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Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia in children younger than 1 year of
age in the United States. Moreover, RSV is being recognized more often as a significant cause of respiratory illness in older adults.
Although RSV has been studied both clinically and in vitro, a quantitative understanding of the infection dynamics is still lacking.
In this paper, we study the effect of uncertainty in the main parameters of a viral kinetics model of RSV. We first characterize the
RSV replication cycle and extract parameter values by fitting themathematical model to in vivo data from eight human subjects.We
then use Monte Carlo numerical simulations to determine how uncertainty in the parameter values will affect model predictions.
We find that uncertainty in the infection rate, eclipse phase duration, and infectious lifespan most affect the predicted dynamics of
RSV.This study provides the first estimate of in vivo RSV infection parameters, helping to quantify RSV dynamics. Our assessment
of the effect of uncertainty will help guide future experimental design to obtain more precise parameter values.

1. Introduction

Respiratory syncytial virus (RSV) is a major cause of lower
respiratory tract disease among infants, a frequent pathogen
in elderly and immunosuppressed patients, and a major
public health concern worldwide [1–5]. Healthy adults who
contract RSV experience mild or asymptomatic infections,
but it is the cause of 18% of hospitalizations due to pneumonia
in adults older than 65 [6]. There is currently no vaccine for
RSV and drug treatment is largely limited to treatment of
symptoms and supportive care [7]. Thus it is crucial that we
develop a detailed understanding of the viral kinetics of this
disease.

Historically, mathematical and computational methods
have not played a large role in immunology and virology.
This is now changing, and impressive advances have come
from the use of simple models applied to the interpretation of
quantitative data [8]. Mathematical models of viral infections
help us quantify key parameters of the infection process [9–
12], optimize drug treatment regimens [13–16], and under-
stand complex host-virus interactions [17–19]. Mathematical

modeling is now commonly used to study HIV [20] and is
becoming more common in other serious viral infections
such as influenza [21] and HCV [22]; it has not yet been used
to investigate respiratory syncytial virus (RSV).

Initial modeling studies for any virus often use a system
of nonlinear differential equations and the models are typ-
ically fit to viral time course data to generate estimates of
viral kinetic parameters. However, given the large amount
of experimental error in viral titer measurements [23],
parameter estimates vary widely and contain some degree
of uncertainty. Uncertainty in model parameters can limit
the predictive ability of the model, so it is important to
understand how parameter uncertainty alters the predicted
time course of the model.

Uncertainty in differential equations has been considered
in recent decades in a wide variety of applied areas, such
as physics, chemistry, biology, economics, sociology, and
medicine [24–26]. Uncertainty in a differential equation
model can arise either through uncertainty in the initial
conditions or through uncertainty in equation coefficients.
In this paper uncertainty of both types is considered in
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Figure 1: Viral kinetic model. The virus, 𝑉, attacks target cells, 𝑇, at rate 𝛽. Once infected, target cells enter the eclipse phase, 𝐸. The eclipse
phase lasts an average time of 𝜏

𝐸
, after which the cells become infectious cells, 𝐼. The infectious cells produce new virions at rate 𝑝, and the

virus decays at rate 𝑐. The cells remain infectious for an average time of 𝜏
𝐼
, after which they become dead cells.

the context of a viral kinetic model. Studies of the impact
of parameter distributions on epidemic models [26] have
proved to be useful in determining upper and lower estimates
of the size of an epidemic.

This paper is organized as follows. Section 2 presents
the viral kinetic model, fitting procedure, and Monte Carlo
method. In Section 3, we present the fits of the viral model
to data from eight patients infected with the A2 strain of
RSV. Additionally, results of the estimated parameters and
the Monte Carlo simulations are presented. Discussion and
conclusions are presented in Section 4.

2. Methods

2.1. Patient Data. The experimental data used in this paper
was first published in Lee et al. [27]. Briefly, 12 healthy
young adults were challenged with the A2 strain of RSV.
Nasal washes were performed daily for twelve days after
inoculation. Nasal washes were cultured in HEp-2 cells to
determine viral titer in each nasal wash sample. Of the twelve
patients challenged with RSV, only eight showed elevated
viral load for several days and were suitable for fitting and
parameter extraction.

2.2. Model. In this paper we will use a model based on
an autonomous system of nonlinear ordinary differential
equations to characterize the in vivo infection dynamics of
the A2 strain of RSV. The model is an extension of the basic
viral infection model for influenza described in [9]
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In this model, uninfected target cells, 𝑇, are infected at a
rate 𝛽 when they encounter a virion 𝑉. The cells transition
to the eclipse phase, 𝐸, where they are infected but not
yet actively producing virions. After an average time 𝜏

𝐸
,

the cells transition to the infectious phase, 𝐼, where they
actively produce virus at a rate 𝑝. After an average time 𝜏

𝐼
,

infectious cells die. Virus is cleared from the system at a
rate 𝑐. The transitions between eclipse/infectious cells and
infectious/dead cells are modelled as gamma distributions, as
done by Pinilla et al. [12], since exponential and hard delays
are known to be biologically unrealistic [28–30]. 𝑛

𝐸
and 𝑛
𝐼
are

the number of compartments used to represent the eclipse
phase and infectious phase, respectively. A schematic of the
model is shown in Figure 1. This model can give us insight
into the infection process since we can extract parameters
such as the duration of the eclipse phase and the lifespan of an
infected cell. Unfortunately, the model has seven parameters
and so requires a rather large and complete data set.

2.3. Fitting Algorithms. In order to characterize the RSV
replication cycle and extract kinetic parameter values, we
need to fit the mathematical model to the patient data
[27]. We determine the best fit by minimizing the sum
of squared residuals (SSR). The initial parameter space is
large due to the seven unknown parameters of model (1).
Moreover, since the initial viral load is unknown this adds
an extra parameter to the search space. In this way, to
obtain realistic parameter values, we transform the original fit
problem into a constrained nonlinear optimization problem
by restricting the parameter search space to biologically
realistic values. While the parameter space was restricted,
the boundaries are large. The range of values used for each
parameter is as follows. For the virus production rate 𝑝 and
the infection rate 𝛽, we assume a wide range since the units
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of both parameters include units of viral titer, which are not
standardized and are known to vary from one experiment to
another [31]. The range for 𝑝 in the restricted fitting process
is [10−10, 1016] TCID

50
/mL/(cell ⋅ d). For the infectious rate

𝛽, the range is [10−10, 1] (TCID
50
/mL)−1 ⋅ d−1. The range for

the viral clearance rate was restricted to [10−4, 102]/d. The
range for the mean infectious cell lifespan, 𝜏

𝐼
, was limited

to [0.001, 1]d. The same range was assumed for the mean
duration of the eclipse phase 𝜏

𝐸
. For the parameters 𝑛

𝐸
and

𝑛
𝐼
the literature is very scarce as these parameters are more

related to the shape of the probability distribution of the
infectious and eclipse phases, respectively. It is important
to remark that these parameters do not change the mean
duration of phases, just the variance. In our particular case we
allowed a range of [1, 100]. Finally, for the initial viral load,
again we used a not too restrictive range in order to have
large search parameter space, [10−2, 1016] TCID

50
/mL. We

used the Nelder-Mead algorithm to minimize the SSR [32]
within the restricted parameter space.

2.4. Viral Kinetic Parameters. It is sometimes difficult to
compare parameter estimates from different experiments
since the units of viral titer depend on the details of mea-
surement. There is no universal standard viral titer unit,
making comparison of parameters such as 𝑝 and 𝛽 irrelevant.
Instead, we will focus on parameters which have a universal
standardized unit (units of time, in this case). In addition
to the mean duration of the eclipse phase 𝜏

𝐸
and the mean

duration of the infectious phase 𝜏
𝐼
, we can compare the

following parameters:

(i) 𝑡inf = √2/𝑝𝛽: the infecting time is the mean time for
an infected cell to infect a neighbouring cell.

(ii) 𝜎
𝐸
= 𝜏
𝐸
/√𝑛𝐸: this is the standard deviation in the

duration of the eclipse phase.
(iii) 𝜎

𝐼
= 𝜏
𝐼
/√𝑛𝐼: this is the standard deviation in the

duration of the infectious phase.

2.5. Monte Carlo Assessment of Uncertainty. The reliability of
the parameter estimates depends mainly on two factors. The
first one is the accuracy of the experimental data, which is
out of our hands, but it is known that these types of viral data
are subject to uncertainty [23]. Inaccurate or wildly varying
data will affect both the estimated parameter values and the
reliability of the viral dynamics prediction.The second factor
is the ability of the fitting method to find the true best fit
values.Whilewe cannot judge howmuch each of these factors
affects the resulting parameter estimates, it is clear that there
will be some error in the estimates. One of the aims of this
paper is to examine how changes in the estimated values of
the model parameters will affect predicted viral dynamics of
RSV.

We have chosen to study the effect of parameter uncer-
tainty on viral dynamics using a Monte Carlo method. The
Monte Carlo method allows us to study random effects
with different distributions in ordinary differential equation
models. We employ a conceptually simple Monte Carlo
approach by running numerical simulations separately for

Table 1: Estimated parameters for RSV in vivo infection.

Patient∗ 𝑡inf 𝑐 𝜏
𝐼
𝜏
𝐸
𝜎
𝐼
𝜎
𝐸

𝑉
0 SSR

(h) (/h) (h) (h) (h) (h) (TCID
50
/mL/mL)

1 2.4 0.28 7.2 7.2 5.1 5.1 0.17 5.6
2 4.3 0.78 5.3 19 2.2 11 0.010 5.3
3 1.9 0.13 4.8 9.6 2.8 4.8 0.013 9.5
4 3.8 0.20 7.9 11 5.6 7.8 0.011 8.8
5 0.72 0.063 18 24 10 9.1 0.010 1.1
6 2.4 0.20 10 17 4.5 8.5 0.012 4.3
7 6.2 0.096 14 17 9.9 9.8 0.030 0.6
12 1.7 0.44 13 10 3.4 5.0 0.16 2.3
Median 2.4 0.20 9.0 14 4.8 8.2 0.13 4.8
∗Patient numbers are those originally found in [27].

each parameter which results in a set of corresponding
plausible simulation predictions. These predictions can be
used to characterize the uncertainty in viral titer time course
due to inaccuracy in either single parameters or combinations
of parameters [26, 29].

3. Results

3.1. Parameter Estimates for RSV Infected Patients. One of our
aims is to estimate the parameters of the mathematical model
(1) by fitting it to RSV patient data. Figure 2 presents patient
viral titers and the best fits of (1) for the different patients with
corresponding viral kinetic parameter estimates presented
in Table 1. We can see that the model does an adequate job
of fitting patient data, but given the large number of free
parameters and the limited size of each data set, this is not
particularly surprising.

Despite the overfitting, the extracted parameter values
seem to be biologically reasonable. While we have no previ-
ous RSV data for comparison, we can examine our parameter
estimates in the context of what has been found for influenza.
Influenza is also an upper respiratory tract viral infection that
typically causes mild disease in healthy adults, so the two
infections have been compared before [33]. In vivo challenge
studies indicate that influenza viral loads peak at about 2 dpi
with symptoms peaking about a day later. RSV viral load
peaks at about 5-6 dpi with symptoms peaking around 6 dpi.
Given these results, we would generally expect RSV infection
processes to take longer than similar processes in influenza.

Several studies have determined estimates of the infecting
time for influenza ranging from 0.02 h to 2.5 h [9, 12, 19, 34–
36]. Our estimates have values in the range of 0.72 h to 6.2 h
which overlap with some estimates of influenza infecting
time but also tend to be somewhat longer. Estimates of the
duration of the eclipse phase 𝜏

𝐸
for influenza range from

1 h to 9 h [9, 12, 19, 30, 34, 37–39]. Our estimates for the
duration of the eclipse phase of RSV range from 7.2 h to
24 h. With one exception, these estimates are longer than
the estimated eclipse durations for influenza. Finally, the
infectious lifespan of influenza-infected cells is estimated to
range between 6 h and 49 h [9, 12, 30, 39, 40]. Our estimate
for the infectious lifespan of RSV infected cells is 4.8 h to 18 h.
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Figure 2: Numerical simulations of the virus kinetic model (1) fitted for different patients. The graphs present viral titers in TCID50/mL of
nasal wash (red circles) and the fits.
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The RSV lifespans are on the shorter end of the estimates for
influenza.

One parameter for which we have some RSV data for
comparison is the viral clearance rate. Viral decay rate can
be determined from mock infection experiments. In these
experiments, the virus is placed in a dish without cells
and infectious virus is measured every few hours. Mock
infection experiments for RSV indicate clearance rates in the
range of 0.016–0.034 /h [41–43]. Our estimates in the range
0.063–0.73 /h are higher than those determined from mock
infection experiments. This is likely due to the effect of the
immune response which helps clear virus in the human body
effectively increasing the in vivo clearance rate.

Finally, we determined estimates for the standard devi-
ation in the eclipse duration and the infectious lifespan.
There are not many estimates of these parameters, even for
influenza, since most models assume exponential transitions
between the phases of the cell life cycle. Our estimates of the
standard deviation in infectious lifespan of RSV infected cells
range from 2.2 h to 10 h and our estimates of the standard
deviation of the eclipse duration during RSV infection range
from 4.8 h to 11 h. For influenza, infectious lifespan standard
deviation estimates range between 1.4 h and 9.7 h [12, 30]
and eclipse duration standard deviation estimates range from
0.15 h to 4.6 h [12, 30]. Standard deviation in the duration of
the eclipse phase of RSV infections is typically larger than the
standard deviation in eclipse phase of influenza infections.
Estimates of the standard deviation in infectious lifespans of
both RSV and influenza largely overlap.

3.2. Monte Carlo Simulations for Sensitivity Analysis of the
Parameters. Given the range of estimated parameter values
and the known experimental error in viral titer measure-
ments [23], we need to understand how uncertainty in our
parameter estimates translates into uncertainty in the viral
titer time course. As a demonstrative example, we use a fit
of the viral kinetic model to median values of the viral titers
from the eight patients. The data, model fit, and parameter
estimates are shown in Figure 3.

To begin the Monte Carlo process, we need to assume
probability density functions for each of the parameters. In
this case, we assumed that the parameters follow a Gaussian
distribution. The mean of the Gaussian distribution is set
to be the parameter value determined through fitting of the
median data set. The variance is assumed to be proportional
to the mean value of the distribution, 𝜎2 = 𝑘𝜇, where
𝑘 = 0.01 (with the exception of 𝛽 where this resulted
in excessively large confidence intervals, so 𝑘 was set to
0.001). In order to avoid negative values, we have allowed for
truncated Gaussian distributions for some parameter values.
Monte Carlo simulations are performed independently for
each of the following parameters: production rate𝑝, infection
rate 𝛽, viral clearance rate 𝑐, initial viral load 𝑉

0
, mean

eclipse duration 𝜏
𝐸
, and mean infectious lifespan 𝜏

𝐼
. Monte

Carlo numerical simulations are carried out with 𝑛 = 100
samples for each parameter to obtain a series of viral titer
curves. The 95% confidence intervals are determined and
shown in Figure 4 as solid black lines. We must be careful
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Figure 3: Fit of the viral kinetics model (1) to median RSV in vivo
data.

when interpreting these lines: a 95% confidence interval
does not mean that for a given realized interval calculated
from sample data there is a 95% probability the population
parameter lies within the interval or that there is a 95%
probability that the interval covers the population parameter.
The 95% probability relates to the reliability of the estimation
procedure; that is, 95% of the generated intervals would
contain the true value [44].

Figure 4 clearly shows that our model predictions are
extremely sensitive to changes in 𝛽, the infection rate. Not
only is themodel highly sensitive to changes in𝛽, but changes
in 𝛽 lead to uncertainty throughout the entire viral titer
curve. This is not entirely surprising since 𝛽 characterizes
the first step in the infection cycle, so any deviation in
the early stages of the infection process will be transmitted
through later stages. The only other variable that exhibits
uncertainty larger than the typical experimental error of
viral titer measurements is 𝜏

𝐸
, the mean eclipse duration.

In this case, uncertainty in 𝜏
𝐸
leads to small changes in the

growth phase of the infection and results in larger changes
in the decay phase. Uncertainty in the remaining parameters
leads to changes in model predictions that are undetectable
given the error in viral titer measurements. It is interesting
to note, however, how uncertainty in particular parameter
values manifests itself in the viral titer curve. Uncertainty in
𝑉
0
leads to a temporal shift in the viral titer curve.Uncertainty

in 𝜏
𝐼
and 𝑐 leads to changes primarily in the decay phase of the

infection. Somewhat surprisingly, ourmodel seems to be very
insensitive to changes in the production rate, 𝑝, showing no
changes in the resulting curve as 𝑝 is varied.
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Figure 4:Monte Carlo numerical simulations of the virus kinetic model using the parameter values extracted from the fit to themedian virus
data. The graphs present the mean (dashed blue line) and 95% confidence interval (solid black lines).

4. Discussion and Conclusions

This paper presented the first fits of a viral kinetics model to
in vivo RSV infections.This allowed us to extract viral kinetic
parameters for an in vivo RSV infection.While it is difficult to
judge the accuracy of our parameter estimates since there are

no similar studies for RSV, we can compare RSV parameter
estimates to parameter estimates for influenza. Both diseases
are viral infections of the respiratory tract that most often
cause mild illness but have the potential to cause serious
illness and death. A previous study comparing the two
infections in an in vivo challenge study noted that influenza
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viral load peaked about 3 dpi before RSV and that RSV
appeared to have a longer incubation period. These findings
agree with our quantitative findings of a longer infecting time
and longer eclipse phase duration for RSV than for influenza.
Our study also suggests, however, that the infectious cell
lifespan is shorter for RSV than for influenza, showing that
not all processes take longer for RSV. Some of this decreased
lifespan in RSV could potentially be accounted for by the
actions of cytotoxic T lymphocytes (CTLs). CTLs kill infected
cells, but it takes several days after infection (∼5–8 dpi) for
them to appear in substantial numbers [17, 45]. With the
longer incubation period of RSV, driven by both the longer
infecting time and the longer eclipse duration, there will be
more CTLs available to kill cells when they finally do become
infected, effectively lowering the mean infectious lifetime.
Another possible reason for the shorter infectious lifespan
is the formation of syncytia during RSV [46]. When already
infectious cells fuse with uninfected cells, it is not known
whether the newly formed syncytium will have a different
effective lifespan. The effect of syncytia on the viral time
course is, as yet, unclear and should be investigated further.

This paper also investigated the effect of parameter uncer-
tainty on RSV dynamics. It is important to understand the
limits of the predictive capabilities of mathematical models
since they are more often being used to assess the effect
of vaccines and drug treatment regimens [47]. Our Monte
Carlo simulation method allows us to investigate the effect
uncertainty in each parameter has on the viral time course.
We found that the model was most sensitive to changes in
the infection rate 𝛽 and that changes in 𝛽 are transmitted
through the entire viral time course. This suggests that we
must be particularly careful in trying to extract values for𝛽. It
has been shown that including both infectious viral titer and
RNA measurements will reduce the uncertainty in estimated
parameters for influenza [48] and a similar approach would
certainly work for RSV. Alternatively, experiments could be
designed to directly measure the infection rate [49], likely
reducing uncertainty in the measurement.

While we have used individual fits to patient data to
estimate RSV parameters, other methods may be used to
estimate the parameter values. Mixed effect models are
increasingly used to estimate parameters [50] for infectious
disease models, particularly in cases where data might be
scarce or incomplete. These models have several underlying
assumptions and they are useful when repeated measure-
ments are made on the same statistical units. It is particularly
difficult to use the mixed effect framework on measurements
of viral titer since the viral measurement unit is not standard-
ized, so we cannot assume that similar measurements from
different patients actually represent the same amount of virus.
Also, to the best of our knowledge applying that method to
assess the effect of each parameter on the dynamics of the
variables is not straightforward. On the other hand, Monte
Carlo method has been used widely to assess the effect of
parameter’s uncertainty.

While this paper focused onfitting a particular data set for
RSV, the assessment tools presented here will be widely appli-
cable to other systems of differential equations. The Monte
Carlo assessment of the effect of parameter uncertainty can

guide experimentalists in developing experiments that will
produce more accurate predictive models.
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