELNTVQ, VLESPPELN,
RSYPSYGIN

ACE inhibitory
Antihypertensive

β-CN DQIHPFAQTK

Kombucha culture αS1-CN AVPQEVLNENLLR, FVAPEPFVFGKEK

αS2-CN KFKGFVEPFPAVE, VAPFPEVFGK

β-CN LVYPFPGPLH, LVYPFPGLPAAPVLPQ

Capriotti et al. (42) Lactobacillus helveticus β-CN (205–209) FPIIV ACE inhibitory

NR, not reported; αS1-CN, alpha-S1-casein; α-La, alpha lactalbumin; κ-CN, kappa-casein; β-CN, beta-casein; β-lg, beta lactoglobulin; CASA1_CAPHI OS, Capra hircus
alpha-S1-casein; CASA2_ CAPHI Alpha-S2-casein OS, Capra hircus alpha-S2-casein.
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TABLE 2 | Bioactive peptides identified in fermented dairy products.

References Product Protein fragment Amino acid sequence Bioactivity

Yousefi et al. (53) Iranian ultrafiltered white cheese αS1-CN (1–6) αS1-CN
(102–108)

RPKHPI, KKYNVPQ ACE inhibitory

β-CN (f205–209),
(f126–133), (f114–121),
(f57–68), (f193–209)

FPIIV, FPKYPVEP, YPVEPFTE,
SLVYPFPGPIHN, YQEPVLGPVRGPFPIIV

Kim et al. (54) Fermented milk NR ATISAG Lipase Inhibitory

Mullaiselvan et al. (55) Cultured dairy product αs1-CN αs2-CN β-CN NR Casein
phosphopeptide
Immunomodulatory

Timón et al. (56) Hard cow milk cheese αs1-CN β-CN EIVPN, DKIHPF, VAPFPQ Antioxidative

Fan et al. (57) Fermented casein α-La (113–117),
(115–123), (109–122),
(94–108), (99–114),
(63–79), (80–98)

KILDK, LDQWLCEKL,
ALCSEKLDQWLCEK,
KILDKVGINYWLAHK,
VGINYWLAHKALCSEK,
NDQDPHSSNICNISCDK,
FLDDDLTDDIMCVKKILLDK

Antioxidative

β-Lg (149–162),
(61–75), (125–141),
(102–124)

LSFNPTQLEEQCHI WENGECAQKKIIAEK
TPEVDDEALEKFDKALK
YLLFCMENSAEPEQSLACQCLVR

Baptista et al. (58) Prato cheese β-CN (f194–209) NR ACE inhibitory

Daliri et al. (59) Fermented whey proteins αS1-CN (f10–23),
(f10–22), (f1–23),
(f14–23), (f10–21),
(f24–34), (f24–38),
(f80–98)

GLPQEVLNENLLRF, GLPQEVLNENLLR,
RPKHPIKHQGLPQEVLNENLLRF,
EVLNENLLRF, GLPQEVLNENLL,
FVAPFPEVFGK, VAPFPEVFGK,
FVAPFPEVFGKEKVNEL,
HIQKEDVPSERYLGYLEQL

ACE inhibitory
Antihypertensive

β-CN (f1–27), (f1–25),
(f1–22), (f1–24),
(f192–209), (f193–209),
(f193–208), (f194–209),
(f195–209), (f83–95)

RELEELNVPGEIVESL, RELEELNVPGEIVE,
RELEELNVPGE, RELEELNVPGEIV,
LYQEPVLGPVRGPFPIIV,
YQEPVLGPVRGPFPIIV,
YQEPVLGPVRGPFPII,
QEPVLGPVRGPFPIIV, EPVLGPVRGPFPIIV,
VVPPFLQPEVMGV

κ-CN (f161–169),
(f155–169), (f149–169),
(f151–169), (f159–169),
(f152–169), (f150–169),
(f157–169), (f151–169),
(f151–165), (f151–163),
(f149–162), (f149–163),
(f151–162), (f116–141),
(f109–151), (f106–149)

TVQVTSTAV, SPPEINTVQVTSTAV,
SPEVIESPPEINTVQVTSTAV,
EVIESPPEINTVQVTSTAV, INTVQVTSTAV,
VIESPPEINTVQVTSTAV,
PEVIESPPEINTVQVTSTAV,
PEINTVQVTSTAV, EVIESPPEINTVQVTSTAV,
EVIESPPEINTVQVT, EVIESPPEINTVQ,
SPEVIESPPEIN, SPEVIESPPEINTVQ,
EVIESPPEIN,
MAIPPKKNQDKTEIPTINTIASGEPT,
PPKKNQDKTEIPTINTIASGEPT-
STPTTEAVESTVATLEDSPE,
MAIPPKKNQDKTEIPTINTIASGE-
PTSTPTTEAVESTVATLED

β-lg (f130–149),
(f130–146), (f130–145),
(f1–11), (f153–162),
(f147–156), (f1–11),
(f1–12), (f153–162),
(f147–156), (f1–10)

DEALEKFDKALKALPMHIRL,
DEALEKFDKALKALPMH,
DEALEKFDKALKALPM, LIVTQTMKGLD,
PTQLEEQCHI, IRLSFNPTQL,
LIVTQTMKGL, LIVTQTMKGLD,
PTQLEEQCH, IRLSFNPTQL,
LIVTQTMKGL,

Lactophorin (PP3)
(f1–18), (f1–17),
(f57–67), (f54–67)

ILNKPEDETHLEAQPTDA,
ILNKPEDETHLEAQPTD, QPQSQNPKLPL,
SSRQPQSQNPKLPL

PIGR (f383–404) PGRPTGYSGSSKALVSTLVPLA

UP (GP2) (f455–473) SEGVAIDPARVLDLGPITR

(Continued)
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TABLE 2 | (Continued)

References Product Protein fragment Amino acid sequence Bioactivity

Pérez-Escalante et al.
(60)

Commercial fermented milks α-La β-Lg NR Antithrombotic

Özturk et al. (61) Goat milk Tulum cheese Cow
milk Tulum cheese

NR NR Antimicrobial

Rafiq et al. (62) Cow Cheddar cheese Buffalo
cheddar cheese

α-CN β-CN NR Antihypertensive
Antithrombotic

Padghan et al. (63) Fermented Milks (Lassi) β-CN (f47–56),
(f47–57), (f199–209),
(f176–182), (f176–183),
(f176–184), (f1–7),
(f57–68), (f166–175),
(f195–206), (f195–207),
(f195–209), (f94–106),
(f169–176)

NR ACE inhibitory
Immunomodulatory
Antioxidative Opioid
Cytomodulatory

Jin et al. (64) Yogurt β-CN (f1–27), (f1–25),
(f1–22), (f1–24),
(f192–209), (f193–209),
(f193–208), (f194–209),
(f195–209)

RELEELNVPGEIVESL, RELEELNVPGEIVE,
RELEELNVPGE, RELEELNVPGEIV,
LYQEPVLGPVRGPFPIIV,
YQEPVLGPVRGPFPIIV,
YQEPVLGPVRGPFPII,
QEPVLGPVRGPFPIIV, EPVLGPVRGPFPIIV

ACE inhibitory
Antihypertensive

Sah et al. (65) Symbiotic yoghurt β-CN YQEPVLGPVRGPFPIIV,
SLPQNIPPLTQTPVVVPPF

Antiproliferative
Antioxidative

Dabarera et al. (66) Curd Whey Di and tripeptides
Penta-octapeptides

Closely similar to YGGFM YGGFL, IPI ACE inhibitory
Antihypertensive

NR, not reported; αS1-CN, alpha-S1-casein; αS2-CN, alpha-S2-casein; α-CN, alpha-casein; α-La, alpha lactalbumin; κ-CN, kappa-casein; β-lg, beta lactoglobulin; β-CN,
beta-casein; UP (GP2), uncharacterized protein GP2; PIGR, polymeric immunoglobulin receptor.

acids from milk proteins as a primary source (70). Microbial
fermentation is an efficient and economical method to produce
peptides (71) which is extensively employed to functionalize
milk products and byproducts in the dairy industry (72,
73). During the manufacturing of fermented dairy products
starter and non-starter, bacteria can produce bioactive peptides
because of the high proteolytic activities exerted by dairy
starter cultures (74). Ueno et al. (75) and Phelan et al.
(76) utilized L. helveticus CM4 to produce an endopeptidase
that possessed the ability to produce antihypertensive peptides
by using synthetic pro-peptides as a substrate. Also, lactic
acid bacteria have helped achieve multifunctional bioactive
peptides (77, 78). Zanutto-Elgui et al. (79) have reported
the production of bioactive peptides having antioxidant and
antimicrobial activity from goat and bovine milk by using
the proteolytic activity of Aspergillus flavipes and Aspergillus
oryzae enzymes.

Microbial fermentation is comparatively economical than the
enzymatic method for bioactive peptides production. Microbial
fermentation method applications have some industrial
limitations as they yield low peptide production and lack
specificness of peptide generation (69).

Enzymatic Hydrolysis
Enzymatic hydrolysis is a reliable, efficient, and the principal
method to hydrolyze whole proteins for the production
of bioactive peptides under the mild condition of enzyme
activity, substrate concentration, hydrolysis time, temperature,
and pH. These peptides exert anti-inflammatory, opioid,

immunomodulatory, anticancer, antioxidant, antithrombotic,
and antihypertensive activities (67, 80). The results of the
efficiency of enzymatic hydrolysis mostly depend on two
factors: the primary structure of parent protein (substrate)
and specificity of the enzyme applied (81). Animal, plant
(neutrase, thermolysin, ficin, pronase, flavourzyme, and papain),
microbial, and digestive (chymotrypsin, trypsin, and pepsin)
origin enzymes have been used to hydrolyze the large sequence
peptides into small sequence peptides having 500–1,800 kDa
molecular weights and 2–20 amino acid units (82, 83). In vitro
studies have shown that the parent milk proteins undergo
hydrolysis with pancreatic proteinases (mostly trypsin) and
liberate most known biological peptides. Though, endoprotease
combinations (proline-specific endopeptidase, carboxypeptidase,
elastase, pancreatin, thermolysin, pepsin, and chymotrypsin)
are also reported to produce bioactive peptides (84, 85).
Furthermore, intact protein molecules can be hydrolyzed by
combining enzymes like Thermolysin, Trypsin, PancreatinTM,
Chymosin, and AlcalaeTM to produce bioactive peptides (76).
Combinations of carboxypeptidase, elastase, chymotrypsin,
trypsin, and pepsin have been used to liberate various α-
lactalbumin and β-lactoglobulin corresponding fractions and
ACE-inhibitory peptides having different IC50 values (84–86).
Liu et al. (36) isolated the antioxidative peptides (RELEEL) from
the yak casein hydrolyzate using the combination of alcalase
and trypsin digestion. Abdel-Hamid et al. (87) subjected buffalo
skimmed milk to hydrolysis using papain, pepsin, trypsin, and
isolated known and novel ACE inhibitory antioxidative peptides.
Wali et al. (39) used a combination of trypsin, pepsin, alcalase,
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and papain to hydrolyze the Bactrian camel milk and isolated
three novel antioxidant peptides.

Enzymatic hydrolysis has certain shortcomings, such as higher
cost to produce pure bioactive peptides, casein coagulation on
heating, and bitterness, therefore, choice of enzymatic hydrolysis
conditions must be taken into account before application
(88, 89).

NOVEL PROCESSING TECHNOLOGIES

The novel processing technologies such as ultrasound-assisted
processing (UAP), microwave-assisted processing (MAP), high-
pressure processing (HPP), pulsed electric field processing
(PEF), subcritical water processing (SWP), and ohmic
heating relies on physical processes to improve the degree
of hydrolysis during bioactive peptides production (90, 91).
However, following applications of UAP, MAP, and HPP as
pretreatments have been found in the dairy industry to prepare
bioactive peptides.

Ultrasound-Assisted Processing
Ultrasound-assisted processing is a novel, eco-friendly, and
non-thermal physical technology that involves >20 kHz
frequency of sound waves to produce peptides (91, 92). In
ultrasound treatment, acoustic cavitation, acoustic streaming,
and mechanical vibrations are produced on the passage of
ultrasound waves through a medium. Acoustic streaming can
allow and improve the transfer of mass through a medium. The
mechanical vibrations can change solid particle size and structure
(93). In a liquid medium, ultrasound treatment follows the
cavitation process in which pre-existing micro-bubbles expand
and contract. However, during these oscillations, bubbles keep
growing until they reach their resonance size range and then
collapse violently in case of transient/inertial cavitation (94,
95). In transient cavitation, physical shearing, high-pressure and
extreme localized temperatures (2,000–5,000 K) are produced on
collapsing of increased sized bubbles (within few acoustic cycles)
into fragments at low ultrasound frequency. However, stable
cavitation results in relatively mild streaming effects on collapsing
of the little increased bubbles (over a large number of acoustic
cycles) at higher frequencies. Cavitation also owns the ability
to induce chemical changes along with physical effects. When
cavitation is applied to an aqueous medium, a highly reactive
radical is formed inside the bubble (on reaction of gas molecules
and water vapor reaction) due to the availability of generated
localized high temperature. The ultrasound cavitation chemical
effects are visible at 300–500 kHz frequencies and physical
effects are visible at 20 kHz frequency (94). Protein structures
undergo conformational changes by ultrasound processing, such
as acoustic cavitation, forces of chemical and physical effects
(96, 97).

As presented in Table 3, recently UAP has been employed
as pretreatment for various milk proteins hydrolysis, including
whey proteins (98), caprine milk protein (99), fresh milk
(100), cheddar cheese (101), whey protein isolate (102),
whey protein (103), and milk protein concentrate (104,

105). UAP in combination with enzymatic hydrolysis has
been employed for various proteins, i.e., eggshell membrane
(106), egg white (107), and isolated oat protein (108).
Ulug et al. (91) reported that the application of UAP is
carried out in combination with enzymatic hydrolysis, to
increase the production of bioactive peptide, as UAP alone
cannot break the peptidic bond. Ultrasound pretreatment
enhance the enzymes accessability into the peptide bonds
of foods that results in the increased release of bioactive
peptides. Basically, ultrasound processing generates the acoustic
forces that increase the available surface area for enzyme
protein interactions by reducing the size of the fat globules
that get covered with whey proteins and casein micelles,
ultimately, increases the access of proteolytic enzymes to
the proteins (109, 110). Wu et al. (111) in their study on
the thermodynamic properties of whey protein hydrolyzed
by alcalase with ultrasonic pretreatment reported that the
hydrolyzates showed significantly increased ACE inhibitory
and immunomodulatory activities when the whey protein
enzymatic hydrolysis was assisted by the ultrasound. Sonication
pretreatment induces the whey protein unfolding, increased
free sulfhydryl content, and conformational changes with
increased β-sheets and β-turns formation (111). Similar study
exhibited that ultrasound-assisted pretreatment combined with
low purity enzymes show the increased hydrolysis rate that
may be due to changes in free sulfhydryl clusters and
disulfide bond (112), hydrophobic protein content, and surface
hydrophobicity (113). Lorenzetti et al. (102) reported that
ultrasound pretreatment before hydrolysis of whey protein
isolate could help to develop the economic ingredients for
the dairy industry.

UAP application is beneficial to reduce the disadvantages
resulting from hydrolysis by conventional enzymes, i.e.,
long-time hydrolysis and low conversion rate (114).
Generally, UAP equipment requires fewer installations,
low maintenance, around 85% energy efficiency, and cost
between €10,000 and 200,000 (115). Undeniably, UAP is one
of the novel and most preferable techniques for producing
bioactive peptides due to numerous advantages such as
faster start-up, extraction selectivity, high process control,
reduced temperature and time, and faster mass and energy
transfer (116).

Microwave-Assisted Processing
Microwaves encompass electromagnetic radiation of 300 MHz–
300 GHz range (117). Microwave energy follows molecular
interactions (ionic conduction and dipolar rotation mechanisms)
as a medium transportation mode. On applying electromagnetic
field, charged colloidal molecules migrate and flow through a
stationary medium in ionic conduction and led to resistance in
the solution, which produces thermal energy. On the other hand,
dipole rearrangement occurs on electromagnetic fields in dipolar
rotation (118).

Microwave treatment is carried out in the food processing
ovens in which an alternating electric field is used to generate the
microwaves having 2.45 GHz frequency and <1 cm wavelength
typically. These microwaves do not cause breakage of covalent
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TABLE 3 | Applications of ultrasound- assisted processing for the production of bioactive peptides.

References Protein source Equipment Type of treatment Treatment conditions Peptides/
hydrolyzate size

Major findings

Abadía-García
et al. (98)

Whey proteins Probe
ultrasound
homogenizer

The high intensity
ultrasound (HIUS)
pretreatment before
enzymatic hydrolysis
(bromelain)

The ultrasonic
pretreatment at 500 W,
20 kHz, 25 and 50%
amplitude, 10 min

Higher
concentration of
peptides with a
molecular weight
below 5 kDa was
found when
ultrasound
pretreatment was
applied.

In comparison to control, both
HIUS pretreatments resulted
reduced the IC50 value in
hydrolyzates, small size
fractions (1 and 3 kDa) showed
highest ACE inhibition activity,
and significant changes were
observed in structure of whey
protein.

Koirala et al.
(99)

Caprine milk
protein

Probe sonicator The ultrasonic
pretreatment before
enzymatic hydrolysis
(pepsin and neutral
protease)

200 W power, 24 kHz
frequency and a fixed
cycle of 0.5

Ultrasonic
pre-treated caprine
milk proteins had a
higher degree of
hydrolysis with
neutral protease at
360 min and with
pepsin at 300 min.
The molecular
weight of peptides
after sonication
was not measured.

The ultrasonication
pretreatment increased the
soluble protein concentration in
caprine milk, enhanced
peptides and protein
hydrolyzates production, and
accelerated unfolding of
complex insoluble protein
structure into a simpler soluble
matrix, and increased bioactive
antioxidant and ACE-inhibitory
activities.

Cui et al. (100) Milk protein Multi-mode
ultrasonic

The ultrasonic
pretreatment before
enzymatic hydrolysis
(neutral protease)

Single frequency
28 kHz, various times
ranging 10–60 min,
different levels of
ultrasound density
between 10 and
50 W/L at initial
temperature 30◦C.

Ultrasonic
pre-treated milk
proteins had a
higher degree of
hydrolysis than the
non-ultrasound
samples. The
molecular weight of
peptides after
sonication was not
measured.

Compared with control and
non-ultrasonic samples, the
ultrasonic pretreatment showed
significantly increased ACE
inhibitory activity of milk protein
(28 kHz, 20 W, and 40 min).
Also, secondary structure
studies showed reduced
content of α-helix and β-corner,
increased content of β-folding,
and random coil in ultrasonic
treated milk proteins. And,
increased surface
hydrophobicity and the content
of free sulfhydryl, reduced
content of disulfide bond in
ultrasonic pretreated milk
protein.

Munir et al.
(101)

Cheddar cheese Probe sonicator The ultrasonic
pretreatment of milk
before cheddar cheese
manufacturing and
compared with control
and other processing
techniques.

80% amplitude 20 kHz
frequency at <40◦C.
Applied in two levels:
US-1 (21 J/g
calorimetric power) &
US-2 (41 J/g)

The molecular
weight of peptides
after sonication
was not measured.

In comparison to control, both
levels of ultrasonic treatments
increased the proteolysis
process of cheese as well as fat
content, ACE-inhibition activity,
total phenolics, total flavonoids,
antioxidant and DPPH
scavenging activities of the
cheddar cheese during
ripening.

Lorenzetti et al.
(102)

Whey protein
isolate

Ultrasonic tip
sonicator

The ultrasonic
pretreatment before
enzymatic hydrolysis
(low purity enzymes:
pepsin and papain)

20 kHz frequency,
pepsin (4 min at
400 W), papain (2 min
at 300 W)

The highest degree
of hydrolysis
reported from
pepsin. The
molecular weight of
peptides after
sonication was not
measured.

The ultrasonic pretreatment
reduced the 6 h in the process.
The highest degree of
hydrolysis occurred with the
use of pepsin (10 h, 37◦C, and
pH 2.5). After partial enzymatic
hydrolysis and ultrasound
pretreatment a higher
proportion of low molar mass
peptides were observed at
1,000–2,000 g.mol−1.

(Continued)
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TABLE 3 | (Continued)

References Protein source Equipment Type of treatment Treatment conditions Peptides/
hydrolyzate size

Major findings

Abadía-García
et al. (103)

Whey protein Ultrasound
homogenizer

The ultrasonic
pretreatment before
enzymatic hydrolysis
(vegetable proteases)

20 kHz frequency,
750 W nominal power,
amplitude between 30
and 60%.

The molecular
weight of peptides
after sonication
was not measured.

The results showed that
ultrasound density exerted a
significant effect on proteolysis
increased the ACE inhibition by
13% and a 95% reduction of
hydrolysis time in bromelain
hydrolyzates. Also, changes in
denaturation enthalpy (1H),
reduction of reactive thiol
groups and changes in
secondary structure suggest
protein rearrangements and
aggregate formation.

Uluko et al.
(105)

Milk protein
concentrate
(MPC)

Cell disruptor The ultrasonic
pretreatment before
enzymatic hydrolysis
with digestive enzymes
(pepsin and trypsin)
and compared with
thermal and microwave
pre-treatments.

Different combination of
pretreatments were set.
The ultrasonic
pretreatment at 90◦C,
US at 800 W and
20 kHz for 10 min.
Samples were jacketed
with ice during
treatment. Control
received no
pretreatment.

The molecular
weight of peptides
after sonication
was not measured.

Compared with the control and
other treatments, US pretreated
samples showed the highest
radical scavenging activity
(EC50 = 0.283 mg mL−1) and
had the highest number of
hydrophobic peptides.

Uluko et al.
(104)

Milk protein
concentrate
(MPC)

Ultrasonic
homogenizer

The ultrasonic
pretreatment before
enzymatic hydrolysis
(neutrase)

Different combinations
of independent
variables were set
(pre-treatment time,
hydrolysis time, and
enzyme/substrate (E/S)
ratio)

The optimal
ultrasonic pre-
treatment
significantly
increased the
degree of
hydrolysis.

According to response surface
analysis, the highest ACE
inhibitory activity
(IC50 = 0.044 mg mL−1) could
be achieved by 4.11 min,
2.32 h and 2.33% for
ultrasound pretreatment time,
hydrolysis time and E/S ratio,
respectively. Also, the
ultrasound pretreatment has a
significant effect on ACE
inhibition of enzyme
hydrolyzates from MPC during
enzymatic hydrolysis with
digestive enzymes.

bonds because of their non-ionizing radiation nature (119,
120) but, these can either induce thermal or non-thermal
changes in the milk. Microwaves generate heat by friction
that results from the oscillation of molecules as dipoles of
water try to align their arrangements under the influence
of microwave field. So, thermal effects are resulted from the
generation of localized heat due to friction of molecules, on the
other hand, non-thermal effects (accelerated protein unfolding
rate) alone arise from the rearrangement of molecules in
milk (120).

Microwave-assisted processing has been employed for
various milk proteins hydrolysis including cheddar cheese
(101), bovine whey proteins (121), milk protein concentrate
(105), bovine serum albumin (122), and bovine whey protein
concentrate (123) as cited in Table 4. MAP is one of the
most preferred alternative technologies to conventional heat
processing methods as it enhances functional properties, extends
shelf life, and improves microbial safety of food products
(124, 125). In their study, Izquierdo and coworkers found

that MAP could make proteins specific sites potentially
available to proteolytic enzymes by continuous protein
molecules unfolding and rearrangement (123). In a study,
the surface plasmon resonance sensing method was used to
investigate the unfolding of protein by employing MAP at
2.45 GHz. The results showed that at the same temperature,
MAP heating has a higher impact on the unfolding and
denaturation of a bovine crystalline than conventional
heating (126).

Microwave is the most extensively studied and world-widely
popular method in both academics and food processing industry
due to high heating rates which eventually lead to a clean
environment of work, easy operation, low processing time, and
low maintenance requirements (127, 128). In the food industry,
MAP has extensive applications to extract bioactive compounds
from plant materials. During extraction, MAP is used to facilitate
quick heating of solvent to separate analytes and matrix. Many
studies have been reported to show the efficient production
of bioactive peptides from MAP as pretreatment combined

Frontiers in Nutrition | www.frontiersin.org 10 May 2022 | Volume 9 | Article 780151

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-780151 May 23, 2022 Time: 15:50 # 11

Murtaza et al. Production of Dairy Bioactive Peptides

TABLE 4 | Applications of microwave-assisted processing for the production of bioactive peptides.

References Protein source Equipment Type of treatment Treatment conditions Peptides/
hydrolyzate size

Major findings

Munir et al.
(101)

Cheddar cheese Microwave
oven

The microwave
pretreatment of milk
before cheddar cheese
manufacturing and
compared with control
and other processing
techniques.

Temperature <40◦C,
specific energy 86.5 J/g

The molecular
weight of peptides
after microwave
treatment was not
measured.

In comparison to control, MA
showed increased antioxidant
activity and ACE-inhibitory
potential of cheese. However,
ultrasound was the most
effective pre-treatment to
improve the antioxidant
capacity of cheddar cheese
during ripening.

El Mecherfi
et al. (121)

Bovine whey
proteins

Microwave
device
consisted of a
solid-state
microwave
generator

Microwave
pre-treatment followed
by proteolysis (pepsin),
and compared with
conventional heating.

Different microwave
temperatures
conditions at 37, 50,
65, and 70◦C for
30 min and microwave
power was not reported

The highest degree
of hydrolysis
reported from
pepsin compared
to conventional
heating. Whey
proteins showed
two major bands
with molecular
weights: 18 kDa
bovine
beta-lactoglobulin
and 14 kDa
alpha-lactalbumin.

The microwave heating process
in concomitance with
enzymatic proteolysis improved
the susceptibility of resistant
proteins (BLG) to pepsinolysis.
Also, hydrolyzed whey protein
hydrolyzates were obtained by
MA only at 65◦C and in a
shorter time compared with the
conventional thermal treatment.

Uluko et al.
(105)

Milk protein
concentrate
(MPC)

Microwave Microwave
pre-treatment followed
by enzymatic hydrolysis
with digestive enzymes
(pepsin and trypsin)
and compared with
thermal and ultrasound
pre-treatments.

Samples were
microwaved for 10 min
and microwave power
was not reported

The peptides have
been concentrated
in the filtrates of
5 kDa molecular
weight

Microwave pretreated filtrates
(<5 kDa) improved the radical
scavenging activity compared
to control; however, when
microwave pretreatment was
used in combination with other
treatments, the samples
showed lower radical
scavenging activity than the
control. Ultrasound was the
most effective pre-treatment to
improve the antioxidant
capacity of milk protein
concentrate.

Chen et al.
(122)

Bovine serum
albumin (BSA)

MAS-II Smart
Microwave
Digestion
System

Continuous
microwave-assisted
protein digestion with
an immobilized enzyme
(trypsin)

Continuous microwave
power at 100–700 W
for 5–20 min for BSA
digestion.

The molecular
weight of the BSA-
derived peptides
ranged from 3 to
14 kDa (at 300,
500, and 700 W)

The bioactivity of peptides was
not measured. Continuous
microwave- assisted enzymatic
digestion with immobilized
enzyme was a fast and efficient
digestion method for protein.
Different levels of microwave
power significantly affected the
number of peptides obtained
from the BSA.

Izquierdo et al.
(123)

Bovine whey
protein
concentrate
(WPC)

Oven
MDS-2000

Microwave
pre-treatment followed
by proteolysis (pronase,
chymotrypsin, papain,
corolases 7089 and
PN-L 100, alcalase
and, neutrase)

532 W, 40 or 50◦C
during 5 min

The molecular
weight of peptides
after microwave
treatment was not
measured.

Microwave irradiation (MWI)
treatment enhanced the
enzymatic hydrolysis of bovine
WPC. Pronase and Papain
showed the highest proteolysis
under MWI followed by
Alcalase.

with proteolytic enzymes by accelerating the rapid hydrolysis of
protein into peptides and producing more coverage of sequence
(129). Before proteolytic hydrolysis, cleavage sites of proteins are
probably exposed by microwave radiations that cause a change in
protease cleavage sites (130).

Generally, in contrast to conventional methods, MAP
offers several benefits: reproducibility, reduced processing
time, hydrolysis efficiency, cost-effectiveness, convenience,
and simple handling, making it one of the most preferred
methods (131).
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TABLE 5 | Applications of high-pressure processing for the production of bioactive peptides.

References Protein source Equipment Type of treatment Treatment conditions Peptides/
hydrolyzate size

Major findings

Landim et al.
(139)

Whey protein
concentrate
(WPC)

High
hydrostatic
pressure
equipment

The HPP pretreatment
of WPC

Different pressure (100,
250, and 400 MPa) and
time (5, 20, and 35 min)
levels for each
treatment

The molecular
weight of peptides
after HPP treatment
was not measured.

As compared to
conventional hydrolysis, the
HPP pretreatment increased
antioxidant activity, less
soluble protein hydrolyzates,
and decreased allergenicity.

Paula et al.
(140)

Whey protein
concentrate

High
hydrostatic
pressure
equipment

The HPP assisted
hydrolysis and
pretreatment of whey
protein

Different pressure (100,
250, and 400 MPa) and
time (5, 20, and 35 min)
levels for each
treatment

The molecular
weight of peptides
after HPP treatment
was not measured.

In comparison to
conventional hydrolysis,
HPP assisted hydrolysis
resulted in 35% protein
reduction at 100 MPa after
35 min, and HPP
pretreatment resulted that
about 98% peptic hydrolysis
of β-lactoglobulin and
increased antioxidant
capacity of hydrolyzates.

Munir et al.
(101)

Cheddar cheese High-pressure
vessel

The HPP pretreatment
of milk before cheddar
cheese manufacturing
and compared with
control and other
processing techniques.

The high-pressure
processing at 400 MPa
for 15 min, at
temperature <40◦C

The molecular
weight of peptides
after HPP treatment
was not measured.

In comparison to control,
MA and US-1, HPP showed
increased antioxidant activity
and ACE-inhibitory potential
of cheese. However,
ultrasound was the most
effective pre-treatment to
improve the antioxidant
capacity of cheddar cheese
during ripening.

Boukil et al.
(141)

Bovine whey
protein beta-
lactoglobulin
(β-LG)

Discontinuous
hydrostatic
pressurization
unit

HHP pre-treatment
followed by tryptic
hydrolysis

Three different
pressures at 0.1
(control), 400, and
600 MPa for 10 min at
room temperature

Tryptic hydrolysis of
pre-pressurized
β-LG at 400 MPa
generated two new
peptides,
(QEAKDAFLGSF
and
WENGECAQKK),
and their relative
abundance
decreased at
600 MPa.

HHP pre-treatment at
400 MPa improved the
generation of bioactive
peptides compared to the
control and 600 MPa. The
relative proportions of the
bioactive peptides in
hydrolyzates were 38.64%
at 400 MPa, higher than the
control, and 600 MPa (26.7
and 20.5%, respectively).

Piccolomini
et al. (142)

Whey protein
isolate (WPI)

Avure
High-pressure
Processing
System

HHP pre-treatment
followed by proteolysis
(pepsin, trypsin, and
chymotrypsin)

Pressure levels at
550 MPa and control

High molecular
weight peptides
were removed with
a membrane with a
molecular weight
cut-off 10 kDa.

Whey protein hydrolyzates
with HHP treatment could
reduce inflammation and
oxidative stress in intestinal
cells. A significant reduction
of H2O2-induced IL-8
secretion was observed for
the HHP treated
hydrolyzates (50%)
compared to the control
(30%).

Voigt et al. (22) Cheddar cheese Equipment type
not mentioned

Raw and HP-treated
milk and their impact
on cheddar cheese
during ripening

400 or 600 MPa for
10 min at 20◦C

The molecular
weight of peptides
after HPP treatment
was not measured.

Increased proteolysis and
levels of free fatty acids were
found in cheese
manufactured from milk
HP-treated at 600 MPa

Chicón et al.
(143)

β-Lactoglobulin 900 HP
apparatus

HHP pre-treatment
followed by proteolysis
(chymotrypsin)

Pressure levels at
400 MPa

The molecular
weight of peptides
after HPP treatment
was not measured.

Proteolysis during or after
high-pressure treatment
showed longer and more
hydrophobic peptides than
proteolysis at atmospheric
pressure.

(Continued)
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TABLE 5 | (Continued)

References Protein source Equipment Type of treatment Treatment conditions Peptides/hydrolyzate
size

Major findings

Peñas et al.
(144)

Bovine whey
proteins

Discontinuous
high-pressure
machine

HHP pre-treatment
followed by proteolysis
(trypsin, chymotrypsin,
and pepsin)

100–300 MPa for
15 min at 37◦C

The hydrolyzates obtained
at 200 MPa showed two
additional bands of 3 and
1.4 kDa with higher
intensity than in the control.
Also, the highest degree of
tryptic proteolysis occurred
at 200 MPa, with
production of smaller
peptides, in agreement with
the highest degree of
hydrolysis.

The high- pressure
treatment enhanced the
enzymatic hydrolysis of
bovine whey proteins.
Chymotrypsin and trypsin
showed the highest
proteolysis at 100 and
200 MPa followed by
pepsin at 300 MPa. Bovine
whey hydrolyzates obtained
by pepsin and trypsin in
combination with HP
treatment could be used as
a source of peptides in
hypo- allergenic infant
formulae

High Hydrostatic Pressure Processing
High-pressure processing (HPP) is a green, novel, and non-
thermal technology that encompasses the application of 100–
1000 MPa pressure, with or without treatment of heat primarily
for the deactivation of pathogenic microorganisms along with
molds, yeast, and vegetative bacteria, enhancing nutritional and
functional properties of food products in the food industry.
Depending on the food type, HPP treatment duration varies
between 0 and 30 min (132, 133). Also, both treatment duration
and pressure-transmitting fluid, and adiabatic heating result
in a 3–9◦C increase of temperature per 100 MPa (134). This
technology has advantages over other technologies due to
low to moderate temperature and causing the least damage
to the bioactive compounds. HPP involves the combination
of pressure and heat, resulting in conformational changes of
protein and biological, chemical, and physical changes in food
compounds (135).

High-pressure processing can be carried out in three different
modes like semi-continuous, continuous, and batch. Batch HPP
is an efficient and simple mode. The pressure chamber is
filled with a prepacked sample and sealed, the air in the
pressure chamber is replaced by pouring water, and then
pressure is built until the desired point is achieved. After a
particular time chamber is depressurized. Finally, processed
food is taken out. On the other hand, continuous/dynamic
HPP (136) involves utilizing a moving piston to push the
food through a narrow gap (137). While in the case of
semi-continuous HPP, the flow of liquid is introduced and
contained in the same chamber at constant pressure for a
specific time, after that, processed liquid food is stored in sterile
tanks (138).

High-pressure processing has been employed for various
milk proteins hydrolysis including whey protein concentrate
(139, 140), cheddar cheese (101), bovine whey protein beta-
lactoglobulin (141), whey protein isolate (142), cheddar cheese
(22), beta-lactoglobulin (143), and bovine whey proteins (144) as
cited in Table 5. Relatively, HPP is a well-developed technology

that has many applications to milk and cheese (21, 22, 145).
Munir et al. (101) reported the increased ACE Inhibitory
activity HPP treated milk cheese and indicated that HPP results
in efficient bioactive peptides liberation and proteolysis by
imparting change in indigenous milk enzymes structures by
subjecting more active sites for protein reaction (22, 146). Various
studies have been reported in which the patterns of native
and pressure-treated proteins have been compared. Indeed,
Maynard and coworkers found that under pressurization tryptic
β-LG hydrolysis generated a low concentration of intermediate
hydrolysis peptides (147). On the other hand, Knudsen and
coworkers reported the application of HPP at the beginning step
of tryptic β-LG hydrolysis that generated an increased amount of
high molecular weight peptides and hydrophobic peptides (148).

In the food industry, high-pressure processing is well known
as a clean method compared to conventional methods as it
offers numerous advantages such as homogeneous and constant
pressurization at ambient temperatures, utilize less energy due
to maintenance of constant pressure when reached absolute
pressure, quick pressurization, and de-pressurization, reduced
processing time, and it’s throughout applications irrespective
of shape or size in the food system (149–151). However, the
applications of this technology have certain limitations such as
batch operation and costly infrastructure around 0.6–4 M US
dollars accounting for 75–80% of the investment as the initial
investment (152, 153). HPP has limited effects on covalent bond
cleavage and production of bioactive peptides alone, therefore,
it’s employed in combination with enzymatic hydrolysis to
denature protein and improved access to sites of enzyme cleavage
to get efficient and increased production process of bioactive
peptides (91).

FUTURE OUTLOOK

Numerous studies on the identification and evaluation of
in vitro bioactivity of peptides from protein hydrolyzates of
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several sources of protein suggest that novel technologies should
be employed to isolate novel ingredients to prepare novel
functional foods. But, the application of novel technologies is
an emerging field of rising significance in the dairy industry
as, till now, there are minimal studies on the improvement
of fermentation/enzymatic hydrolysis using UA, MA, and
HPP as pretreatments to produce bioactive peptides while
fermentation/enzymatic hydrolysis are promising conventional
methods to generate peptides at industrial level. Thus,
fermentation/enzymatic hydrolysis of dairy proteins treated
with ultrasound, microwave, and high-pressure is possible to
generate improved bioactive peptides at a lower cost and short
time compared to only conventional applications methods.

In the dairy industry, mostly milk is used as a medium in
novel technologies. So, there is a gap in understanding that
either the treatment of novel technologies enhances or alters
the fermentation/enzymatic hydrolysis in whole milk, fermented
milk, yogurt, cheese, and other dairy products. The synergistic
effect of possible novel technologies can be investigated to
understand the liberation of bioactive peptides at a low cost
and short time. For instance, microwave heating and ultrasound
waves/HPP pressure combination could be tested to explore
the effect of heat treatment and high frequency/pressure on
the release of bioactive peptides from dairy proteins. As several
studies reported that the applications of these novel technologies
could generate lower-cost ingredients with a higher content of
available amino acids for the dairy industry.

Future studies are expected to establish the actual applications
of novel technologies by investigating the maximum potential
of these processing technologies to comprehend their possible
specificities in the proteins’ cleavage, generate novel, and known
bioactive peptides, effects on specificness, and modification of
amino acids in dairy proteins.

CONCLUSION

It is noteworthy that milk protein hydrolysis liberates a wide
variety of bioactive peptides that possess remarkable biological
functions to maintain human health. The knowledge of bioactive
peptides from milk and other dairy proteins and their health
benefits increases with each passing day. It’s also opening new
doors to exciting offers such as novel functional foods that
can help manage and prevent several chronic diseases including
cardiovascular diseases, diabetes, hypertension, cancer, etc.

Although the dairy industry is slow in embracing novel
technologies but reported studies to depict that UAP, MAP, and
HPP are innovative, environmentally friendly, and promising
pretreatments to modify the profile of peptides, improve the
yields of peptides, and higher liberation of bioactive peptides

as compared to conventional processing technologies. Novel
technologies require sustainable, environment-friendly, and
highly specialized cost equipment and workers to operate the
equipment. These novel processing technologies are coupled with
conventional methods for unfolding, denaturing, or aggregating
the milk proteins by breaking down weak molecular interactions
with less or no effect on covalent bonds. The influence
of pretreatments is intensified by fermentation/enzymatic
hydrolysis, which results in a higher amount of liberated low
molecular weight bioactive peptides, enhanced hydrolysis, and
increased proteolysis of dairy proteins which ultimately increases
their bioactivity. Many studies have reported the isolation of
novel bioactive peptides from dairy proteins after employing
novel technologies as pretreatments.

Ultrasound-assisted processing is an innovative and most
efficient technology as it offers easy control, simple operation,
mild operating conditions, the ability to achieve industrial
amplification and production, and effective influence of auxiliary
enzymatic hydrolysis. Its mechanical effects and cavitation
change the protein conformation, increase the biological
functionalities of enzymes, and enhance the reaction rate of
enzymatic hydrolysis. Though novel technologies are innovative,
environmentally friendly, and promising pretreatments, their
trend is increasing and acquisitioning momentum to produce
bioactive peptides.
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