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Abstract: An adaptive dynamic sliding mode control via a backstepping approach for a microelectro
mechanical system (MEMS) vibratory z-axis gyroscope is presented in this paper. The time derivative
of the control input of the dynamic sliding mode controller (DSMC) is treated as a new control
variable for the augmented system which is composed of the original system and the integrator.
This DSMC can transfer discontinuous terms to the first-order derivative of the control input, and
effectively reduce the chattering. An adaptive dynamic sliding mode controller with the method of
backstepping is derived to real-time estimate the angular velocity and the damping and stiffness
coefficients and asymptotical stability of the designed systems can be guaranteed. Simulation
examples are investigated to demonstrate the satisfactory performance of the proposed adaptive
backstepping sliding mode control.

Keywords: adaptive control; dynamic sliding mode control; backstepping control

1. Introduction

Microelectro mechanical system (MEMS) gyroscopes can measure the sensor angular
velocity of inertial navigation and guidance systems, widely used in aviation, aerospace,
marine and positioning fields. However, parameter uncertainties and external disturbances,
the manufacturing errors, and the influence of the ambient temperature decrease the accu-
racy and sensitivity of the micro gyroscope. The manufacturing errors and the influence of
the external conditions as main factors affecting the decrease in the accuracy and sensitivity
of the gyro system, the nonlinear effects in the model applied is also of great importance.
The problem concerning the impact of the nonlinearity is discussed [1–3]. Then, compensa-
tion for manufacturing tolerances and accurate measurement of the angular velocity are
the main problems of microscopes. During the past years, some new control strategies
have been investigated to compensate for the performance and parameters of the MEMS
gyroscopes. Park et al. [4,5] developed an adaptive trajectory-switching algorithm for a
MEMS gyroscope. Batur et al. [6] developed a sliding mode controller of a simulated MEMS
gyroscope. Leland et al. [7] proposed an adaptive control of a MEMS gyroscope using
Lyapunov methods. Chen et al. [8] implemented an optimized double closed-loop control
system for a MEMS gyroscope. Xu et al. [9] utilized a composite neural strategy with a
finite time controller for a microgyscope. Adaptive sliding mode control and adaptive
control with a fuzzy compensator for a MEMS gyroscope have been investigated in [10–13].

Dynamic sliding mode control (DSMC) schemes [14–19] have attracted great interest
in recent years because they are special approaches to reducing the chattering through
an integrator in the system. The time derivative of the control input is treated as a new
control variable for the augmented system where the augmented system includes the
original system and the integrator. Since no boundary layer is used in the dynamic slid-
ing mode controller, chattering reduction can be obtained by using an integrator and the
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property of perfect disturbance rejection can be guaranteed. Zhao [20] proposed adaptive
backstepping sliding mode control for leader-follower multi-agent systems. Lin et al. [21]
studied adaptive backstepping sliding mode control for linear induction motor drive.
Lin et al. [22] proposed a Field Programmable Gate Array (FPGA)-based adaptive back-
stepping sliding-mode controller for linear induction motor drive. Ansarifar et al. [23]
proposed an adaptive DSMC method for non-minimum phase systems. Sousy et al. [24] de-
veloped an adaptive DSMC system with recurrent Radial-Basis Function Networks (RBFN)
for an induction motor servo drive. Neural control and fuzzy control have the capacity to
approximate unknown smooth functions and have been widely used in identification and
control [25–28].

However, an adaptive backstepping scheme combined with dynamic sliding mode
controller has not been applied to a MEMS gyroscope yet. The backstepping method
is a powerful design tool for dynamic systems with pure or strict feedback forms. The
gyroscope equations can be transformed into an analogically cascade system that is easily
implemented by the backstepping method. This work is an extended version of the 2013
work [18] and the new contributions are the backstepping scheme is combined with the
adaptive dynamical sliding mode controller to improve the robustness, and estimate the
system parameters and angular velocity.

In this paper, an adaptive dynamic sliding mode controller based on backstepping
control is designed to realize position tracking and effectively decrease the chattering
problem. The advantages of the proposed controller can be summarized as follows:

(1) Adaptive control, DSMC and backstepping control are combined and applied to
a MEMS gyroscope. DSMC using the derivative of the switching function is utilized to
eliminate the chattering and attenuate the model uncertainties and external disturbances
and adaptive control is derived to estimate the dynamics of the micro gyroscope. Hence,
dynamic sliding mode control not only removes some of the fundamental limitations of the
traditional approach but also provides improved tracking accuracy under sliding mode.

(2) The proposed DSMC adds additional compensators to achieve system stability,
thereby obtaining the desired system property. An integrator is added in the front end to
transform the original system into an augmented system, with the derivative of the original
control input as the system input. Therefore, the proposed integrator can filter out high
frequency noise.

(3) The advantages of the backstepping design are that it is able to relax the matching
condition and avoid cancelation of useful nonlinearities. The procedure of backstepping
design is to develop a controller recursively by regarding some of the state variables as
“virtual controls” and deriving control laws to improve the robustness.

The paper is organized as follows. In Section 2, the dynamics of the MEMS vibratory
gyroscope are established. In Section 3, an adaptive dynamic sliding mode controller based
on backstepping method is developed. Simulation studies are given in Section 4 to prove
the performance. Conclusions are provided in Section 5.

2. Dynamic Model of MEMS Gyroscope

The typical MEMS vibratory gyroscope depicted in Figure 1 has a proof mass sus-
pended by springs, an electrostatic actuation, and sensing mechanisms that can force an
oscillatory motion and sense the position and velocity of the proof mass.

We assume that the table where the proof mass is mounted is moving with a constant
velocity; the gyroscope is rotating at a constant angular velocity Ωz over a sufficiently long
time interval. Since the angular rate is usually small compared to the natural frequency
of the system and the proof mass is also small, the centrifugal forces mΩ2

z x, mΩ2
zy, are

assumed to be negligible or absorbed as part of the spring terms as unknown variations;
the gyroscope undergoes rotation about the z axis only, and thereby Coriolis force acting
on the plane perpendicular to z axis.

Referring to [5], with these assumptions, the dynamics of the gyroscope become
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m
..
x + dxx

.
x + dxy

.
y + kxxx + kxyy = ux + 2mΩz

.
y

m
..
y + dxy

.
x + dyy

.
y + kxyx + kyyy = uy − 2mΩz

.
x

(1)
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Figure 1. Schematic diagram of a microelectro mechanical system (MEMS) gyroscope in the x-y plane.

Fabrication imperfections result in the asymmetric spring and damping terms, kxy and
dxy. The spring and damping terms, kxx, kyy, dxx, and dyy in the x and y axes are mostly
known, but have small unknown variations from their nominal values. The proof mass
can be determined very accurately, and ux, uy are the electrostatic forces in the x and y
directions.

Define non-dimensional time t∗ = t/t0 = ω0t; t0 is reference time, ω0 = 1/t0 is
resonance frequency. Define non-dimensional position q∗ = q/q0, q =

[
x y

]T ; q0 is
reference position

.
q∗ =

dq∗

dt∗
=

(
1

q0ω0

)
.
q,

..
q∗ =

d2q∗

dt∗2
=

(
1

q0ω2
0

)
..
q (2)

On both sides of the Equation (1) divide by the mass m, reference position q0, the
square of the resonance frequency w2

0, so we can obtain

..
x∗ + dxx

∗ .
x∗ + dxy

∗ .
y∗ + ωx

2x∗ + ωxyy∗ = ux
∗ + 2Ωz

∗ .
y∗

..
y∗ + dxy

∗ .
x∗ + dyy

∗ .
y∗ + ωxyx∗ + ωy

2y∗ = uy
∗ − 2Ωz

∗ .
x∗

(3)

where
dxx

mω0
→ dxx

∗, dxy
mω0
→ dxy

∗, dyy
mω0
→ dyy

∗,
ux

mω0
2q0
→ ux

∗, uy
mω0

2q0
→ uy

∗,
kxx

mω0
2 → ω2

x, kxy
mω0

2 → ωxy, kyy
mω0

2 → ω2
y, Ωz

ω0
→ Ωz

∗

Equation (3) is a mathematical model of the MEMS gyroscope under ideal conditions.
Considering the presence of model uncertainties and external disturbances of a MEMS
gyroscope under the actual conditions, ignoring the superstar for the convenience of
notation, then rewriting non-dimensional model (3) in matrix form yields{ .

x1 = x2.
x2 = f (x, y)θ + u + d,

(4)
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where x1 = q, x2 =
.
q, f (x, y) = −

[ .
x

.
y 0 −2

.
y x y 0

0
.
x

.
y 2

.
x 0 x y

]
, θ is the parameter of

a MEMS gyroscope as θ =
[

dxx dxy dyy ΩZ w2
x wxy w2

y

]T
, d is the model un-

certainties and external disturbances of a MEMS gyroscope. We assume that the input
disturbances d and their derivative

.
d are bounded signals.

Suppose an ideal oscillator generates a reference trajectory and the control objective
is to make the trajectory of the MEMS gyroscope follow that of the reference model. The
reference model is defined as

..
r + Kmr = 0, (5)

where r is the reference trajectory vector, Km = diag
{

ω2
1 ω2

2
}

; ω1, ω2 are the ideal
nature frequency of the reference trajectory in the x and y directions.

The tracking error is defined as{
e1 = x1 − r
e2 = x2 − α,

(6)

where α is a virtual controller.
The virtual controller is defined as

α = −c1e1 +
.
r, (7)

where the parameter of virtual controller c1 > 0. So, the time derivative of the α is

.
α = −c1

.
e1 +

..
r = −c1(

.
x1 −

.
r) +

..
r

= −c1(x2 −
.
r) +

..
r = −c1(e2 + α− .

r) +
..
r

= −c1(e2 − c1e1 +
.
r− .

r) +
..
r

= −c1e2 + c2
1e1 +

..
r

(8)

In the backstepping control, the introduction of virtual control is essentially a static
compensation idea. The front subsystem must achieve stabilization purposes through the
virtual control of the back subsystem.

3. Design and Stability Analysis of Dynamic Sliding Mode Controller

In this section, an adaptive DSMC method based on backstepping design is developed
for the trajectory tracking and system identification of a MEMS gyroscope as shown in
Figure 2. The control target is to obtain real-time compensation for fabrication imperfec-
tions and identification of the system parameters and angular velocity. The backstepping
dynamic sliding controller designs the time derivative of the control input and the control
input obtained by integrator is proposed to control the MEMS gyroscope.
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We select the first Lyapunov function as follows:

V1 =
1
2

eT
1 e1 (9)

The time derivative of the V1 is
.

V1 = eT
1

.
e1 = eT

1 (x2 −
.
r) = eT

1 (e2 + α− .
r) = eT

1 (e2 − c1e1) = −c1eT
1 e1 + eT

1 e2 (10)

When e2 = 0, it is easy to know that
.

V1 = −c1eT
1 e1 meet the negative qualitative. So,

the system e1 = x1 − r is globally asymptotically stable and the error e1 asymptotically
converges to zero.

Define the second Lyapunov function as follows

V2 = V1 +
1
2

eT
2 e2 +

1
2

sTs +
1
2

θ̃Tτ−1θ̃, (11)

where θ̂ is a parameter estimate, θ̃ = θ − θ̂ is the estimation error of the MEMS gyroscope
parameter, s is the sliding surface function, and τ is an adaptive gain.

Thinking about Equations (4) and (6), the sliding surface is defined as

s = ce2 +
.
e2 = ce2 +

.
x2 −

.
α = ce2 + f (x, y)θ̂ + u + d− .

α (12)

where c is a positive definite constant to be selected.
Substituting Equation (8) into Equation (12) yields

s = (c + c1)e2 + f (x, y)θ̂ + u + d− c2
1e1 −

..
r (13)

Referring to Equations (4) and (13), we can obtain

.
x2 = s− ce2 − f (x, y)θ̂ − d +

.
α + f (x, y)θ + d

= s− ce2 + f (x, y)θ̃ +
.
α

(14)

The derivative of the sliding surface is

.
s = (c + c1)( f (x, y)θ + u + d− ..

r) + cc1(e2 − c1e1)−
...
r +

.
f (x, y)θ̂ + f (x, y)

.
θ̂ +

.
u +

.
d (15)

The time derivative of the V2 is

.
V2 =

.
V1 + eT

2
.
e2 + sT .

s + θ̃τ−1
.
θ̃

= −c1eT
1 e1 + eT

1 e2 + eT
2 (

.
x2 −

.
α) + sT .

s− θ̃Tτ−1
.
θ̂

= −c1eT
1 e1 + eT

1 e2 + eT
2 (s− ce2 + f (x, y)θ̃) + sT .

s− θ̃Tτ−1
.
θ̂

= −c1eT
1 e1 + eT

1 e2 − ceT
2 e2 + sT [e2 + (c + c1)( f (x, y)θ + u + d− ..

r)

+cc1(e2 − c1e1)−
...
r +

.
f (x, y)θ̂ + f (x, y)

.
θ̂ +

.
u +

.
d] + θ̃T( f T(x, y)e2 − τ−1

.
θ̂)

(16)

To make
.

V2 ≤ 0, we choose a dynamic sliding mode control law as:

.
u = −[e2 + (c + c1)( f (x, y)θ̂ + u− ..

r) + cc1(e2 − c1e1)−
...
r +

.
f (x, y)θ̂

+ f (x, y)
.
θ̂]− s

‖s‖2 eT
1 e2 − ρ s

‖s‖ ,
(17)

where ρ is a chosen positive constant.
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Substituting Equation (17) into Equation (16) yields

.
V2 = −c1eT

1 e1 − ceT
2 e2 − ρsT s

‖s‖ + θ̃T
(
(c + c1) f T(x, y)s + f T(x, y)e2 − τ−1

.
θ̂

)
+ sT

(
(c + c1)d +

.
d
)

= −c1eT
1 e1 − ceT

2 e2 − ρsT s
‖s‖ + θ̃T

(
f T(x, y)((c + c1)s + e2)− τ−1

.
θ̂

)
+ sT

(
(c + c1)d +

.
d
) (18)

To make
.

V2 ≤ 0, we choose an adaptive law

.
θ̂ = τ f T(x, y)((c + c1)s + e2) (19)

Substituting Equation (19) into Equation (18) yields

.
V2 = −c1eT

1 e1 − ceT
2 e2 − ρsT s

‖s‖ + sT
(
(c + c1)d +

.
d
)

= −c1eT
1 e1 − ceT

2 e2 − ρ‖s‖+ sT
(
(c + c1)d +

.
d
)

≤ −c1‖e1‖2 − c‖e2‖2 − ρ‖s‖+ ‖s‖
(
(c + c1)‖d‖+ ‖

.
d‖
) (20)

It is assumed that ‖d‖ ≤ η1, ‖
.
d‖ ≤ η2, then Equation (20) can become the following

.
V2 ≤ −c1‖e1‖2 − c‖e2‖2 − ρ‖s‖+ ‖s‖((c + c1)η1 + η2)

= −c1‖e1‖2 − c‖e2‖2 − ‖s‖(ρ− ((c + c1)η1 + η2))
(21)

With the choice of ρ > ((c + c1)η1 + η2),
.

V2 ≤ 0.
.

V2 is a negative semi-definite mean
V, s and θ̃ are all bounded.

.
s is also bounded. From Barbalat lemma, s(t) asymptotically

converges to zero, lim
t→∞

s(t) = 0, then e(t) can also converge to zero asymptotically. There-

fore asymptotical stability of the designed system can be guaranteed. Thus, the method by
which the adaptive dynamic sliding mode control based on the backstepping approach can
adaptively control the MEMS gyroscope and reduce the chattering has been theoretically
proven. The fact that the resonance frequency of the x-axis is different from that of the
y-axis means that PE condition is satisfied. If reference signals are persistently excited,
then adaptive law (19) guarantees that θ̃ → 0 and θ converge to their true values. Thus the
unknown angular velocity as well as all other system parameters can also converge to their
actual values.

4. Simulation Study

In this section, based on the backstepping design, an adaptive DSMC strategy is
designed for the trajectory tracking and system identification of the MEMS gyroscope. The
parameters of the micro gyroscope sensor are described as:

m = 1.8× 10−7 kg, kxx = 63.955 N/m, kyy = 95.92 N/m, kxy = 12.779 N/m
dxx = 1.8× 10−6 N · s/m, dyy = 1.8× 10−6 N · s/m, dxy = 3.6× 10−7 N · s/m

The reference trajectory is chosen to be r1 = sin(4.17t), r2 = 1.2 sin(5.11t), close to
its natural frequency in the x and y directions. Random variable signals with zero mean
and unity variance plus sin(2πt) are selected as external disturbance d. Assume that the
input angular velocity Ωz = 100 rad/s. The reference length q0 = 1 µm. The reference
frequency w0 = 1 kHz. Simulation studies are implemented. The initial conditions are
q(0) = [ 0 0 ]

T ; the other parameters are selected as

w1 = 4.17, w2 = 5.11, τ = diag
{

2 2 2 2 2 2 2
}

; ρ = diag
{

400 400
}

;
c = 4;c1 = 4;θ̂(0) = 0.95θ.

The tracking trajectory and tracking error are shown in Figures 3 and 4. The control
system can track the reference trajectory in 40 s. The control input and control input
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derivative using the adaptive DSMC method are drawn in Figures 5 and 6, demonstrating
that the adaptive DSMC with the backstepping design can transfer discontinuous terms to
the first-order derivative of the control input, thereby decreasing the chattering.

The parameters of the MEMS gyroscope are in Figures 7 and 8, showing that the esti-
mates of the spring and damping coefficients converge to their true values with a persistent
sinusoidal reference signal. Therefore, the introduction of adaptive backstepping DSMC
can adapt to the changing nonlinearities, which maintains the satisfactory performance. It
means that DSMC not only removes some of the fundamental limitations of the traditional
approach but also provides improved tracking accuracy.

Micromachines 2021, 12, x FOR PEER REVIEW 8 of 12 
 

 

 
The parameters of the MEMS gyroscope are in Figures 7 and 8, showing that the es-

timates of the spring and damping coefficients converge to their true values with a per-
sistent sinusoidal reference signal. Therefore, the introduction of adaptive backstepping 
DSMC can adapt to the changing nonlinearities, which maintains the satisfactory per-
formance. It means that DSMC not only removes some of the fundamental limitations of 
the traditional approach but also provides improved tracking accuracy. 

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

time(s)

T
ra

je
ct

or
y 

T
ra

ck
in

g 
in

 x
-a

xi
s

 

 

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

time(s)

T
ra

je
ct

or
y 

T
ra

ck
in

g 
in

 y
-a

xi
s

 

 

r in x-axis 
output in x-axis

r in y-axis

output in y-axis

 
Figure 3. Trajectory tracking using adaptive dynamic sliding mode control based on the backstep-
ping approach. 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

time(s)

T
ra

ck
in

g 
E

rr
or

 in
 x

-a
xi

s

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time(s)

T
ra

ck
in

g 
E

rr
or

 in
 y

-a
xi

s

 
Figure 4. Tracking error using adaptive dynamic sliding mode control based on the backstep-
ping approach. 

Figure 3. Trajectory tracking using adaptive dynamic sliding mode control based on the backstepping
approach.

Micromachines 2021, 12, x FOR PEER REVIEW 8 of 12 
 

 

 
The parameters of the MEMS gyroscope are in Figures 7 and 8, showing that the es-

timates of the spring and damping coefficients converge to their true values with a per-
sistent sinusoidal reference signal. Therefore, the introduction of adaptive backstepping 
DSMC can adapt to the changing nonlinearities, which maintains the satisfactory per-
formance. It means that DSMC not only removes some of the fundamental limitations of 
the traditional approach but also provides improved tracking accuracy. 

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

time(s)

T
ra

je
ct

or
y 

T
ra

ck
in

g 
in

 x
-a

xi
s

 

 

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5

time(s)

T
ra

je
ct

or
y 

T
ra

ck
in

g 
in

 y
-a

xi
s

 

 

r in x-axis 
output in x-axis

r in y-axis

output in y-axis

 
Figure 3. Trajectory tracking using adaptive dynamic sliding mode control based on the backstep-
ping approach. 

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

time(s)

T
ra

ck
in

g 
E

rr
or

 in
 x

-a
xi

s

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time(s)

T
ra

ck
in

g 
E

rr
or

 in
 y

-a
xi

s

 
Figure 4. Tracking error using adaptive dynamic sliding mode control based on the backstep-
ping approach. 

Figure 4. Tracking error using adaptive dynamic sliding mode control based on the backstepping
approach.



Micromachines 2021, 12, 190 8 of 11

Micromachines 2021, 12, x FOR PEER REVIEW 9 of 12 
 

 

0 10 20 30 40 50 60 70 80 90 100
-500

0

500

time(s)

C
on

tr
ol

 F
or

ce
 in

 x
-a

xi
s

0 10 20 30 40 50 60 70 80 90 100
-800

-600

-400

-200

0

200

400

600

800

time(s)

C
on

tr
ol

 F
or

ce
 in

 y
-a

xi
s

 
Figure 5. Control input using adaptive dynamic sliding mode control based on the backstepping approach. 

0 10 20 30 40 50 60 70 80 90 100
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

time(s)

D
er

iv
at

iv
e 

in
 x

-a
xi

s

0 10 20 30 40 50 60 70 80 90 100
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

time(s)

D
er

iv
at

iv
e 

in
 y

-a
xi

s 

 
Figure 6. Control input derivative using adaptive dynamic sliding mode control based on the backstepping approach. 

Figure 5. Control input using adaptive dynamic sliding mode control based on the backstepping
approach.

Micromachines 2021, 12, x FOR PEER REVIEW 9 of 12 
 

 

0 10 20 30 40 50 60 70 80 90 100
-500

0

500

time(s)

C
on

tr
ol

 F
or

ce
 in

 x
-a

xi
s

0 10 20 30 40 50 60 70 80 90 100
-800

-600

-400

-200

0

200

400

600

800

time(s)

C
on

tr
ol

 F
or

ce
 in

 y
-a

xi
s

 
Figure 5. Control input using adaptive dynamic sliding mode control based on the backstepping approach. 

0 10 20 30 40 50 60 70 80 90 100
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

time(s)

D
er

iv
at

iv
e 

in
 x

-a
xi

s

0 10 20 30 40 50 60 70 80 90 100
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

time(s)

D
er

iv
at

iv
e 

in
 y

-a
xi

s 

 
Figure 6. Control input derivative using adaptive dynamic sliding mode control based on the backstepping approach. 

Figure 6. Control input derivative using adaptive dynamic sliding mode control based on the
backstepping approach.



Micromachines 2021, 12, 190 9 of 11

Micromachines 2021, 12, x FOR PEER REVIEW 10 of 12 
 

 

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2
x 10

-3

time(s)

dx
x

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-3

time(s)

dx
y

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-3

time(s)

dy
y

0 10 20 30 40 50 60 70 80 90 100
60

61

62

63

64

time(s)

kx
x

0 10 20 30 40 50 60 70 80 90 100
11

11.5

12

12.5

13

13.5

time(s)

kx
y

0 10 20 30 40 50 60 70 80 90 100
91

92

93

94

95

96

time(s)
ky

y

 
Figure 7. Parameter estimates of the MEMS gyroscope. 

0 10 20 30 40 50 60 70 80 90 100
-6000

-4000

-2000

0

2000

4000

6000

time(s)

A
ng

ul
ar

 R
at

e(
ra

d/
s)

 
Figure 8. Convergence of angular velocity. 

5. Conclusions 
In this study, an adaptive DSMC strategy with a backstepping approach was suc-

cessfully applied to a MEMS gyroscope for the trajectory tracking. The derivative of the 
switching function is employed to differentiate classical sliding surface and transfer 
discontinuous terms to the first-order derivative of the control input, and effectively 
decrase the chattering. The asymptotical stability of the closed loop system can be guar-
anteed with the proposed DSMC strategy. Moreover, the proposed adaptive dynamic 
sliding mode control can estimate the system parameters online. Simulation studies are 

Figure 7. Parameter estimates of the MEMS gyroscope.

Micromachines 2021, 12, x FOR PEER REVIEW 10 of 12 
 

 

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2
x 10

-3

time(s)

dx
x

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-3

time(s)

dx
y

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-3

time(s)

dy
y

0 10 20 30 40 50 60 70 80 90 100
60

61

62

63

64

time(s)

kx
x

0 10 20 30 40 50 60 70 80 90 100
11

11.5

12

12.5

13

13.5

time(s)

kx
y

0 10 20 30 40 50 60 70 80 90 100
91

92

93

94

95

96

time(s)

ky
y

 
Figure 7. Parameter estimates of the MEMS gyroscope. 

0 10 20 30 40 50 60 70 80 90 100
-6000

-4000

-2000

0

2000

4000

6000

time(s)

A
ng

ul
ar

 R
at

e(
ra

d/
s)

 
Figure 8. Convergence of angular velocity. 

5. Conclusions 
In this study, an adaptive DSMC strategy with a backstepping approach was suc-

cessfully applied to a MEMS gyroscope for the trajectory tracking. The derivative of the 
switching function is employed to differentiate classical sliding surface and transfer 
discontinuous terms to the first-order derivative of the control input, and effectively 
decrase the chattering. The asymptotical stability of the closed loop system can be guar-
anteed with the proposed DSMC strategy. Moreover, the proposed adaptive dynamic 
sliding mode control can estimate the system parameters online. Simulation studies are 

Figure 8. Convergence of angular velocity.

5. Conclusions

In this study, an adaptive DSMC strategy with a backstepping approach was suc-
cessfully applied to a MEMS gyroscope for the trajectory tracking. The derivative of the
switching function is employed to differentiate classical sliding surface and transfer dis-
continuous terms to the first-order derivative of the control input, and effectively decrase
the chattering. The asymptotical stability of the closed loop system can be guaranteed
with the proposed DSMC strategy. Moreover, the proposed adaptive dynamic sliding
mode control can estimate the system parameters online. Simulation studies are conducted
to demonstrate the good performance of the proposed dynamic sliding mode control
methods.
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