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A B S T R A C T   

In this work, variety of complex dynamics are found in a fractional-order antimicrobial resistance 
(AMR) model based on the generalized Gamma function. Firstly, the extended left and right 
Caputo fractional differential operators, respectively, ELCFDO and ERCFDO are introduced. The 
basic features of the ELCFDO are outlined. The ELCFDO is shown to have a new fractional 
parameter that affects the occurrence of the complex dynamics in the fractional AMR system. 
Secondly, discretization of the ELCFDO is studied using piecewise constant arguments. Then, 
complex dynamics of the discretized version of the fractional AMR system involving the ELCFDO 
are investigated such as the existence of Neimark–Sacker (NS) and flip bifurcations, the existence 
of closed invariant curves (CIC), the existence of strange attractors with fractal or multi-fractal 
structures, and chaotic attractors. Finally, an extension of the fractal-fractional operator (FFO) 
that combines fractal and fractional differentiation is carried out based on the generalized Gamma 
function. The extended FFO (EFFO) is applied to the proposed AMR system, which also generates 
similar complex dynamics.   

1. Introduction 

The mathematical modeling provides essential and precise tools to describe and understand the complex behaviors in some real- 
world problems through the simulations of these problems in the form of differential equations that can have ordinary derivatives 
[1–3], partial derivatives [4,5], or fractional derivatives [6,7]. On the other hand, the study of real-world nonlinear problems through 
fractals has become a focal topic for research [8]. 

In fact, the investigations of the mathematical properties of fractional derivatives give rise to the so-called fractional calculus (FC) 
which has received increasing interest by engineers, scientists and economists, who become able to make more realistic descriptions 
and precise analyses for their related real-world problems using the aid of FC [9–17]. The high importance of the FC in mathematical 
modeling is due to its highest adequacy for measuring the natural phenomena. In addition, the biological models that are described in 
terms of FC involve the memory effect, which is considered to be a powerful tool in modeling the epidemiological diseases and viral 
dynamics. For example, Padder et al. studied the generalized tumor model using the Caputo fractional differential operator (CFDO) 
[18]. In Ref. [19], Qureshi and Memon analyzed a model of measles disease using the Caputo-Fabrizio-Caputo derivatives. In Ref. [20], 
Jan et al. investigated a model for the human immunodeficiency virus using the CFDO. 

Indeed, the CFDO is considered to be a vital tool for modeling many scientific and engineering phenomena because its related initial 
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values can easily be determined [21]. Consequently, the CFDO is widely used in real-world applications. Obviously, the fractional 
operator has one order represented by the. 

fractional order (parameter). On the other hand, the concept of fractal-fractional operators (FFOs) has been introduced in Ref. [22]. 
The FFO is shown to have two orders; the fractal dimension in addition to the fractional parameter. Hence, the FFO can better explain 
the hereditary properties and memory effects of some ecological, financial and physical models. One of the most familiar FFOs is the 
Atangana-Baleanu FFO in the Caputo sense (FFO-ABC), which consists of a Mittag-Leffler function. Another famous type of the FFOs 
has a power law-type kernel and is known as the fractal-fractional operator in the Caputo sense (FFO–C). 

The discovery of the Gamma function dates back to the 18th century. It is considered to be one of the most interesting special 
functions, which has useful applications in statistics, physics and engineering. A generalization (or an extension) of the gamma 
function was introduced in Ref. [23] that has promising applications to interdisciplinary fields, such as, mathematical physics, 
mathematical modeling, engineering and analytical number theory. Actually, both the CFDO and FFO-C depend on the Euler Gamma 
function. So, inserting the extended Gamma function in these fractional operators will lead to demonstrating a variety of rich 
dynamical behaviors in the mathematical model. In addition, the extended operators will provide higher adequacy and better esti
mation of the natural phenomena. 

Recently, the recurrence of some diseases which were thought to have disappeared has been discovered. Antimicrobial resistance 
and multi-drug resistance are considered to be among the possible reasons for such observations. In Ref. [24], Ahmed and Matouk 
introduced a simple antimicrobial resistance model, or simply the AMR model, that can be used to describe the competition between 
susceptible and resistant species. The dynamics of the fractional AMR system on complex networks have also been discussed in 
Ref. [24], where the classic CFDO was used. 

Here, we intend to investigate the complex dynamics of the AMR system involving the ELCFDO and the extended FFO-C (EFFO-C). 
To summarize the advantages of the AMR model based on the generalized Gamma function, we first draw attention to the fact that the 
new fractional operators have more degrees of freedom than the classic fractional ones, which enable the AMR system to display more 
complex dynamics compared with other AMR models involving the classic operators. In addition, the motivations of this work are 
clearly provided by comparing the results obtained via the new fractional operators with the results obtained via the classic fractional 
operators. The outcome of this comparison confirms that the proposed new fractional operators are better candidates to handle the 
complex dynamics in the AMR models. Then, we study the discretization of the ELCFDO with piecewise constant arguments in the AMR 
model since the transmitted data on diseases are typically discrete. Furthermore, the discrete AMR model enables us to obtain rich 
complex behaviors in contrast to its continuous-time form. Moreover, the discrete AMR model enables us to obtain its solutions in 
terms of a finite representation of elementary functions, unlike its continuous-time counterpart which often has unknown precise 
analytical solutions. The discrete-time AMR system is shown to exhibit NS and flip bifurcations, CIC, chaotic attractors and coexistence 
of multi-strange attractors. 

The structure of the rest of this work is outlined as follows; In Section 2, the ELCFDO and ERCFDO are introduced based on the 
generalized Gamma function. The related fractional integrals are also presented. The mathematical analyses of the new derivatives are 
clearly derived and rigorously proved in this Section. Furthermore, the FFO-C is modified based on the generalized Gamma function. In 
Section 3, the mathematical equations of the AMR model are presented in integer- and fractional-order forms. In addition, the dis
cretization of the AMR system involving the ELCFDO are studied using piecewise constant arguments. Complex dynamics in the AMR 
system involving the ELCFDO are investigated in Section 4. The rich complex dynamical behaviors of the fore mentioned discretized 
AMR system are illustrated in Section 5. The complex dynamics of the AMR system involving the EFFO-C are investigated in Section 6. 
In Section 7, the concluding statements and the discussion points about this work are summarized. 

2. Fundamental concepts of fractional calculus 

The ELCFDO is described by Eq. (1) 

E
CΟq,η

a+ϖ(t)= E
RLІl− q,η

a+
dlϖ(t)

dtl , q > 0, (1)  

where l = ⌈q⌉ and 
E
RLІξ,η

a+φ(t) = [

∫t

a

(t − x)ξ− 1φ(x)dx]/ΓExt.(ξ, η), ξ > 0, t > a, represents the ξ th-order extended left Riemann-Liouville 

(ELRL) fractional integral, and ΓExt.(.) is the generalized Gamma function defined by 

ΓExt.(ξ, η)=
∫+∞

0

yξ− 1

eηy dy, ξ, η > 0.

Notations: The superscript “T” represents the transpose of the matrix. By the abbreviation ‘IVP’, we mean the initial value problem. 
By N, Z+,R,C, we refer to the sets of all natural numbers, positive integers, real numbers and complex numbers, respectively. The 
number j is 

̅̅̅̅̅̅̅
− 1

√
. The number e is the Euler’s number. The notation “Re” refers to the real part of the number. L1([a, b]) (for simplicity 

L1) is the set of Lebesgue integrable functions on [a, b]. The set of all continuous functions on [a, b], a, b ∈ R is represented by C([a,b]). 
The set of all absolutely continuous functions on [a, b] is represented by AC([a,b]). The set of m− times differentiable functions such that 
the m-th derivatives are continuous on [a, b] is represented by Cm([a,b]). Γ(.) is the Euler Gamma function. В(., .) is the Beta function. 
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The operation 〈., .〉 refers to the standard scalar product in Rn. The Euclidean norm is denoted by ‖.‖. The floor function is denoted by [.]. 
By ceil(q), we mean the ceiling function of q, or simply ⌈q⌉.. 

Now, the classic CFDO is presented as (See Eq. (2)) 

CΟq
a+ϖ(t)= ηq− l E

CΟq,η
a+ϖ(t). (2) 

So, the classic left Riemann-Liouville (LRL) integral is defined by Eq. (3) 

RLІξ
a+φ(t)=

1
ηξ

E
RLІξ,η

a+φ(t). (3) 

The LRL integral satisfies the following theorem [25] and lemma [26]. 
Theorem 1. Suppose that ϖ(t) ∈ L1 and φ(t) ∈ L1. Then, the LRL operator satisfies the interpolation, the linearity and the 

commutative prosperities. i.e.  

(i) lim
ξ→lRLІξ

0+ϖ(t) = RLІl
0+ϖ(t), l ∈ N, where the LRL integral is the classical operator for l− fold integration; 

RLІξ
0+[k1ϖ(t)+ k2φ(t)]= k1RLІξ

0+ϖ(t)+ k2RLІξ
0+φ(t),∀k1, k2 ∈ C; (4)    

(iii) (RLІξ1
0+)(RLІξ2

0+ϖ) (t) = (RLІξ2 ,η
0+ ) (RLІξ1

0+ϖ) (t), where ξi ∈ {0} ∪ R+, i = 1, 2..  

Lemma 1. If ξ ∈ (0,1) and ϖ ∈ C[0, b] then the LRL integral RLІξ
0+ϖ(t)

⃒
⃒
⃒
t=0 

vanishes. 

The ξ th-order extended right Riemann-Liouville (ERRL) fractional integral is 

E
RLІξ,η

b− φ(t)=

⎡

⎣
∫b

t

(x − t)ξ− 1φ(x)dx

⎤

⎦

/

ΓExt.(ξ, η), ξ > 0, t< b.

Hence, the ERCFDO is given by. 
E
CΟq,η

b− ϖ(t) =
E
RLІl− q,η

b−

(

− d
dt

)l
ϖ(t),q > 0, l = ceil(q). 

Furthermore, the ELCFDO and ERCFDO satisfy the following properties. 

Lemma 2. (i) Let c ∕= 0 be a constant real number then E
CΟq,η

a+c =
E
CΟq,η

b− c = 0..  
(ii) Let ϖ(t) ∈ AC([a, b]) and q ∈ (0, 1), then lim

q→1

E
CΟq,η

a+ϖ(t) =
dϖ(t)

dt .. 

Proof. To prove part (i), we firstly rewrite the ELCFDO as follows 

E
CΟq,η

a+ϖ(t)=
1

ΓExt.(l − q, η)

∫t

a

(t − x)l− q− 1ϖ(l)(x)dx.

where the l− th derivative ϖ(l)(x) = 0. So, the ELCFDO is integrated as 

E
CΟq,η

a+ϖ(t)=
− 1

ΓExt.(l − q, η)

[
(t − x)l− q

l − q

]t

a

ϖ(l)(x)=
1

ΓExt.(l − q, η)

(
(t − a)l− q

l − q

)

(0)= 0.

Similarly, we can prove that E
CΟq,η

b− c = 0.. 
To prove part (ii), we use integration by parts as follows 

E
CΟq,η

a+ϖ(t)=
1

ΓExt.(1 − q, η)

∫t

a

(t − x)− qϖ(1)(x)dx

=
1

ΓExt.(1 − q, η)

⎛

⎝ − ϖ(1)(x)
(t − x)1− q

1 − q

⃒
⃒
⃒
⃒
⃒

t

a

+

∫t

a

ϖ(2)(x)
(t − x)1− q

1 − q
dx

⎞

⎠

=
η1− q

Γ(2 − q)

⎛

⎝ϖ(1)(a)(t − a)1− q
+

∫t

a

ϖ(2)(x)(t − x)1− qdx

⎞

⎠.

Thus, lim
q→1

E
CΟq,η

a+ϖ(t) = (ϖ(1)(a)+ϖ(1)(x)
⃒
⃒t
a) =

dϖ(t)
dt . □ 
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The following lemmas hold for the ELRL fractional integral. 

Lemma 3.
E
RLІ1,η

a+ ϖ(t) = η
∫t

a

ϖ(x)dx.

Proof. 
E
RLІ1,η

a+ ϖ(t) = [

∫t

a

ϖ(x)dx]/ΓExt.(1,η) = η
∫t

a

ϖ(x)dx.. 

Lemma 4. The semi-group property is satisfied. i.e. If ϖ(t) ∈ L1, then 

(
E
RLІξ1 ,η

0+

)(
E
RLІξ2 ,η

0+ ϖ
)
(t)=

(
E
RLІξ1+ξ2 ,η

0+ ϖ
)
(t).

Proof. 

(
E
RLІξ1 ,η

0+

)(
E
RLІξ2 ,η

0+ ϖ
)
(t)=

1
ΓExt.(ξ1, η)

∫t

0

(t − x)ξ1 − 1
(

E
RLІξ2 ,η

0+ ϖ
)
(x)dx.

=
1

ΓExt.(ξ1, η)ΓExt.(ξ2, η)

∫t

0

∫x

0

(t − x)ξ1 − 1
(x − y)ξ2 − 1ϖ(y)dydx

=
1

ΓExt.(ξ1, η)ΓExt.(ξ2, η)

∫t

0

ϖ(y)

⎛

⎜
⎝

∫t

y

(t − x)ξ1 − 1
(x − y)ξ2 − 1dx

⎞

⎟
⎠ dy.

Then, we use the change of variables x = y + (t − y)τ, which yields 

(
E
RLІξ1 ,η

0+

)(
E
RLІξ2 ,η

0+ ϖ
)
(t)=

ηξ1+ξ2

Γ(ξ1)Γ(ξ2)

∫t

0

(t − y)ξ1+ξ2 − 1ϖ(y)В(ξ2, ξ1)dy,

where 

В(ξ2, ξ1)=

∫1

0

(1 − τ)ξ1 − 1τξ2 − 1dτ=Γ(ξ1)Γ(ξ2)

Γ(ξ1 + ξ2)
.

hence, 

(E
RLІξ1 ,η

0+

)(E
RLІξ2 ,η

0+ ϖ
)
(t) =

ηξ1+ξ2

Γ(ξ1 + ξ2)

∫t

0

(t − y)ξ1+ξ2 − 1ϖ(y)dy

=
1

ΓExt.(ξ1 + ξ2, η)

∫t

0

(t − y)ξ1+ξ2 − 1ϖ(y)dy=
(E

RLІξ1+ξ2 ,η
0+ ϖ

)
(t).

□ 

Lemma 5. lim
ξ→l

E
RLІξ,η

0+ϖ(t) =
E
RLІl,η

0+ϖ(t) uniformly on [0,b], l ∈ N.

proof. According to part (i) of Theorem 1 and Eq. (3), the proof is straightforwardly obtained. □ 

Lemma 6. The ELRL fractional integral is a linear operator. 
proof. Multiplying both sides of Eq. (4) by ηξ, where η > 0, the proof is directly obtained. □ 

Lemma 7. (
E
RLІξ1 ,η

0+ )(
E
RLІξ2 ,η

0+ ϖ)(t) = (
E
RLІξ2 ,η

0+ )(
E
RLІξ1 ,η

0+ ϖ)(t), where ξi, i = 1,2 are non-negative reals. 

Proof. According to Eq. (3) and the linearity property of the LRL operator, we get 
(

E
RLІξ1 ,η

0+

)(
E
RLІξ2 ,η

0+ ϖ
)
(t)=

(
ηξ1

RLІξ1
0+

)(
ηξ2

RLІξ2
0+ϖ

)
(t)= ηξ1+ξ2

(

RLІξ1
0+

)(

RLІξ2
0+ϖ

)
(t).

then, according to the commutative property of the LRL operator, the last relation is reduced to 
(

E
RLІξ1 ,η

0+

)(
E
RLІξ2 ,η

0+ ϖ
)
(t)= ηξ1+ξ2

(

RLІξ2
0+

)(

RLІξ1
0+ϖ

)
(t).

Again using the linearity property, we get 
(

E
RLІξ1 ,η

0+

)(
E
RLІξ2 ,η

0+ ϖ
)
(t)=

(
ηξ2

RLІξ2
0+

)(
ηξ1

RLІξ1
0+ϖ

)
(t).

Then, using Eq. (3), the proof is completed. □ 
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Lemma 8.
E
RLІξ,η

0+tε = ΓExt.(ε+1,η)
ΓExt.(ε+ξ+1,η)t

ξ+ε for ε+ 1 > 0.

Proof. The LHS is written as 

E
RLІξ,η

0+tε =

⎡

⎣
∫t

0

(t − x)ξ− 1xεdx

⎤

⎦

/

ΓExt.(ξ, η).

Let y = x/t, ε + 1 > 0, then 

E
RLІξ,η

0+tε = tξ+ε

⎡

⎣
∫1

0

(1 − y)ξ− 1yεdy

⎤

⎦

/

ΓExt.(ξ, η)=
tξ+ε

ΓExt.(ξ, η)
В(ε+ 1, ξ)=

Γ(ε + 1)Γ(ξ)
ΓExt.(ξ, η)Γ(ε + ξ + 1)

tξ+ε.

Now, since Γ(ξ) = ηξΓExt.(ξ, η), we obtain 
E
RLІξ,η

0+tε = [η1+εΓExt.(ε+1,η)][ηξΓExt.(ξ,η)]
ΓExt.(ξ,η)[ηε+ξ+1ΓExt.(ε+ξ+1,η)t

ξ+ε = ΓExt.(ε+1,η)
ΓExt.(ε+ξ+1,η)t

ξ+ε. □ 

Lemma 9. Let ξ ∈ (0, 1); if ϖ ∈ C[0, b] then the quantity 
E
RLІξ,η

0+ϖ(t)
⃒
⃒
⃒
t=0 

vanishes. 

Proof. According to Eq. (3), we obtain 

E
RLІξ,η

0+ϖ(t)
⃒
⃒
⃒

t=0
= ηξ

RLІξ
0+ϖ(t)

⃒
⃒
⃒

t=0
,

where η > 0. Then, based on Lemma 1, the quantity in the RHS is vanished. □ 

Lemma 10.
E
RLІξ,η

a+ϖ(t) = c
ξΓExt.(ξ,η)(t − a)ξ

, whenever ϖ(t) = c is a constant function. 

Proof. Let ϖ(t) = c be a constant function, then based on the definition of the ELRL fractional integral, we get 

E
RLІξ,η

a+c=
c

ΓExt.(ξ, η)

∫t

a

(t − x)ξ− 1dx=
− c

ξΓExt.(ξ, η)

[
(t − x)ξ

]t

a
=

− c
ξΓExt.(ξ, η)

[
0 − (t − a)ξ

]

=
c

ξΓExt.(ξ, η)
(t − a)ξ

.

on the other hand, the EFFO-C is defined as 

EFF
C Οq,p,η

0,t (ϖ(t))=
1

ΓExt.(l − q, η)
d

dtp

∫t

0

ϖ(x)dx
(t − x)1+q− l, (5)  

where p > 0 represents the fractal-fractional parameter, q > 0 represents the order of the fractional derivative such that q, p ∈

(l − 1, l), l ∈ N and dϖ(t)
dtp = limx→t

ϖ(x)− ϖ(t)
xp − tp .. 

Obviously, both the ELCFDO and the ERCFDO have the memory effect and hereditary features that can be very suitable for 
modeling biological systems. In addition, the new extended fractional operators include all the dynamics of their classic fractional 
counterparts since they have higher degrees of freedom (such as the positive parameter η), which make them better candidates to 
handle the complex dynamics in biological models. 

3. The biological system 

The AMR system [20] is defined by Eq. (6) as follows: 

dU
dt

= α′U(1 − U) − UV,

dV
dt

= β′UV − γ′V,

(6)  

where U and V represent susceptible species and resistant species, respectively. The model’s positive parameters are mentioned in the 
parameter set А′ = {α′, β′, γ′} and they have dimensions of 1/time. The system’s equilibrium points are Р0 = (0,0), Р1 = (1, 0) and Р′

2 =

(γ′/β′,α′(β′ − γ′) /β′) provided that β′ > γ′.. 
The fractional form of the AMR system (6) can be written in terms of the ELCFDO, as defined by Eq. (7), as follows 

E
CΟq,η

0+u(t) = αu(1 − u) − uv,
E
CΟq,η

0+v(t) = βuv − γv,
(7) 
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in which the new state variables are redefined as u = U(q), v = V(q) that, respectively, refer to portion of susceptible species and 
resistant species. The initial conditions (ICs) of the AMR system (7) are described as 

u(0)= u0 and v(0) = v0.

Then, we define the new positive parameters α0, β0 and γ0, whose dimensions are of 1/time. Thus, the new parameters of system (7) are 
defined as 

α = αq
0, β = βq

0 and γ = γq
0,in which the dimensions are of 1/(time)q

. Thus, system (7) has the parameter set А = {α, β, γ}. The 
advantages of using the ELCFDO for the AMR model are summarized as; Firstly, the ELCFDO generalizes the classic Caputo operators 
that are widely used in real-world problems, and therefore the ELCFDO is more convenient for modeling real-world phenomena. 
Secondly, the hereditary features, memory effects, and higher degree of freedom that are captured by the ELCFDO enable the re
searchers to have a more precise description of the model’s dynamical behaviors. 

Then, we will apply a discretization method to system (7) with piecewise constant arguments in which the system is rewritten in Eq. 
(8) as 

E
CΟq,η

0+u(t) = αu([λ]m)(1 − u([λ]m)) − u([λ]m)v([λ]m)),

E
CΟq,η

0+v(t) = βu([λ]m)v([λ]m) − γv([λ]m).
(8)  

where λ = t/m and m > 0 represents the discretization parameter. Firstly, when t ∈ [0,m), it follows that 0 ≤ λ < 1 which implies that 
E
CΟq,η

0+u(t) = αu0(1 − u0) − u0v0,

E
CΟq,η

0+v(t) = βu0v0 − γv0.
(9) 

System (9) has the solution given by Eq. (10) as follows 

u1(t) = u0 +
E
RLІq,η

0+(αu0(1 − u0) − u0v0) = u0 +
tq

qΓExt.(q, η)
(αu0(1 − u0) − u0v0),

v1(t) = v0 +
E
RLІq,η

0+(βu0v0 − γv0) = v0 +
tq

qΓExt.(q, η) (βu0v0 − γv0).

(10)  

Secondly, we assume that t ∈ [m,2m), which implies that 1 ≤ λ < 2. So, we obtain system (11) 
E
CΟq,η

0+u(t) = αu1(1 − u1) − u1v1,

E
CΟq,η

0+v(t) = βu1v1 − γv1,
(11)  

which has the following solution 

u2(t) = u1(m) +
E
RLІq,η

m+(αu1(m)(1 − u1(m)) − u1(m)v1(m)) = u1(m) +
(t − m)

q

qΓExt.(q, η) (αu1(m)(1 − u1(m)) − u1(m)v1(m)),

v2(t) = v1(m) +
E
RLІq,η

m+(βu1(m)v1(m) − γv1(m)) = v1(m) +
(t − m)

q

qΓExt.(q, η) (βu1(m)v1(m) − γv1(m)).

After n times, we obtain system (12) 

un+1(t) = un(nm) +
(t − nm)

q

qΓExt.(q, η) (αun(nm)(1 − un(nm)) − un(nm)vn(nm)),

vn+1(t) = vn(nm) +
(t − nm)

q

qΓExt.(q, η)
(βun(nm)vn(nm) − γvn(nm)),

(12)  

where t ∈ [nm, (n+1)m). For t→(n+1)m, system (12) can be formulated in terms of equation (13) as follows 

un+1 = un + μ(q,m, η)[αun(1 − un) − unvn],

vn+1 = vn + μ(q,m, η)[βunvn − γvn],
(13)  

where μ(q,m, η) = mq

qΓExt.(q,η) . The last system has the equilibrium solutions Р0,Р1 and Р2 = (γ /β,α(β − γ) /β). 

4. Complex dynamics in the AMR system (7) 

4.1. New PECE scheme for the numerical simulations of system (7) 

To explain our numerical method which is based on the well-known PECE scheme [27], we introduce the following IVP 
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{ E
CΟq,η

a+ϖ(t) = w(t,ϖ(t)), t ∈ [a, T],

ϖ(r)(a) = ϖ(r)
0 , r = 0, 1, ..., l − 1,

(14)  

where l = ceil(q), q > 0, η > 0, a ≥ 0 and ϖ ∈ Cm([a,T]). Based on Ref. [28] and the definition of the ELRL integral, we find that the IVP 
(14) is equivalent to the following relation 

ϖ(t)=
∑l− 1

r=0

tr

r!
ϖ(r)

0 +
1

ΓExt.(q, η)

∫t

a

(t − y)q− 1ϖ(y,ϖ(y))dy (15)  

provided that the function w is continuous. Setting ε = T/L, L ∈ Z+,ϖk = kε, k = 0,1, ..., L, the solution of Eq. (15) is approximated, as 
given by Eq. (16), as follows 

ϖε(tk+1)=
∑l− 1

r=0

tr
k+1

r!
ϖ(r)

0 +
εq

η2ΓExt.(2 + q, η)
[
w
(
tk+1,ϖР

ε (tk+1)
)]

+
∑k

i=0
vi,k+1w(ti,ϖε(ti)), (16)  

where ϖР(tk+1) refers to the prediction value and 

υi,k+1 =

⎧
⎪⎨

⎪⎩

k1+q − (1 + k)q
(k − q),

(k − i + 2)1+q
+ (k − i)1+q

− 2(k − i + 1)1+q
, 1 ≤ i ≤ k,

1, i = k + 1,
(17)  

ϖР
ε (tk+1)=

∑l− 1

r=0

tr
k+1

r!
ϖ(r)

0 +
1

ηΓExt.(1 + q, η)
∑k

i=0
χi,k+1w(ti,ϖε(ti)), χi,k+1 = εq[(k + 1 − i)q

− (k − i)q
].

Fig. 1. The phase portraits of the AMR system (7) using the set А = {0.5,100,0.2}, q = 0.99 and (a) η = 1, (b) η = 3, (c) η = 10 and (d) η = 15..  
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The error of the modified scheme can be estimated via formula (18) that can be represented as 

maxi=0,1,...,L|ϖ(ti) − ϖε(ti)| =O(ερ), (18)  

in which ρ = min(1 + q,2).. 

4.2. Numerical results 

System (7) is numerically integrated based on the above-mentioned PECE scheme, in which we use the step size of 0.01, the ICs 
u0 = 0.0002, v0 = 0.0002, the parameter set А = {0.5, 100, 0.2} and varying the fractional parameters q and η. The numerical results, 
which are summarized in Fig. 1(a–d) and Fig. 2(a–d), show that the new fractional parameter η enables system (7) to exhibit various 
dynamical behaviors. 

5. Complex dynamics in the discrete-time AMR system (13) 

To check the existence of NS bifurcation in system (13) near the coexistence point Р2, we use the parameter values α = 2, γ = 0.3,
μ(0.85, 0.01, 5) ≈ 0.0829 and the critical parameter βc ≈ 12.3667. A limit cycle around the coexistence point Р2 is illustrated in Fig. 3. 
The stability conditions of the NS bifurcation can be investigated as follows; we begin with considering a general form of system (13), 
with the bifurcation parameter p, as described by Eq. (19) 

Υn+1 = f p(Υn). (19) 

The coexistence point Р2 ∕= (0, 0), so with setting (Λ,p′) = (Υ − Р2,p − pc), we use the following transformation (20) as follows 

Λn+1 = J
(

(0, 0), p′)Λn + 0.5М(Λn,Λn)+
N(Λn,Λn,Λn)

6
+O

(
‖Λn‖

4)
, (20)  

Fig. 2. The phase portraits of the AMR system (7) using the set А = {0.5, 100,0.2}, q = 0.9999 and (a) η = 1, (b) η = 3, (c) η = 10 and (d) η = 15..  
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Мi(ρ, σ)=
∑n

s,k=1

∂2Λi(ε)
∂εs∂εk

⃒
⃒
⃒
⃒
⃒

ε=0

ρjσk,Ni(ρ, σ, ς)=
∑n

s,k,m=1

∂3Λi(ε)
∂εs∂εk∂εm

⃒
⃒
⃒
⃒
⃒

ε=0

ρjσkςm, i= 1, 2.

in addition, we obtain the following Jacobian defined by Eq. (21) 

J(0, 0)=

(
0.9959792253 − 0.002010387578
1.999999794 1

)

, (21)  

whose eigenvalues are given by e±jωc . The stability of the NS bifurcation can be checked by calculating the following quantity [29] that 
is defined by Eq. (22) 

l1(0)= 0.5
[

Re
(
δ21e− jωc

)
− Re

(

δ20δ11
e− 2jωc − 2e− jωc

1 − ejωc

)

− |δ11|
2
− 0.5|δ02|

2
]

, (22)  

where 

δ20 = 〈θ,М(ρ, ρ)〉, δ11 = 〈θ,М(ρ, ρ)〉, δ02 = 〈θ,М(ρ, ρ)〉,

δ21 = 〈θ,N(ρ, ρ, ρ)〉 + 2〈θ,М
(
ρ, (diag(1, 1) − J)− 1М(ρ, ρ)

)
〉 + 〈θ,М

(
ρ,
(
e2jωc diag(1, 1) − J

)− 1М(ρ, ρ)
)

〉 −
2 − e− jωc

1 − ejωc
δ20δ11   

−
2

1 − e− jωc
|δ11|

2
−

ejωc

e3jωc − 1
|δ02|

2
,

in which the vectors θ and ρ must satisfy the relations (23) 

J(p′)ρ= ejωc ρ, J(p′)ρ= e− jωc ρ, JT(p′)θ= e− jωc θ, JT(p′)θ= ejωc θ, 〈θ, ρ〉= 1. (23)  

So, the numerical values of θ and ρ are obtained via equation (24) as follows 

ρ = (− 0.03168885416 − 0.001005193804j, j)T
,

θ = ( − 11.09733262 + 2.236120619j, − 0.08201507022 + 0.6505859797j)T
.

(24) 

Moreover, we obtain the matrices defined by equation (25) as follows 

М(ρ, σ)=
(
− μ(2αρ1σ1 + ρ1σ2 + ρ2σ1)

μβ(ρ1σ2 + ρ2σ1)

)

,N(ρ, σ, ς)=
(

0
0

)

, (25) 

The following quantities defined in Eq. (26) are straightforwardly obtained 

δ20 = − 0.02518999422 − 0.05294915055j,
δ11 = 0.002017868406 + 0.001712999489j,
δ02 = 0.03593048476 + 0.05250057217j,
δ21 = − 0.00479011521 − 0.01082334344j,

(26)  

which imply that l1(0) = − 0.00255 < 0. Hence, the NS bifurcation around the coexistence point Р2 is stable. 

Fig. 3. The appearance of a stable limit cycle in system (13) when α = 2, β = 12.37, γ = 0.3 and μ ≈ 0.0829.  
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Then, we study the conditions of flip bifurcation in system (13). It is clear that the axial equilibrium point Р1 exhibits flip bifur
cation when β = 0.5, γ = 1, μ(0.8, 0.01, 10) = 0.1701654293 and αc = 11.75326862.. 

To discuss the stability of flip bifurcation, we firstly use the matrices defined in Eq. (20) using the critical value αc and 

ρ = (1, 0)T
,

θ = (1, 0.4319)T
.

(27) 

The stability of the flip bifurcation can be checked by calculating the following quantity [29], which is defined by Eq. (28) 

Ω(0)= 〈θ,N(ρ, ρ, ρ)〉
6

−
〈θ,M

(
ρ, (J − diag(1, 1))− 1М(ρ, ρ)

)
〉

2
. (28) 

Here, it is found that (See Eq. (29)) 

M
(
ρ, (J − diag(1, 1))− 1М(ρ, ρ)

)
= − 2

(
α2μ2, 0

)T
, (29)  

which implies that Ω(0) = α2μ2 > 0. Hence, the bifurcating period 2 orbits around the axial equilibrium point Р1 are stable. Fig. 4 gives 
the bifurcation diagram that illustrates this interesting bifurcation phenomenon. 

Finally, rich complex dynamics in system (13) are observed when the ICs are selected as u0 = 1.01, v0 = 0.01, and the parameters 
are fixed at β = 3.2, γ = 1, q = 0.1,m = 0.01, η = 2/3 and varying α. The results are illustrated in Fig. 5(a–e), in which the CIC, the 
strange attractors with fractal or multi-fractal structures, the coexistence of multi-strange attractors, and the existence of chaotic 
attractors are shown. 

6. Complex dynamics in the AMR system using the EFFO-C 

Here, we will discuss the complex dynamics in the AMR system using the EFFO-C, which is given by equation (5). The resulting 
system is described as 

EFF
C Οq,p,η

0,t (u(t))=αu(1 − u) − uv,
EFF
C Οq,p,η

0,t (v(t))= βuv − γv.
(30) 

The results of numerical integration for system (30) are depicted in Fig. 6(a–d) and Fig. 7(a–d). 
Obviously, the results illustrated by Figs. 6 and 7 are similar to the results illustrated by Figs. 1 and 2, respectively. Hence, modeling 

the complex dynamics in this system can adequately be estimated using these types of equivalent fractional operators. Moreover, the 
extended fractal-fractional operator is a better candidate to display more complex dynamics since it has a higher degree of freedom. 

7. Conclusion 

The ELCFDO and ERCFDO have been introduced. Some basic features of the new fractional differential operators and the new 
fractional integrals have been presented in the form of new mathematical lemmas in order to provide detailed and rigorous theoretical 
derivations that can support the application of the generalized Gamma function to the extended fractional operators. All the new 
lemmas have been proven. 

The fractional AMR model has been investigated using the ELCFDO. The relevance between the fractional operators and the AMR 

Fig. 4. A bifurcation diagram of system (13), showing flip bifurcation when β = 0.5, γ = 1, μ = 0.1701654293 and varying α..  
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Fig. 5. The phase portraits of system (13) using β = 3.2, γ = 1, q = 0.1,m = 0.01, η = 2/3 showing: (a) CIC for α = 3, (b) continuous merging of 
strange attractors for α = 3.6, (c) a merged chaotic attractor for α = 4.1, (d) coexistence of multi-strange attractors for α = 4.5, and (e) a chaotic 
attractor for α = 5.. 
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model has also been discussed to enhance the credibility and validity of such a model. To numerically integrate the proposed fractional 
system using the ELCFDO, a modification to the PECE algorithm has been explained. It has been found that the new parameter of the 
ELCFDO enables the AMR system to exhibit a variety of complex dynamics. Furthermore, the discretization of the ELCFDO has been 
obtained using piecewise constant arguments. Then, a variety of complex dynamics in the discrete-time version of the fractional AMR 
system involving the ELCFDO have been obtained such as the existence of the NS bifurcation and the period-doubling bifurcation, the 
existence of CIC, the existence of strange attractors with fractal or multi-fractal structures, and chaotic attractors. 

On the other hand, the EFFO-C has been introduced based on the generalized Gamma function. Then, the EFFO-C is also applied to 
the AMR system, which displays complex dynamics that are similar to those in the case of the corresponding ELCFDO. Thus, the two 
new extended fractional operators display similar dynamic phenomena when applied in this system with a specific choice of parameter 
values. In addition, the EFFO-C has a higher degree of freedom that makes the system able to display more complex dynamics. 

Throughout this work, many comparisons have been carried out between the results obtained using the generalized Gamma 
function and other established numerical methods for solving fractional-order systems. The results of such comparisons assert that the 
proposed new fractional operators are better candidates to handle the complex dynamics of the AMR model. 

This work can be extended in future studies to investigate the higher dimensional AMR systems involving the ELCFDO or the 
ERCFDO. In addition, this kind of study provides higher adequacy and a better understanding of the model’s complex dynamics, which 
can help to estimate and predict the spread of diseases that appear due to antimicrobial-resisting bacteria. Furthermore, all the 
proposed operators can be applied to many systems arising from different disciplines in order to obtain a more precise description of 
the models’ natural phenomena. 

Fig. 6. The phase portraits of the AMR system (30) using the set А = {0.5, 100, 0.2}, q = 0.99, p = 0.99 and (a) η = 1, (b) η = 3, (c) η = 10 and (d) 
η = 15.. 
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