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Abstract

The protein kinase encoded by the ataxia-telangiectasia and Rad3-related (ATR) gene is activated 

by DNA damaging agents that are frequently employed as anticancer therapeutics. Inhibition of 

ATR expression in cultured cancer cells has been demonstrated to increase sensitivity to 

chemotherapeutic drugs, including the DNA crosslinking agent cisplatin. Cisplatin is a widely 

employed and effective drug, but its use is associated with significant toxicity. Here, we 

demonstrate that genetic inhibition of ATR expression selectively enhanced cisplatin sensitivity in 

human colorectal cancer cells with inactivated p53. A knockin strategy was employed to restore 

wild type p53 in cells harboring wild type or mutant ATR alleles. Knockin of functional p53 in 

ATR-deficient cells restored checkpoint function, suppressed apoptotic pathways, and 

dramatically increased clonogenic survival after cisplatin treatment. These results suggest that a 

strategy that combines specific inhibitors of ATR and conventional therapies might promote 

synthetic lethality in p53-deficient tumors while minimizing toxicity to normal tissues.
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Introduction

The most widely used anticancer agents prevent cell growth by damaging chromosomal 

DNA or inhibiting DNA replication (Kastan and Bartek, 2004). Diverse types of DNA 

lesions and DNA structures trigger the activation of the phosphatydlinositol kinase-like 

kinases ATM and ATR. ATM is primarily activated by the double strand DNA breaks 

caused by ionizing radiation and radiomimetic drugs. ATR functions downstream of ATM 

in response to DNA damage (Jazayeri et al., 2006), but is also activated independently of 
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ATM by a wide range of agents that inhibit DNA replication and cause the accumulation of 

replication intermediates (Osborn et al., 2002; Hurley and Bunz, 2007; Cimprich and 

Cortez, 2008). Replication inhibitors that can robustly activate ATR include antimetabolites 

that alter nucleotide metabolism and alkylating agents that cause DNA lesions that 

physically impede DNA replication forks. ATM and ATR directly phosphorylate over 700 

downstream substrates that collectively control cell growth and survival (Matsuoka et al., 

2007).

Prominent among the regulatory proteins activated after DNA damage is the tumor 

suppressor p53, a transcription factor that is stabilized upon phosphorylation and thereby 

activated (Tibbetts et al., 1999; Shiloh, 2006). Genetic alterations that cause loss of p53 

function - which occur in a large proportion of all human cancers - cause defective 

regulation of cell growth and death in response to DNA damage, and therefore present a 

potential obstacle to effective therapy (El-Deiry, 2003; Meek, 2009). Because the toxicity of 

most therapeutic agents to normal tissues limits the doses that can be safely administered to 

patients, strategies for selectively sensitizing p53-deficient cancer cells to existing anticancer 

drugs and radiation would have significant clinical impact.

Recent studies have demonstrated parallel interactions between upstream DNA damage 

signaling pathways and p53 that may be exploited to selectively impair coordinated cell 

cycle arrest (Chung and Bunz, 2010) and improve therapeutic responses (Jiang et al., 2009) 

in p53-mutant cells. For example, targeted inhibition of ATM and its substrate Chk2 has 

been shown to increase the sensitivity of p53-/- human cancer cells to the radiomimetic drug 

doxorubicin, while increasing the resistance of p53+/+ cells (Jiang et al., 2009). It is 

currently unknown whether specific targeting of ATR might similarly increase the 

sensitivity of p53-deficient cells.

ATR is a particularly attractive target for combination therapies as it is robustly activated by 

many different types of drugs. Inhibiting ATR activity, either by RNAi-mediated 

knockdown of ATR expression (Collis et al., 2003) or by overexpression of a dominant-

negative mutant ATR protein (Cliby et al., 1998), has been shown to confer sensitivity to 

diverse anticancer agents, including ionizing radiation, methyl methanesulfonate and 

cisplatin.

To rigorously study the role of ATR in therapeutic responses, we generated a genetic model 

system wherein a human colorectal cancer cell line was engineered to harbor the 

hypomorphic mutation at the ATR locus that causes ATR-Seckel syndrome (Hurley et al., 

2007). At the cellular level, the ATR-Seckel mutation causes aberrant splicing of the ATR 

transcript and markedly decreased ATR expression (Alderton et al., 2004; O'Driscoll et al., 

2003). Cancer cells homozygous for ATR-Seckel alleles (ATRS/S) exhibit greatly reduced 

clonogenic survival in response to many commonly used anticancer agents, particularly to 

DNA crosslinking agents such as cisplatin (Wilsker and Bunz, 2007). Decreased ATR 

expression also causes differential and highly reproducible sensitization to antimetabolites, 

ionizing radiation and radiomimetic drugs in this in vitro system (Hurley et al., 2007; 

Wilsker and Bunz, 2007). An important question that arises from these studies concerns the 
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potential efficacy of anti-ATR therapy. Would inhibiting ATR preferentially sensitize cancer 

cells with loss of p53 function?

Recent studies in mice suggest that the effects of ATR inhibition on cell survival are 

antagonized by p53. In a mouse model of ATR-Seckel syndrome, the deficiency of ATR 

causes impaired DNA replication during embryogenesis and accelerated aging in adult mice 

(Murga et al., 2009). Homozygous disruption of p53 in the ATR-Seckel background 

aggravates this aging phenotype. In a mosaic mouse model, the conditional disruption of 

ATR in a p53-mutant background causes the accumulation of DNA damage and tissue 

degradation (Ruzankina et al., 2009). Together, these studies demonstrate that p53 functions 

to protect against the detrimental effects of ATR deficiency. In this study, we examined 

whether p53-mutant human cancer cells might be preferentially chemosensitized by genetic 

ATR inhibition. We show that RNAi-mediated knockdown of ATR preferentially sensitized 

p53-/- cells to the effects of cisplatin, and that knockin of wild type p53 into the ATR-Seckel 

background suppressed apoptotic pathways, restored checkpoints and increased cisplatin 

resistance to the level exhibited by cells with wild type ATR. These data support specific 

ATR inhibition as a therapeutic strategy to target p53-deficient tumors.

Results

Increased sensitivity of p53-deficient cells to cisplatin after ATR knockdown

Our previous studies have shown that ATR-mutant colorectal cancer cells are dramatically 

sensitized to the alkylating agent cisplatin, as well as to other drugs that similarly cause 

DNA crosslinks (Wilsker and Bunz, 2007). To explore whether the inhibition of ATR might 

selectively sensitize p53-deficient cancer cells to this important class of therapeutic agent, 

we used gene-specific siRNA to reduce ATR expression in p53+/+ and p53-/- derivatives of 

the colorectal cell line HCT116 (Fig. 1a). ATR is an essential protein required for efficient 

DNA replication. As expected, transient inhibition of ATR expression caused a reduction in 

clonogenic survival in both HCT116 p53+/+ and p53-/- cells (Fig. 1b). A low dose of 

cisplatin also suppressed clonogenic growth, irrespective of p53 genotype. The combination 

of ATR knockdown and treatment with cisplatin reduced the survival of p53-/- cells to a 

significantly greater extent than p53+/+ cells, which were relatively resistant.

Restoration of p53 function by knockin

To examine in detail the combined effects of ATR and p53 in a stable genetic system, we 

used a knockin strategy (Fig. 2a) to restore normal p53 function in cells with previously 

engineered ATR-Seckel alleles. The parental DLD-1 cell line from which the ATR-mutant 

(ATRS/S) cells were derived harbors a naturally-occurring inactivating point mutation in p53 

exon 7 (S241F) and expresses only mutant p53 transcripts (Fig. 2b). The remaining p53 

allele in this diploid colorectal cell line has a wild type coding sequence, but is not expressed 

(Sur et al., 2009). We used a recombinant adeno-associated virus (rAAV)-based gene 

targeting vector containing a synthetic exon promoter trap (SEPT) (Topaloglu et al., 2005) 

to replace the mutant exon 7 with wild type sequence, and thereby reverse the inactivating 

mutation. The SEPT selection cassette, flanked by LoxP sites, was excised by transient 
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expression of the cre recombinase, thereby restoring the functional architecture of the p53 

locus (Fig. 2a).

Following infection of target cells with the p53-specific rAAV (Sur et al., 2009), and stable 

selection of transgenic colonies, we identified three clones that had independently integrated 

the targeting construct into the p53 locus, replacing the expressed mutant p53 allele (Fig. 

2b). One of these clones was chosen for detailed analysis; all effects described were 

reproduced in an independent clone. Clonal derivatives with the same genotype were 

phenotypically indistinguishable, as is typically the case for knockin/knockout cell derived 

by homologous recombination (Rago et al. 2007; Chung and Bunz, 2010).

Excision of the SEPT cassette resulted in the expression of wild type p53 transcripts (Fig. 

2b), and increased expression of the p53 target proteins p53R2 and p21 (Fig. 2c). The 

majority of inactivating p53 mutations cause increased stability of the encoded protein. 

Accordingly, restoration of functional p53 resulted in a decrease in steady state p53 protein 

expression (Fig. 2c).

To further assess p53 function in knockin (p53+/Sil) cells, we examined well-characterized 

responses to ionizing radiation (IR). After upregulation by IR, p53 activates the G1/S 

checkpoint that controls entry into S-phase and stabilizes arrest at the G2/M checkpoint, 

thereby inhibiting the onset of mitosis (Waldman et al., 1995; Bunz et al., 1998). Cells were 

irradiated and then immediately treated with nocodazole to prevent cell division and trap 

G2/M checkpoint-defective cells in mitosis. Control treatment with nocodazole alone (no 

irradiation) revealed a modest increase in cells with a stable 2N DNA content in the p53-

knockin population (Fig. 2d). Presumably, this failure of a proportion of cells to enter S-

phase after 24 h was related to the increased levels of basal p21 induced by p53 pathway 

restoration (Fig. 2c). Asynchronous ATRS/S cells with mutant p53 (p53-/Sil) have been shown 

to be markedly checkpoint-defective (Hurley et al., 2007). Accordingly, after treatment with 

both nocodazole and IR, ATRS/Sp53-/Sil cells failed to accumulate at a 2N peak 

corresponding to G1/S (Fig. 2d) and entered mitosis in large numbers (Fig. 2e). In contrast, 

the ATRS/Sp53+/Sil cells exhibited restored function of both G1/S and G2/M checkpoints.

ATR-deficiency selectively sensitized p53-mutant cells to cisplatin

We next used our new isogenic cell panel to assess the combined effects of ATR and p53 

status on cell survival after cisplatin treatment. Consistent with our previously published 

results (Wilsker and Bunz, 2007), ATRS/Sp53-/Sil cells exhibited markedly decreased survival 

after treatment with cisplatin across a broad dose range (Fig. 3a). The highest dose tested (1 

μM) reduced survival of ATR-deficient cells nearly one hundred-fold, compared with 

isogenic DLD-1 cells that are ATR-proficient. Strikingly, the response of p53-knockin 

ATRS/Sp53+/Sil cells to cisplatin at all doses was similar to that of ATR-proficient parental 

DLD-1 cells, demonstrating that p53 could counteract the drug sensitization caused by ATR 

deficiency.

To evaluate the effect of p53 restoration on different drug responses, we separately 

compared the effects of p53 and ATR on survival after cisplatin and the DNA synthesis 

inhibitor hydroxyurea (HU). In a p53-deficient background, ATR is required for clonogenic 
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survival in response to both of these drugs (Wilsker and Bunz, 2007). Restoration of p53 

function in parental DLD-1 with wild type ATR alleles caused a significant sensitization of 

these cells to both cisplatin and HU (Fig. 3b), consistent with the well known role of p53 as 

an inhibitor of cell proliferation after DNA damage and DNA replication inhibition. Cells 

with the ATRS/S genotype were rendered more resistant to cisplatin and HU when wild type 

p53 function was restored. Interestingly, the desensitizing effect of restored p53 was 

significantly more pronounced in cisplatin-treated cells. While ATRS/Sp53+/Sil cells treated 

with HU exhibited similar survival to HU-treated ATR+/+p53+/Sil cells, the survival of 

ATRS/Sp53+/Sil cells after cisplatin most resembled cells with the ATR+/+p53+/Sil genotype 

(Fig. 3b). We conclude that p53 most potently modified ATR-mediated survival pathways in 

cisplatin-treated cells, and propose that anti-ATR therapy might uniquely sensitize p53-

deficient tumor cells to cisplatin. These results complement previous studies demonstrating 

that ATM inhibition can differentially promote survival or sensitivity to DNA damage, 

depending on p53 status (Jiang et al., 2009).

It is interesting to note that the p53-mediated response to cisplatin was more striking in cells 

with restored p53 function (p53-knockin DLD-1; Fig. 3b) than in cells that retained wild 

type p53 alleles (HCT116); p53-knockout in HCT116 caused a minimal difference in 

survival (Fig. 1b). It has been reported that some p53-dependent responses may not be well 

maintained in p53-wild type cells such as HCT116 (Zhang et al., 2006). Like all human 

cancer cell lines that have been adapted to in vitro culture and extensively propagated 

following explantation, HCT116 and DLD-1 cells have been selected for robust growth. The 

growth-suppressive pathways downstream of p53 are inactive in p53-mutant DLD-1 cells 

(Sur et al., 2009), and presumably not subjected to negative selective pressure. One might 

therefore predict that growth suppressive pathways would be retained but inactive in p53-

mutant DLD-1 and then robustly reactivated by wild type p53 knockin. In support of this 

view, the upregulation of growth inhibitory p53 target genes that encode PUMA and 

Ferrodoxin reductase were more strongly upregulated by DNA damage in the DLD-1 

p53+/Sil derivative than in other colorectal cancer cells lines that naturally harbor wild type 

p53 alleles (Sur et al., 2009). We have observed the p53-dependent phenotypes in knockin 

DLD-1 cells to be highly stable and infer that, in p53-wild type cells, strong selection 

against p53 phenotypes might occur during the initial establishment of new cell lines, rather 

than during routine passaging. We therefore predict that human cell lines with restored p53 

function will be valuable reagents for the study of the p53-dependent responses to anticancer 

agents.

Suppression of cisplatin-induced apoptosis in ATR-mutant cells by restoration of 
functional p53

We tested whether the decrease in clonogenic survival exhibited by ATRS/Sp53-/Sil cells in 

response to cisplatin (Fig. 3a,b) might be related to the induction of apoptosis. Indeed, 

morphologic evidence of apoptosis was apparent in a large fraction of ATRS/Sp53-/Sil cells 

after cisplatin treatment (Fig. 4a). Cisplatin-induced apoptosis occurred independently of 

functional p53, and was in fact suppressed by p53 restoration. To confirm the biochemical 

activation of apoptotic pathways, we assayed the cleavage of caspase-3 and the 

phosphorylation of p53 on S46 (p-p53S46), a marker of upstream apoptotic signaling (Oda 
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et al., 2000). These biochemical markers of apoptosis were coordinately expressed in 

cisplatin-treated ATRS/Sp53-/Sil cells and suppressed in all isogenic cells with functional 

ATR or p53 (Fig. 4b). The small amount of p-p53S46 detected in cells of the other 

genotypes corresponded well with the relatively smaller proportion of apoptotic cells (1-3%) 

observed in these populations (Fig. 4a). Interestingly, phosphorylation of p53 S46 after 

cisplatin treatment was impaired in cells in which p53 had been functionally restored (Fig. 

4b), suggesting the presence of a negative feedback loop. Overall, isogenic cells with 

proficient ATR and/or p53 pathways were resistant to the apoptotic pathways stimulated by 

cisplatin (Fig. 4a,b). These data suggest that increased apoptotic signaling in response to 

cisplatin may have contributed to the reduced clonogenic survival of ATRS/Sp53-/Sil cells 

after cisplatin treatment.

Downstream interactions between ATR and p53 pathways after cisplatin treatment

The chemoprotective effects of ATR have been largely attributed to the activation of its 

downstream effector kinase, Chk1 (Cimprich and Cortez, 2008). Recently, the stress 

activated kinase pathway composed of p38MAPK and MAPKAP2 (MK2) has emerged as 

another important responder to DNA damaging agents, including cisplatin (Reinhardt et al., 

2007; Reinhardt et al. 2010). Like Chk1, p38MAPK is controlled by ATR (Jirmanova et al., 

2005; Reinhardt and Yaffe, 2009). Yaffe and colleagues (Reinhardt et al., 2007) have 

reported that loss of p53 functionally “rewires” the cellular response to cisplatin, thereby 

increasing the requirement for MK2 in the control of downstream survival pathways. 

Because the effect of p53 restoration in our cell lines differed in ATR-wild type and –mutant 

cells (Fig. 3b), we examined whether p53 status affected relative activation of Chk1 and 

MK2 by cisplatin. Two isogenic cell pairs were tested: HCT116 cells and their p53-

knockout derivative (Bunz et al., 1998), and DLD-1 cells and their derivative harboring the 

wild type p53 knockin (Sur et al., 2009). Of these two cell lines, DLD-1 exhibited a greater 

p53-dependent effect on cisplatin sensitivity (Figs. 1a, 3a,b). Irrespective of cisplatin 

treatment, DLD-1 cells with restored p53 exhibited a decrease in total Chk1 protein and an 

increase in MK2 protein and T334 phosphoprotein (Fig. 5a). The decreased Chk1 protein in 

the p53-restored DLD-1 cells correlated with decreased levels of Chk1 phosphoproteins 

after cisplatin treatment (Fig. 5a). The HCT116 lines, in which the effect of p53 status alone 

(in the absence of ATR manipulation) on cisplatin sensitivity was minimal (Fig. 1b) 

exhibited only a modest decrease in Chk1 phosphorylation in p53+/+ compared with the 

p53-/- derivative, but no apparent difference in total Chk1 or MK2 proteins.

We next examined the combined effects of ATR and p53 status on the p38MAPK-MK2 

signaling pathway. Levels of MK2 were highest in cells with both wild type ATR and wild 

type p53 (Fig. 5b). While the levels of p38MAPK protein did not vary with genotype, 

increased p38MAPK activation by cisplatin could be observed in the cells with restored p53. 

The re-introduction of p53 into DLD-1 cells thus caused an apparent shift in ATR-dependent 

signaling from Chk1 to MK2 (Fig. 5a). This rewiring of ATR responses after restoration of 

p53 correlated with decreased survival after DNA damage (Fig. 3b).
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Discussion

ATR promotes cell survival after DNA damage and impeded DNA replication, and is 

therefore a logical target for sensitization to commonly employed anticancer therapeutics 

(Cimprich and Cortez, 2008; Wagner and Kaufmann, 2010). A critical question is whether 

the p53-deficient cells that compose a high proportion of human cancers would be 

selectively killed by such a combinatorial strategy. The answer to this question is not 

obvious. Depending on the context in which it is activated, p53 can trigger cell cycle arrest - 

and an overall increase in cell survival - or cell death by apoptosis (Vousden and Lu, 2002). 

We observed that knockdown of ATR preferentially sensitized p53-knockout colorectal cells 

to cisplatin (Fig. 1a,b) and that cells with inactivating mutations in both ATR and p53 

exhibited increased apoptosis (Fig. 4a,b) and reduced survival (Fig. 3a, b) after cisplatin 

treatment. Restoration of functional p53 dramatically suppressed these phenotypes. These 

results suggest that specific targeting of ATR would be an effective means of increasing the 

sensitivity of p53-mutant tumor cells to cisplatin while preserving the resistance of normal 

tissues that retain p53 function, thereby minimizing toxicity. The ultimate test of this 

hypothesis in patients awaits the development of highly specific ATR inhibitors (Wagner 

and Kaufmann, 2010).

Recent efforts to enhance the effects of DNA damaging agents and DNA replication 

inhibitors on p53-deficient cancer cells have largely focused downstream of ATR, on Chk1 

(Tse et al., 2007). While genetic inhibition of Chk1 and chemical Chk1 kinase inhibitors 

have been reported to be effective in sensitizing cancer cells to drugs such as gemcitabine, 

HU and 5-fluorouracil (Cho et al., 2005; Karnitz et al., 2005; Robinson et al., 2006; Blasina 

et al., 2008; Wilsker et al., 2008), targeting Chk1 has proven a relatively ineffective 

approach to reduce cell survival in combination with cisplatin (Wagner and Karnitz, 2009; 

Zenvirt et al. 2010). In response to cisplatin, ATR activates multiple downstream effectors 

(Reinhardt et al., 2007), including p53 (Pabla et al., 2008), that may cumulatively affect 

survival. The rewiring of these downstream pathways that occurs upon loss of p53 function 

(Reinhardt et al., 2007) may create an enhanced dependence on ATR. Studies arising from 

diverse experimental systems therefore suggest that targeting upstream ATR activity may 

represent a more effective means of sensitizing p53-deficient tumor cells to the distinct 

effects of cisplatin.

In cellular models and in actual human tumors, functional p53 can confer resistance to some 

types of DNA damage and sensitivity to others (Bunz et al., 1999; Pirollo et al., 2000). 

These distinct outcomes are probably related to the alternative cell cycle arrest or cell death 

pathways that can be activated by p53 (Vousden and Lu, 2002). Which of these downstream 

pathways predominates in a given cell appears to depend upon many factors, including the 

type of cell and the DNA damaging agent employed. One mechanism by which the choice 

between arrest and apoptosis is determined involves the kinase HIPK2, which 

phosphorylates p53 on S46 (Rui et al., 2004). Stimuli that promote cell cycle arrest over 

apoptosis trigger the suppression of HIPK2, thereby suppressing p53 S46 phosphorylation 

(Li et al., 2009). The p53 S46 site can also be phosphorylated directly by ATM (Kodama et 

al. 2010) and by DYRK2, an ATM-responsive kinase (Taira et al. 2007). Understanding 
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how ATR might influence these upstream pathways should provide significant insight into 

the manner in which p53 mediates different cell fates in response to DNA damage.

Materials and Methods

Cell lines and drugs

Cisplatin (cis-Diammineplatinum(II) dichloride) and hydroxyurea were purchased from 

Sigma-Aldrich (St. Louis, MO). The human colorectal cell lines HCT116 and DLD-1and 

their isogenic derivatives with targeted alterations in p53 (Bunz et al., 1998; Sur et al., 2009) 

and ATR (Hurley et al., 2007) were cultured in McCoy's 5A medium (Invitrogen, Carlsbad 

CA) supplemented with 6% fetal calf serum (Hyclone) and penicillin/streptomycin 

(Invitrogen).

Knockdown of ATR expression

For the transient knockdown of ATR, 3 × 104 cells in 24-well plates were transfected with 8 

μmol of ATR-targeted siRNA (AACCUCCGUGAUGUUGCUUGA, synthesized by 

Integrated DNA Technologies, Inc, Coralville, IA) or non-targeting control siRNA 

(Dharmacon, Lafayette, CO), using 2μl Lipofectamine 2000 (Invitrogen) for 72 h.

Genotyping

The restoration of wild type p53 in the ATRS/S DLD-1 cells was confirmed by sequencing 

amplified genomic DNA- and cDNA-derived PCR products from selected clones using the 

primers 100-P53 exon7 FOR: CTTGGGCCTGTGTTATCTCC and 101-p53 exon 7 rev: 

ATGGAAGAAATCGGTAAGAGG.

Drugs and assessment of clonogenic survival

Cells in 24-well plates were treated with drug under the conditions described, washed, 

harvested and replated at low density in 100 mm dishes. Following 14 d of growth, 

surviving cells were stained with crystal violet (Sigma-Aldrich). Colonies containing more 

than 50 cells were scored and the total number of colonies per dish was normalized to 

untreated controls. Each data point represents the average of three separate dishes.

Cell cycle analysis and quantification of apoptosis

To assess IR-dependent cell cycle checkpoints, cells were treated with a single 12 Gy dose 

delivered by a 135Cs irradiator and then immediately incubated in medium containing 0.2 

μg/ml nocodazole. After 24 h, cells were harvested, fixed, stained with Hoechst 33258, and 

analyzed by flow cytometry and fluorescence microscopy, as described (Jallepalli et al., 

2003). After cisplatin treatment, the proportion of Hoechst 33258-stained cells with blebbing 

of the nuclear membrane, and fragmented and condensed nuclei was assessed by 

fluorescence microscopy. At least 300 nuclei from different fields were scored for each data 

point.
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Antibodies and Immunoblotting

Whole-cell lysates were denatured and fractionated on NuPAGE gels (Invitrogen). Proteins 

were transferred to PVDF membranes (Millipore, Billerica, MA) which were probed with 

antibodies directed against ATR, α-tubulin, p53, p53R2, Chk1, p21 (Santa Cruz 

Biotechnology, Santa Cruz, CA), phoshpo-p53Ser46, phospho-Chk1S345, phospho-

Chk1S317, MK2, phospho-MK2T334, p38MAPK, phospho-p38MAPKT180/Y182 and 

cleaved caspase-3 (Cell SignalingTechnologies, Danvers, MA) under conditions 

recommended by the manufacturers. Blots were developed using enhanced 

chemiluminescence (GE Healthcare, Piscataway, NJ).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ATM Ataxia telangiectasia mutated

ATR ATM and Rad3-related

IR ionizing radiation

HU hydroxyurea
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Figure 1. 
Clonogenic survival after ATR knockdown and cisplatin treatment. (a) Levels of ATR 

protein in HCT116 p53+/+ and p53-/- cells were assessed by immunoblot 48 h after siRNA 

transfection. (b) Following knockdown, untreated controls and transfected cells were mock 

treated or treated with 1 μM cisplatin for an additional 48 h, as indicated. After treatment, 

cells were washed three times, replated at low density and incubated for 14 d. Error bars 

represent SEM; representative plates are shown.
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Figure 2. 
Restoration of functional p53 by exon 7 knockin. (a) An rAAV-based knockin strategy (Sur 

et al., 2009) was employed to replace mutant exon 7 (mt7) in DLD-1 ATRS/S cells with wild 

type exon 7 (Wt7) sequences. Cre-mediated recombination between LoxP sites flanking the 

SEPT cassette (gray box) allowed excision of the SEPT cassette. (b) The homologous 

introduction of wild type codon 241 (TCC, encoding an S residue) in targeted clones was 

confirmed by sequence analysis of the p53 genomic locus and cDNA. (c) Expression of 

ATR, p53, p53R2 and p21 in DLD-1 derived cells with the indicated genotypes was 

assessed by immunoblot. α tubulin was probed as a loading control. To assess the function 

of p53-dependent checkpoints, ATRS/S cells differing in p53 genotype were treated with 12 

Gy IR (Noc + IR) or mock irradiated (Noc) and then immediately incubated in media 

containing nocodazole (0.2μg/μl). Cells were fixed and stained with Hoescht 33258 dye 24 h 

after nocodazole addition. The G1/S checkpoint was assessed by measuring the population 

of cells with 2N DNA content (2N) by flow cytometry (d). The Y-axis represents cell 

number. (e) The G2/M checkpoint activated by IR was assessed by counting the number of 

cells trapped in mitosis, by fluorescence microscopy.
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Figure 3. 
The combined effects of ATR and p53 genotype on clonogenic survival after drug treatment. 

(a) ATR-deficient (ATRS/S) cells expressing mutant p53 (p53-/Sil) or wild type p53 (p53+/Sil) 

and parental DLD-1 controls (ATR+/+p53-/Sil) were treated with cisplatin at doses ranging 

from 0-1 μM for 48 h, and then replated in drug-free medium. (b) Cells with the indicated 

genotypes were treated with a single dose (1 μM) of either cisplatin or hydroxyurea (HU) for 

24 and 48 h, respectively. Clonogenic survival was assayed as described in Materials and 

Methods. Error bars represent SEM
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Figure 4. 
Apoptotic responses to cisplatin. (a) Cells with the indicated genotypes were untreated 

(Control) or treated with cisplatin for 48 h. The fraction of apoptotic nuclei was assessed by 

fluorescence microscopy. Representative nuclei are shown at 40× magnification (inset, scale 

bar 10 μm). (b) Cells treated as in (a) were lysed and probed with the indicated antibodies.
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Figure 5. 
Signaling pathways activated by cisplatin. (a) Isogenic HCT116 and DLD-1 cells differing 

in p53 status were untreated (-) or treated (+) with cisplatin for 48 h. The indicated signaling 

proteins and phosphoproteins were assessed by immunoblot. (b) Isogenic DLD-1 cells 

differing in ATR and p53 status were treated and analyzed as in (a). α tubulin was probed as 

a loading control.
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