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Abstract

Motivation: High-resolution Hi-C data are indispensable for the studies of three-dimensional (3D)

genome organization at kilobase level. However, generating high-resolution Hi-C data (e.g. 5 kb) by

conducting Hi-C experiments needs millions of mammalian cells, which may eventually generate

billions of paired-end reads with a high sequencing cost. Therefore, it will be important and helpful

if we can enhance the resolutions of Hi-C data by computational methods.

Results: We developed a new computational method named HiCNN that used a 54-layer very deep

convolutional neural network to enhance the resolutions of Hi-C data. The network contains both

global and local residual learning with multiple speedup techniques included resulting in fast

convergence. We used mean squared errors and Pearson’s correlation coefficients between real

high-resolution and computationally predicted high-resolution Hi-C data to evaluate the method.

The evaluation results show that HiCNN consistently outperforms HiCPlus, the only existing tool in

the literature, when training and testing data are extracted from the same cell type (i.e. GM12878)

and from two different cell types in the same or different species (i.e. GM12878 as training with

K562 as testing, and GM12878 as training with CH12-LX as testing). We further found that the

HiCNN-enhanced high-resolution Hi-C data are more consistent with real experimental high-

resolution Hi-C data than HiCPlus-enhanced data in terms of indicating statistically significant inter-

actions. Moreover, HiCNN can efficiently enhance low-resolution Hi-C data, which eventually helps

recover two chromatin loops that were confirmed by 3D-FISH.

Availability and implementation: HiCNN is freely available at http://dna.cs.miami.edu/HiCNN/.

Contact: zheng.wang@miami.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Hi-C technique (Lieberman-Aiden et al., 2009) was developed

to indicate three-dimensional (3D) conformation of the genome.

Compared with previous chromosome conformation capture techni-

ques, including 3C (Dekker et al., 2002), 4C (Zhao et al., 2006) and

5C (Dostie et al., 2006), the main advantage of Hi-C method is that

it can capture potential contacts across the entire genome

(Lieberman-Aiden et al., 2009), which provides an opportunity to

reconstruct the 3D structures of the whole genome (Hu et al., 2013;

Varoquaux et al., 2014). Hi-C data have also been applied to the

areas of predicting DNA methylation (Wang et al., 2016) and

exploring the relationship between Xist lncRNA and 3D genome

architecture (Engreitz et al., 2013). By systematically analyzing Hi-

C data, researchers have found significant conformational character-

istics of the genome including: open and close compartments

(Lieberman-Aiden et al., 2009) and their successors six subcompart-

ments (Rao et al., 2014), topologically associating domains (TADs)

(Dixon et al., 2012), and Hi-C peaks that indicate chromatin loops

(Rao et al., 2014). Low-resolution Hi-C data (e.g. 1 Mb and 500 kb)
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consist of blurred boundaries of TADs and Hi-C peaks, which

makes it difficult to accurately identify the locations of TADs and

peaks. Recently, experimental high-resolution Hi-C data are avail-

able, such as at 40 kb (Dixon et al., 2012), 10 kb (Rao et al., 2014)

and 1 kb (Bonev et al., 2017) resolutions, which makes the identifi-

cations of TADs and Hi-C peaks more efficient and accurate. It is

apparent that high-resolution Hi-C data are progressively in demand

for researchers when they try to explore the complex 3D structures

of chromosomes at kilobase resolution.

The publicly available high-resolution Hi-C data are mostly gen-

erated from time-consuming Hi-C experiments (Rao et al., 2014),

which needs millions of mammalian cells and with a large amount

of sequencing cost involved. Therefore, it will be more efficient and

economical if we can develop computational methods to enhance

the resolutions of Hi-C data. Since the high-resolution Hi-C contact

matrices include repeatable patterns (Dixon et al., 2012; Rao et al.,

2014), it is feasible to let machine learning algorithms to learn from

these patterns and then use the learned models to reveal the patterns

that are unobvious in the low-resolution Hi-C data. Zhang et al.

(Zhang et al., 2018) developed the state-of-the-art computational

method named HiCPlus to enhance the resolutions of Hi-C data,

which uses a three-layer convolutional neural network (ConvNet) to

learn the mapping between low-resolution and high-resolution Hi-C

contact matrices. They first proved that the entries in the Hi-C con-

tact matrices can be reliably predicted from their n�n surrounding

matrices and found that when n equals 13 the accuracy reaches a

high plateau. HiCPlus outperforms other types of interpolation

methods (Zhang et al., 2018) including random forest and Gaussian

smoothing. The Pearson’s correlation coefficients between HiCPlus-

enhanced and experimental high-resolution Hi-C are even larger

than those between two experimental replicates.

There is still room for improvement for HiCPlus. The task of

resolution enhancement is analogous to the problem of single image

super-resolution (SR) in the field of computer vision. In the past four

years, several outstanding ConvNet-based SR methods were devel-

oped. SRCNN (Dong et al., 2014) first introduced the deep learning

method for image SR, which used a three-layer convolutional neural

network to learn an end-to-end mapping between low- and high-

resolution images. VDSR (Kim et al., 2016) used a very deep

ConvNet (20 layers), first introduced global residual learning for

SR, and increased convergence speed by adjustable gradient clip-

ping, which makes it outperform SRCNN. DRRN (Tai et al., 2017)

used a further deeper ConvNet (52 layers) and adopted global and

local residual learning by introducing recursive learning. Its evalu-

ation results indicate that DRRN outperforms several methods,

including VDSR and DRCN (Kim et al., 2016). The architectures of

recent published ConvNet-based SR methods [e.g. MemNet (Tai

et al., 2017) and CMSC (Hu et al., 2018)] are all based on global

and local residual learning. In general, VDSR (Kim et al., 2016)

proved that deeper ConvNets and global residual learning are effect-

ive to achieve better performance than SRCNN. DRRN (Tai et al.,

2017) concluded that local residual learning along with much deeper

ConvNets than VDSR can further improve the accuracy.

In this study, we developed a new ConvNet-based computational

method named HiCNN for resolution enhancement of Hi-C data.

Our method directly learns the mapping function between low-

resolution and high-resolution Hi-C contact matrices via a very deep

convolutional neural network (54 layers). The first two layers are

designed for pattern extraction and representation, which is similar

to the first layer in HiCPlus and SRCNN. The following 52 layers

are designed to implement global and local residual learning in our

ConvNet, because several ConvNet-based SR methods have proved

that these two residual learning manners significantly improve the

performance of resolution enhancement. The number of layers was

predefined to 54 and easy to be altered if needed. Our evaluation

results show that HiCNN outperforms HiCPlus in multiple evalu-

ation criteria, which further supports the observation that deeper

ConvNets along with global and local residual learning can signifi-

cantly improve SR performance on Hi-C data.

2 Materials and methods

2.1 Hi-C data preprocessing and contact matrix

generation
The high-resolution Hi-C datasets are from GEO GSE63525 in which

Rao et al. (Rao et al., 2014) provided high-resolution Hi-C paired-end

reads that were mapped to the corresponding reference genomes of

eight different cell types. We used three of the eight cell types including

GM12878 (human), K562 (human) and CH12-LX (mouse), and

downloaded corresponding Hi-C paired-end reads that were uniquely

mapped to reference genomes with MAPQ scores from BWA (Li and

Durbin 2010) larger than zero. Since Rao et al. (Rao et al., 2014) also

released a high-resolution replicate on GM12878, we used four Hi-C

datasets in total including GM12878, GM12878 replicate, K562 and

CH12-LX. In this way, we can use the Hi-C data from GM12878 rep-

licate to evaluate the enhanced Hi-C data of GM12878 and use Hi-C

data from GM12878 and K562 to test if our computational method

can effectively enhance Hi-C resolutions of one cell type by using the

Hi-C data from another cell type as training data. We can also use Hi-

C data from GM12878 and CH12-LX to see if our enhancement

method can be applied to different species.

For each of the four datasets, we first looped through all paired-

end reads, and then picked up those fallen into the same chromo-

some. The real high-resolution Hi-C contact matrix of a single

chromosome is generated by counting all paired-end reads related to

the chromosome. The low-resolution Hi-C contact matrix of a given

chromosome is obtained from the following two steps: (i) determin-

ing a down sampling ratio and randomly selecting part of the

paired-end reads by the ratio; for example, ratio 1/16 means that we

randomly select 1/16 of all reads; (ii) generating a low-resolution

Hi-C contact matrix using the Hi-C paired-end reads from step 1.

The training data were extracted from low-resolution Hi-C con-

tact matrices (10 kb) of five individual chromosomes including chro-

mosomes 1, 3, 5, 7 and 9 in GM12878 with different down sampling

ratios including 1/8, 1/16 and 1/25. The entire big Hi-C contact ma-

trix for each individual chromosome was subdivided into thousands

of 40� 40 small submatrices. We concatenated all the submatrices as

the final training data. The generation of target data was the same as

the process of generating training data but using the high-resolution

Hi-C contact matrices. We used different overlapping size of subma-

trices to control the size of training datasets. For example, using over-

lapping size of two columns as increment will result in four times

reduction of training data compared with using increment of one col-

umn. The validation dataset (containing both low-resolution and cor-

responding high-resolution Hi-C contact submatrices) was extracted

on chromosome 2 in GM12878. We selected chromosome 2 for valid-

ation dataset because it has a relatively larger size.

2.2 A very deep convolutional neural network
We built a very deep convolutional neural network (ConvNet) with

the number of layers as 54. The details of its architecture are shown

in Figure 1. The input of this ConvNet is a set of low-resolution

Hi-C contact submatrices with shape equal to (n, 1, 40, 40) where n
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is the total number of samples (i.e. number of submatrices), ‘1’ cor-

responds to the input channel size of the first layer, and the last two

dimensions (40, 40) are the size of the submatrices. Given a training

and target set fXi; ~Xign
i¼1, where Xi and ~Xi are the low-resolution

and the corresponding high-resolution Hi-C contact submatrices, re-

spectively. The loss function of our ConvNet is

L Hð Þ ¼ 1

n

Xn

i¼1

kF Xi; Hð Þ � ~Xik2; (1)

where F is the mapping function from Xi to ~Xi that we are trying to

learn, and H denotes the parameter set.

There are five different types of layers in our architecture, including

conv1, conv2, conv3, conv4R and conv5. The first type (i.e. conv1 in

Fig. 1), containing 13�13 filters followed by a Rectified Linear Unit

(ReLU) (Nair and Hinton, 2010), is designed to extract and represent

Hi-C patterns. The second type (i.e. conv2 in Fig. 1), containing a

1�1 filter followed by a ReLU, is used to reduce its input channels to

one for the afterwards residual learning layers. The shape of the output

of conv2 will be (n, 1, 28, 28). The rest part of the architecture after

conv2 in Fig. 1 is designed to implement global and local residual learn-

ing to make it a deep recursive residual network (DRRN) (Tai et al.,

2017). The third type (i.e. conv3 in Fig. 1), containing 3�3 filters with

zero padding of size 1 (to preserve the size of submatrices), can increase

the output channels for the afterwards local residual learning blocks.

The fourth type (i.e. conv4R in Fig. 1), containing 3�3 filters with

zero padding of size 1, is the basic unit of our local residual learning.

The fifth type (i.e., conv5 in Fig. 1) is used to reduce the output channel

size to match the shape of conv2’s output for global residual learning

and final prediction output.

We implemented our ConvNet in this study via Pytorch (Paszke

et al., 2017). The weight parameters were initialized using the He

initialization method with ReLU (He et al., 2015). We used stochas-

tic gradient descent (SGD) with a mini-batch size of 256, a momen-

tum of 0.9, and a weight decay of 0.0001. The learning rate was

initially set to 0.1 and was reduced by a factor of 0.1 (i.e. a factor

times current learning rate equals new learning rate) when the mean

squared error from the validation process has stopped reducing. We

used adjustable gradient clipping technique as in (Kim et al., 2016;

Tai et al., 2017) with h equal to 0.01 to increase convergence speed.

2.3 HiCNN pipeline
Our method HiCNN includes three main steps: (i) learning the map-

ping function by doing training and validation processes to obtain

optimal weight parameters; (ii) splitting the big low-resolution Hi-C

contact matrix of one individual chromosome into thousands of

40�40 input submatrices, and predicting their corresponding high-

resolution 28�28 output submatrices using the best model we

obtained in step 1; (iii) predicting the high-resolution Hi-C contact

matrix of the individual chromosome by rearranging the 28�28

output submatrices into a new matrix according to their indexes.

Similar to HiCPlus, the size of the output submatrices is smaller

compared to the size of input submatrices. For HiCNN, the input

submatrices are 40�40 and output submatrices 28�28. This is be-

cause we use the 13�13 surrounding values to make prediction

for the central entry in the low-resolution big Hi-C matrix, e.g. the

Hi-C map for an entire chromosome (every time a submatrix is input

into the ConvNet). Therefore, predictions for some values in the

input big matrix are not made, named as margin values, e.g. the first

six values in the first row. In these cases, zero will be put in the

output big matrix as placeholders, which makes the input (low-

resolution) big matrix and the output (predicted high-resolution) big

matrix having the same numbers of rows and columns.

Notice that the goal of this research is not to increase the number

of rows and columns of the low-resolution big matrix. Instead, our

HiCNN, and also HiCPlus, are designed to make the zero-inflated

or sparse matrix to contain more meaningful values. For example, in

order to increase the resolution of the Hi-C matrix of chromosome 1

from 40 into 5 kb, we first convert the 40 kb Hi-C matrix into a 5 kb

matrix that usually is very sparse. After that, HiCNN will be exe-

cuted to predict new values in the matrix while maintaining the

same number of rows and columns as the 5 kb sparse matrix.

In order to still be able to make predictions for most of the

margin values, we overlap the input submatrices. For example, if a

low-resolution submatrix covers the rows of [1, 40] and columns of

[1, 40] in the input big matrix. It corresponds to the rows and col-

umns of [7, 34] and [7, 34] in the high-resolution big matrix. To fill

up the gaps caused by the shrinking of size for the output submatrix,

we make the next input submatrix at rows [1, 40] and columns [29,

68], which leads to rows and columns of [7, 34] and [35, 62] in the

output matrix. In this way, the margin values on the right of the first

input submatrix will be covered and have values predicted.

2.4 Evaluation methods
In addition to Pearson’s correlation coefficient that HiCPlus used to

evaluate its predictions, we also used a more constringent evaluation

measure, mean squared error (MSE). MSE is used to measure the aver-

age of the squared errors between computational enhanced high-

resolution Hi-C data and experimental (i.e. real) high-resolution Hi-C

data in terms of genomic distance. Since we represent Hi-C data as a n-

by-n bin-based contact matrix, genomic distances in this context mean

bin separations where the size of a bin is the resolution of interest. A

smaller MSE indicates that on average the predicted Hi-C contacts are

more similar to the real ones. Pearson’s correlation coefficient is used

to measure the linear correlation between computationally predicted

and experimental high-resolution Hi-C data, which is also in terms of

genomic distances. A higher Pearson’s correlation indicates that the

predicted Hi-C data better match the real Hi-C data.

3 Results

3.1 Training of the very deep convolutional neural

network
We used all of the training examples to train HiCPlus, but only used

1/14 of the training data to train our HiCNN. However, we find

Fig. 1. The architecture of our convolutional neural network. There are five types of layers, including conv1, conv2, conv3, conv4R and conv5. Edge ‘1’ marks the global

residual learning, and Edge ‘2’ marks the local residual learning. The dashed box highlights a building block for local residual learning. � denotes element-wise addition
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that we still achieve better performance compared to HiCPlus

(details will be discussed in Sections 3.2–3.6). Moreover, the

speedup techniques we used made our ConvNet to be able to con-

verge earlier with less epochs. Our training process can be converged

in about 200 epochs with no overfitting being observed

(Supplementary Fig. S1). Training the very deep ConvNet of our

HiCNN (200 epochs needed for convergence) took about 12 h on a

NVIDIA V100 GPU with 16 Gb memory, whereas training the

ConvNet of HiCPlus (�2000 epochs needed for better convergence)

took about 28 h on the same GPU. Therefore, even though our

ConvNet is much deeper than the one of HiCPlus, our training pro-

cess is much faster.

The input/output channels for the five types of layers (i.e. conv1,

conv2, conv3, conv4R and conv5) are 1/8, 8/1, 1/128, 128/128 and

128/1, respectively. We tested several other configurations by

increasing channels (increasing all 8 channels to 16 and increasing

all 128 channels to 256) but did not obtain noticeable improvement

in performance. We have tested different numbers of layers (i.e. 14,

24, 44, 54, 64, 74 and 104 layers) by changing the number of local

residual learning blocks and found that (i) ConvNet with the num-

ber of layers larger than 14 performs noticeably better than the

ConvNet with 14 layers; (ii) the performance of ConvNet is not sen-

sitive to the number of layers when it is larger than 24 (see

Supplementary Fig. S2).

3.2 Resolution enhancement in one cell type using

different down sampling ratios
The evaluations in this section were performed on one cell type, that

is, GM12878. Since we used Hi-C contact matrices of chromosomes

1, 3, 5, 7 and 9 to extract training data and Hi-C contact matrix of

chromosome 2 to extract validation data, we randomly chose two

other chromosomes 6 and 12 to extract blind test data. We first

tested down sampling ratio 1/16; and the results shown in Figure 2

are the mean squared errors (MSEs) and Pearson’s correlation coef-

ficients between the real high-resolution Hi-C data and each of the

following four Hi-C datasets on GM12878: low-resolution,

HiCNN-enhanced, HiCPlus-enhanced and high-resolution biologic-

al replicate. It can be found that for both of the two chromosomes

(i.e. 6 and 12) HiCNN outperforms HiCPlus, and both HiCNN and

HiCPlus perform better than low-resolution Hi-C and high-

resolution Hi-C replicate. We can draw the same conclusions if we

set the down sampling ratio to 1/8 (see Supplementary Fig. S3) and

to 1/25 (see Supplementary Fig. S4).

3.3 Resolution enhancement between two different cell

types and two different species
We conducted more experiments to test whether (i) our convolution-

al model trained on one cell type can be directly used to enhance the

Hi-C matrices of another cell type with the same species; (ii) our

convolutional model trained on one species can be directly used on

enhancing the Hi-C matrices of another species. We used the model

trained on GM12878 (human) with down sampling ratio equal to 1/

8. We first used this model to enhance the Hi-C matrices of K562

(human), specifically on two randomly selected chromosomes (i.e. 5

and 15). The results are shown in Figure 3, indicating that HiCPlus

and HiCNN can both efficiently enhance resolutions of Hi-C data

of K562 but HiCNN performs consistently better than HiCPlus in

terms of all genomic distances. We next used the same model to en-

hance the Hi-C resolutions of CH12-LX (mouse). We also used two

chromosomes 5 and 15 in CH12-LX to create blind test data.

The results are shown in Figure 4. The same conclusions can be

drawn as in the previous evaluations conducted on K562.

3.4 Resolution enhancement from real low-resolution

Hi-C data
We evaluated HiCNN on two sets of real low-resolution Hi-C data

compared with the previous low-resolution Hi-C data generated

from down sampling. The first real low-resolution dataset is from

Fig. 2. The evaluation results (i.e. mean squared error and Pearson correl-

ation) on one cell type GM12878 between experimental high-resolution Hi-C

and each of the four Hi-C datasets, including low-resolution from down sam-

pling ratio equal to 1/16, HiCNN-enhanced, HiCPlus-enhanced and biological-

ly experimental replicate

Fig. 3. The evaluation results (i.e. mean squared error and Pearson correl-

ation) on K562 in human between experimental high-resolution Hi-C and

each of the three Hi-C datasets, including low-resolution from down sampling

ratio equal to 1/8, HiCNN-enhanced, and HiCPlus-enhanced. The models

HiCNN and HiCPlus use to predict are trained on dataset from GM12878 in

human
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GEO GSM1551620 (HIC071) on K562 (Rao et al., 2014). Since the

high-resolution data in (Rao et al., 2014) are built by combining

multiple independent in situ Hi-C samples, we consider each of the

Hi-C samples as data generated from a low-resolution experiment.

We used the ConvNet model trained on GM12878 with down sam-

pling ratio 1/16 to enhance the low-resolution K562 data. The

evaluation results on chromosomes 5 and 15 are shown in

Supplementary Figure S5, indicating that HiCNN outperforms

HiCPlus.

The second real low-resolution Hi-C dataset is from GEO

GSE35156 (Dixon et al., 2012) with the HindIII restriction enzyme

in mouse embryonic stem (ES) cells, which can reach a 40 kb reso-

lution. We used the ConvNet trained on GM12878 with down sam-

pling ratio 1/8 to enhance the resolution to 5 kb. We used the

ultrahigh-resolution Hi-C data from GEO GSE96107 (Bonev et al.,

2017) with the Mbol restriction enzyme to evaluate our predictions.

Since the two Hi-C datasets are generated from two different restric-

tion enzymes (i.e. HindIII and Mbol), we used Spearman’s rank cor-

relation coefficient instead of MSE as the evaluation measure

(different enzymes result in different scales for the number of Hi-C

contacts making MSE not an ideal measure). The evaluation results

are shown in Supplementary Figure S6, indicating that both HiCNN

and HiCPlus can noticeably improve the real low-resolution Hi-C

data and HiCNN outperforms HiCPlus in terms of Spearman’s rank

correlation.

3.5 Evaluating HiCNN in terms of the abilities to help

recover significant interactions and indicate chromatin

states
We used Fit-Hi-C (Ay et al., 2014) to call statistically significant

interactions (q-value < 1 � 10-6) in low-resolution, HiCPlus-

enhanced, HiCNN-enhanced, and real high-resolution Hi-C con-

tact matrices. We conducted the evaluations on the chromosome

12 of GM12878 within the genomic distances from 50 kb to 2 Mb

and with down sampling ratio 1/16. In total, Fit-Hi-C detected 67,

729, 1324, 1421 significant interaction pairs in low-resolution,

HiCPlus-enhanced, HiCNN-enhanced, and experimental high-

resolution Hi-C contact matrices, respectively. The low-resolution,

HiCPlus-enhanced, and HiCNN-enhanced Hi-C contact matrices

have 22, 660, 1116 common significant interaction pairs with

the interaction pairs detected from real high-resolution Hi-C, re-

spectively (Supplementary Fig. S7). HiCNN performs significantly

better than HiCPlus. Specifically, the Hi-C contact matrices

enhanced by HiCNN lead to 1116 out of 1421 (79%) significant

interactions, which is 30% higher than from the Hi-C contact

matrices enhanced by HiCPlus, although both are higher than the

number of interactions detected from low-resolution Hi-C. We

also conducted the same analysis on chromosome 6

(Supplementary Fig. S8) and can draw the same conclusions as we

did on chromosome 12.

We found that the chromatin loops (Hi-C peaks) reported in

Rao et al. (2014), which are called by HiCCUPS, highly overlap

with the significant interactions called by Fit-Hi-C. As shown in

Supplementary Table S1, HiCCUPS detects 434 peaks on

chromosome 12 in GM12878. With q-value <1 �10-6 Fit-Hi-C

can successfully detect 300 out of 434 peaks on real high-

resolution Hi-C data. HiCNN (266 out of 434) outperforms

HiCPlus (218 out of 434) and low-resolution (114 out of 434).

When we increase the q-value, the size of the mutual set between

the Hi-C peaks called by HiCCUPS and the significant interac-

tions called by Fit-Hi-C increase. HiCNN and HiCPlus perform

almost equally well on chromosome 6; and more common peaks

are found in both HiCNN-enhanced and HiCPlus-enhanced Hi-

C data compared to the common peaks found from the low-

resolution Hi-C data.

We compared the CTCF-mediated interactions ensured by ChIA-

PET (Tang et al., 2015) with the significant interactions detected

from the following Hi-C datasets: low-resolution with down sam-

pling ratio 1/16, real high-resolution, HiCPlus-enhanced, and

HiCNN-enhanced. These four Hi-C datasets have 36, 77, 70 and 70

interactions in common with the 5, 600 CTCF interacting pairs on

chromosome 6 in GM12878. HiCNN and HiCPlus perform equally

better than low-resolution. We did the same analysis on chromo-

some 12 in GM12878; and the four numbers are 46, 48, 40 and 45

of the 5, 135 CTCF interacting pairs, indicating that HiCNN out-

performs HiCPlus.

We conducted evaluations from the perspective of chromatin

states. The definitions of chromatin states of GM12878 were

downloaded from http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/

hgFileUi? db¼hg19&g¼wgEncodeAwgSegmentation, which was

generated by the software ChromHMM (Ernst and Kellis, 2012)

based on ENCODE data. Using Fit-Hi-C, we detected significant

interactions based on real high-resolution Hi-C data. The chroma-

tin segments where the significant interactions locate were gath-

ered in a pool. ChromHMM was then executed on the pool of

chromatin segments to call 10 types of chromatin states. In this

way, an enrichment profile (indicated by the value of fold enrich-

ment in Fig. 5) of the 10 chromatin states was generated for the

interactions detected on real high-resolution Hi-C data. We per-

formed the same procedures on low-resolution (down sampling

ratio 1/16), HiCPlus-enhanced, and our HiCNN-enhanced Hi-C

data. Figure 5 shows that the enrichment pattern related to

HiCNN-enhanced Hi-C data is more similar to the enrichment pat-

tern related to real high-resolution Hi-C data particularly on

chromosome 6. This shows that our HiCNN can better enhance

the low-resolution Hi-C data so that the interactions detected on

the enhanced Hi-C data better fit the real high-resolution Hi-C

data in terms of chromatin states.

Fig. 4. The evaluation results (i.e. mean squared error and Pearson correl-

ation) on CH12-LX in mouse between experimental high-resolution Hi-C and

each of the three Hi-C datasets, including low-resolution from down sampling

ratio equal to 1/8, HiCNN-enhanced, and HiCPlus-enhanced. The models

HiCNN and HiCPlus use to predict are trained on dataset from GM12878 in

human
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3.6 Cross-validation with 3D fluorescence in situ

hybridization
The Hi-C detected interactions can be evaluated by cross-

validation with 3D fluorescence in situ hybridization (FISH)

(Dixon et al., 2012; Rao et al., 2014). Rao et al. (Rao et al., 2014)

conducted 3D-FISH experiments to validate four loops that were

indicated by Hi-C peaks. Two of the four loops were selected here,

on which we could barely observe the existence of the peaks from

their low-resolution (down sampling ratio equal to 1/16) Hi-C

heatmaps. We used HiCPlus and HiCNN to enhance the resolu-

tions of chromosomes 13 and 14 where the two loops locate and

plotted the Hi-C heatmaps of low-resolution (1/16), real high-

resolution, HiCNN-enhanced, and HiCPlus-enhanced data. It can

be found that both HiCNN and HiCPlus can successfully help re-

veal the two peaks by enhancing low-resolution Hi-C data. This

example indicates that computational methods for enhancing Hi-C

resolutions can be used to call Hi-C peaks and explore the proper-

ties of these peaks (Fig. 6).

Fig. 5. The evaluation results (i.e. fold enrichment of 10 states) for segments that significant interactions residue in. We did the analysis on two chromosomes 6

and 12 in GM12878 for Fit-Hi-C-detected significant interactions from four Hi-C datasets, including real high-resolution, low-resolution from down sampling ratio

equal to 1/16, HiCNN-enhanced, and HiCPlus-enhanced

Fig. 6. The Hi-C heat maps of chromosomes 13 (85.3–86.5 Mb) and 14 (71.4–73.0 Mb) from four Hi-C datasets, including low-resolution with down sampling ratio

equal to 1/16, real high-resolution, HiCNN-enhanced, and HiCPlus-enhanced. HiCNN and HiCPlus can successfully recover the two Hi-C Peaks on the two chromo-

somes in GM12878
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4 Conclusions

In this study, we developed a new computational method HiCNN to

better enhance the resolutions of Hi-C contact matrices. We

designed a very deep convolutional neural network to learn the map-

ping function between low-resolution and high-resolution Hi-C con-

tact matrices. The number of layers we used in our ConvNet is 54

and easy to go deeper by increasing the number of local residual

learning blocks. Because we used multiple speedup techniques, the

training process is much faster than HiCPlus. We compared our

method HiCNN with the state-of-the-art method (HiCPlus) and

found that HiCNN consistently outperforms HiCPlus and a high-

resolution replicate Hi-C dataset. We may conclude that a well-

trained ConvNet model can be used on different cell types and in

different species (human and mouse), and the mapping function be-

tween low- and high-resolution Hi-C contact matrices may be

shared across different cell types and species.
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