Wu et al. BMC Medical Genetics (2015) 16:82

DOI 10.1186/512881-015-0229-3
BMC

Medical Genetics

RESEARCH ARTICLE Open Access

B,-Adrenergic receptor promoter haplotype @ e
influences the severity of acute viral

respiratory tract infection during infancy: a
prospective cohort study

Pingsheng Wu', Emma K Larkin', Sara S Reiss', Kecia N Carroll?, Marshall L Summar®, Patricia A Minton',
Kimberly B Woodward', Zhouwen Liu?, Jessica Y Islam?, Tina V Hartert" and Paul E Moore®

Abstract

Background: Despite the significant interest in (3,-Adrenergic receptor (ADRB2) polymorphisms related to asthma,
whether ADRB2 genetic variants are similarly associated with acute respiratory tract infections have not been
studied. We hypothesized that genetic variants in ADRB2 associated with a response to asthma therapy during an
asthma exacerbation were also associated with severity of acute respiratory tract infections.

Methods: To test this hypothesis, we genotyped 5 common polymorphisms in the promoter region and coding
block of the ADRB2 gene (loci -2387, -2274, -1343, +46, and +79) from 374 Caucasian and African American term
infants who were enrolled at the time of acute respiratory illness over four respiratory viral seasons. Severity of
respiratory tract infections was measured using a bronchiolitis severity score (BSS; range = 0-12, clinically significant
difference = 0.5) with a higher score indicating more severe disease. We assigned the promoter, coding and
combined promoter and coding haplotypes to the unphased genotype data. The associations between each of
these five single-nucleotide polymorphisms (SNPs) as well as the haplotypes and infant BSS were analyzed using
nonparametric univariate analysis and multivariable proportional odds model separately in Caucasians and African
Americans.

Results: There was no significant association between infant BSS and each of the SNPs in both Caucasians and
African Americans. However, promoter haplotype CCA was associated with a decreased BSS in African Americans in
a dose dependent manner. The median (interquartile range) BSS of infants with no copies of the CCA haplotype,
one copy, and two copies of the CCA haplotype were 5.5 (2.0, 8.0), 40 (1.0, 7.5), and 3.0 (1.0, 4.0), respectively. This
dose dependent relationship persisted after adjusting for infant age, gender, daycare exposure, secondhand smoke
exposure, prior history of breastfeeding, siblings at home, and enrollment season (adjusted odds ratio: 0.59, 95 %
confidence interval: 0.36, 0.98). There was no similar protective relationship of haplotype CCA on severity of
respiratory tract infections identified in Caucasians.

Conclusions: ADRB2 genotype may be predictive of severity of acute respiratory tract infections in African
Americans, and potentially identify a subset of infants who may respond to beta-agonist therapy.
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Background

Respiratory tract infection is common in infants and
young children and is a major public health problem in
this age group [1]. It is mainly caused by infection of sea-
sonal viruses, such as respiratory syncytial virus (RSV)
and rhinovirus [2-4]. Most infections manifest as an
upper respiratory infection, while 20-40 % develop lower
respiratory infection, and a small number (2 — 3 %) of in-
fected infants require hospitalization [5, 6]. This is of par-
ticular concern as infants with lower respiratory viral
infection are at increased risk of developing recurrent
wheezing or childhood asthma [7-13]. Several risk factors
have been identified for the development of severe lower
respiratory viral infections, such as premature birth, young
age, being born in relation to the RSV season, underlying
chronic lung disease, congenital heart disease, high parity,
young maternal age and poor socioeconomic factors
[14-16]. Recently, genetic polymorphisms have been
identified which are associated with severe viral infec-
tion [17, 18]. Many of the identified genetic variants
associated with severe lower respiratory tract infec-
tions are also associated with and pathways common
to asthma, including innate immune genes involved
in cytokine and chemokine signaling, and epithelial
cell function [13, 17, 19-23].

As the clinical hallmark of asthma is wheezing, and
therapy includes beta agonists, a number of clinical stud-
ies over the past 2 decades have examined the relation-
ship between genetic variants in P,-Adrenergic receptor
(ADRB2) and asthma [24—-30]. The polymorphism that re-
sulted in the Gly16 allele was associated with decreased
bronchodilator responses in early clinical studies; however,
larger clinical studies have provided equivocal results
[31-33]. Other genetic variants in the promoter re-
gion of ADRB2 have also been associated with asthma
severity [28, 34]. Despite the significant interest in
ADRB2 polymorphisms related to asthma, the relative
contribution of ADRB2 genetic variants to severity of
respiratory viral infections has not been established.
As wheezing is also the clinical hallmark of lower respira-
tory viral infections, and variable response to bronchodila-
tors has been demonstrated in infants hospitalized with
RSV lower respiratory viral infections, it is possible that
ADRB2 genetic variants also contribute to the severity of
acute respiratory viral infections [35, 36].

The aim of the present study was to explore associations
between the genetic variants in ADRB2 that have been as-
sociated with a response to asthma therapy during an
acute asthma exacerbation and the severity of infant acute
respiratory viral infections. We examined the relationship
between 5 common polymorphisms in the promoter re-
gion and coding block of the ADRB2 gene and infant se-
verity of respiratory infections in a prospective cohort of
Caucasian and African American infants.
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Methods

Study population

In order to examine the association of genetic variants in
the regulatory regions of the ADRB2 gene and the severity
of viral respiratory infections during infancy, we con-
ducted an analysis of infants enrolled in the Tennessee
Children’s Respiratory Initiative (TCRI), a prospective co-
hort of mother-infant dyads enrolled during an infant’s
acute viral respiratory illness over four respiratory viral
seasons, 2004—2008. Term (=37 weeks) and non-low birth
weight (>2275 g) infants who were otherwise healthy with
no significant co-morbidities or cardio-pulmonary disease
were eligible, with oversampling for hospitalization in-
fants. Eighty five percent of enrolled subjects had at least
one respiratory virus identified by polymerase chain reac-
tion (RSV, rhinovirus, influenza, parainfluenza, Human
Metapneumovirus, and coronavirus); 56 % had lab-
confirmed RSV infection. The rationale, methods, and de-
tailed inclusion and exclusion criteria have been reported
previously [37]. Although 630 infants were enrolled in
TCRI, this study was limited to the 261 Caucasian and
113 African American infants for whom DNA was avail-
able. The protocol was approved by the Institutional
Review Board of Vanderbilt University, and mothers pro-
vided informed consent for their infants. All parents pro-
vided written informed consent for both their and their
child’s study participation.

Infant acute respiratory infection severity

Infants included in this study had either upper respira-
tory tract infections or lower respiratory tract infections.
The severity of acute respiratory infection was deter-
mined by experienced research nurses through medical
record chart review using an ordinal bronchiolitis sever-
ity score (BSS). The score is an aggregate of assigned
values ranging of 0-3 in categories of respiratory rate,
room air oxygen saturation, the presence and extent of
wheezing, and the presence and extent of flaring and re-
tractions [37-39]. The BSS ranges from 0 to 12, with
higher scores indicating more severe illness and a differ-
ence of 0.5 being a clinically significant difference [40].
We measured the BSS at the end of the outpatient visit
or after discharge from an inpatient admission, and the
most severe recorded value was used for analysis.

Genotype determination

DNA was extracted by Vanderbilt’s DNA core laboratory
from whole blood or saliva samples (Oragene by DNA
Genotek) by standardized protocols. All oragene samples
were processed immediately after collection, while blood
samples were either processed immediately or frozen be-
fore processing. Genotyping at five pre-specified loci
(-2387, -2274, -1343, +46, and +79) of ADRB2 gene was
done using Tagman SM® Genotyping Assays (Applied
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Biosystems, Foster City, CA, USA) with predetermined
primers. The five single-nucleotide polymorphisms (SNP)s
were rs1432623, rs11168068, and rs2400707 at the pro-
moter region, and rs1042713 SNP and rs1042714 SNP at
the coding region of ADRB2 gene. Probes for the Applied
Biosystems assays used were labeled at their 5’end
with either VIC® or 6-carboxy-fluorescine (FAM) re-
porter dyes. The reaction components include: 2.5 pl
Tagman Universal PCR Master Mix (Applied Biosystems),
0.125 pl or 0.250 pl assay mix (Applied Biosystems) and
approximately 5 ng of genomic DNA in a total volume of
10 pl per single tube reaction. PCR amplification was per-
formed in a thermal cycler (Techne TC-412) with an ini-
tial step of 95 °C for 10 min followed by 50 cycles of 92 °C
for 15 s and 60 °C for 1 min. After amplification, the fluor-
escence of each sample was read on the ABI 7900HT
(DNA Resources Core at Vanderbilt University) and ana-
lyzed with the Sequence Detection Software (Applied Bio-
systems). Five percent of samples were run as blind
duplicates with 100 % concordance. Primers and probes
for all SNPs are listed in Table 1.

Statistical analysis

The demographics and characteristics of the 374 infants
included, with either upper respiratory infection or lower
respiratory tract infection, are presented as frequencies
and proportions for specific categorical variables and

Table 1 Primers and probes of the 5 ADRB2 SNPs
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medians and interquartile ranges were calculated for
continuous variables. All analyses were stratified by race
(Caucasian or African American), as a surrogate meas-
ure of European or African ancestry, to reduce the
known impact of population substructure which can
produce spurious associations [41]. A pairwise linkage
disequilibrium (LD) was estimated for the SNPs in
ADRB2 using the standardized summary statistics D’
and r, calculated by the HaploView program (Whitehead
Institute for Biomedical Research, Cambridge, MA, USA).
SNPs were tested for deviations from Hardy Weinberg
proportions, also using Haploview [42]. The promoter,
coding and combined promoter and coding SNPs were
assigned to blocks using D’ confidence interval of Gabriel
et al. [43]. Individual haplotypes were estimated using the
program PHASE v2.1.1 [44, 45]. The haplotype frequen-
cies for each block were estimated using the expectation
maximization (EM) algorithm, again using the HaploView
program. Non-parametric Kruskal-Wallis test were ap-
plied to compare the difference in BSS among infants with
each SNP genotype, as well as each haplotype genotype.
Haplotype genotypes with frequency less than 2 % were
excluded from haplotype analysis. We used a proportional
odds model for the ordinal BSS to test the additive effect
of haplotypes. Covariates included in the regression model
included infant age at enrollment, gender, daycare expos-
ure, secondhand smoke exposure, any prior history of

Loci rs number Primers Probes

—2387 rs1432623 Forward Primer Vic- TCACACAAGTATAGTTTG
5-TTCTAAACCACTAAGTAATTTATGTAAACTTCGCTT-3'
Reverse Primer Fam- CACACAAGTGTAGTTTG
5-GGTAAGCAAGAATTGAATGATATAGTAAGAAATATGAAAA-3'!

—2274 rs11168068 Forward Primer Vic- AATCACGAAGTACCTGATTT
5'-GGAAGTGACTTTATGCCCCTTTAGA-3' Fam- TCACGAAGTACCTAATTT
Reverse Primer
5-AGATTCACCAAACTTGGAGCTTTCT-3'

—1343 rs2400707 Forward Primer Vic-TTCACATGGCACAACC
5-TAAGTCACAG ACGCCAGATGGT-3' Fam- CACATGGCGCAACC
Reverse Primer
5-AACAAA CTATCCAGCA GATGAAAGGA T-3'

+16 rs1042713 Forward Primer Vic- CAC CCAATGGAAGCC
5"~ CGGCAGCGCCTTCTTGCTGGCAC-3" Fam-CAC CCAATAGAAGCC
Reverse Primer
5 TGCGTGACGTCGTGGTC-3'

+27 rs1042714 Forward Primer Vic- TCGTCCCTTTGCTGCGT

5-CCTTCTTGCTGGCACCCAAT-3"

Reverse Primer

5-TGCCCACCACCCACAC3'

Fam-TCGTCCCTTTCCTGCGT
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breastfeeding, any siblings at home, and enrollment sea-
son. All analyses were conducted separately according to
race. All analyses were performed using R-software ver-
sion 2.11.1 (www.r-project.org). We used a two-sided 5 %
significance level for all statistical inferences.

Results

There were in total 374 infants, 261 Caucasians and 113
African Americans, enrolled in the TCRI cohort with
available DNA and at least one ADRB2 polymorphism
tested (Table 2). The median infants’ age at enrollment
was 11 weeks (interquartile range [IQR]: 6, 25). The aver-
age birth weight of these infants was 3317 g (standard de-
viation [SD]: 455.8). Among those infants, 207 (55 %)
were male, 198 (53 %) were breastfed, 107 (29 %) attended
daycare at the time of enrollment, 222 (60 %) were ex-
posed to secondhand smoke, and 283 (76 %) had older
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siblings at home. Seventy six percent (n = 285) of infants
had bronchiolitis at enrollment and 64 % (n = 239) were
identified as RSV positive. The median bronchiolitis sever-
ity score was 5.5 (IQR: 2.5, 8.5). Compared to African
American infants, Caucasian infants were more likely to
have a higher birth weight, younger age at enrollment,
been breast fed, have secondhand smoke exposure, have
private insurance, have mothers who were older and had a
higher education level, and have mothers who were less
likely to have asthma. In addition, Caucasian infants were
more to have lower respiratory tract infection instead of
upper respiratory infection, and have more severe respira-
tory infections based on the BSS (p < 0.05).

Table 3 lists the allele frequencies of 5 SNPs separately
for Caucasian and African Americans. In both Caucasians
and African Americans, infants had slightly more T, T, and
G alleles for the three promoter SNP rs1432623,

Table 2 Characteristics of infants and their biological mothers (N =374)

Caucasian (N=261) African American (N=113) P value

Infant characteristics
Birth weight (grams) (N =372), median (IQR¥) 3345 (3090, 3657) 3147 (2892, 3430) <0.001
Gestational age (weeks) (N =371), median (IQR) 39 (38,40) 39 (38,40) 0.498
Male gender, n (%) 140 (54) 67 (59) 0313
Age at enrollment (weeks), median (IQR) 10 (6, 21) 18 (7, 35) <0.001
Breastfeeding, n (%) 152 (58) 46 (41) 0.002
Daycare attendance, n (%) 68 (26) 39 (35) 0.096
Secondhand smoke exposure (N=371), n (%) 158 (61) 64 (57) 0486
Having siblings, n (%) 198 (76) 5 (75) 0.894
Insurance type, n (%)

Private 111 (43) 9 (8) <0.001

Medicare 135 (52) 101 (89)

None 15 (6) 303)
Season of enrollment, n (%)

2004 - 2005 42 (16) 21 (19 0.590

2005 - 2006 76 (29) 38 (34)

2006 - 2007 75 (29) 31 (27)

2007 - 2008 68 (26) 23 (20
RSV positive 180 (69) 59 (52) 0.002
Lower respiratory tract infection vs. upper respiratory infection, n (%) 213 (82) 72 (64) <0.001
Bronchiolitis severity score (n = 373), median (IQR) 6.5 (3,9 4(1,7) <0.001
Maternal characteristics
Maternal age at enrollment (years) 27 (22, 31) 24 (21, 27) <0.001
Maternal education, years (n=313), n (%)

<12 42 (19) 16 (17) 0.004

12 56 (25) 41 (44)

>12 122 (55) 6 (39)
Maternal asthma, n (%) 50 (19) 27 (24) 0.298

Abbreviations: IQR interquartile range
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rs11168068, and rs2400707, respectively. Additionally, the
distributions are similar among Caucasians and African
Americans. There was a significant difference between
Caucasians and African Americans in the frequency distri-
bution of the two coding SNPs. In comparison with Afri-
can Americans, Caucasians were more likely to have a G
allele of rs1042713 SNP, and less likely to have a C allele
of rs1042714 SNP.

Within each SNP, there was no statistical difference in
BSS among each genotype (Figs. 1 and 2). This non stat-
istical difference was consistent within both Caucasians
and African Americans. Among African Americans, there
was a decreasing trend of the severity of acute respiratory
infection with an increasing number of copies of C, C,
and A allele of the three promoter SNPs rs1432623,
rs11168068, and rs2400707, respectively (Fig. 1). However,
analyses with additive models indicated no statistical sig-
nificance (p > 0.05).

Among 2° (32) possible haplotype combinations, only
four haplotypes with more than 2 % of frequency were
identified (Table 4 and Fig. 3). There were two promoter
haplotypes and three coding block haplotypes. There were
no statistically significant differences in the promoter and
coding block haplotype frequencies between Caucasian
and African Americans. However, when all 5 SNPs were
combined, the distribution of haplotype frequency was
significantly different between Caucasians and African
Americans, with genotype CCAAC more common in Af-
rican Americans and rare in Caucasians (p < 0.001).

Promoter haplotype CCA was associated with a de-
creased BSS in African Americans in a dose dependent
manner (p =0.037 in the univariate analysis) (Fig. 4). In-
fants without the CCA haplotype had the highest BSS
(median 5.5, interquartile range [IQR]: 2.0, 8.0). Infants
with one copy of CCA haplotype had a lower bronchio-
litis severity score (median 4.0, IQR: 1.0, 7.5). Infants
with 2 copies of the CCA haplotype had the compara-
tively lowest BSS (median 3.0, IQR: 1.0, 4.0). This dose
dependent relationship persisted after adjusting for in-
fant age, gender, daycare exposure, secondhand smoke
exposure, prior history of breastfeeding, siblings at
home, and enrollment season (adjusted odds ratio: 0.59,
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95 % confidence interval [CI]: 0.36, 0.98, p = 0.042). This
protective effect of CCA haplotype was consistent when
we categorized the acute respiratory infection into upper
respiratory infection and lower respiratory tract infec-
tion. In a similar dose dependent manner, infants with
more copies of CCA haplotype were less likely to have
lower respiratory tract infection compared with infants
with less copies of CCA haplotype (p = 0.05). On the other
hand, promoter haplotype TTG was associated with a
higher BSS in African Americans (Additional file 1).

The protective effect of CCA haplotype in African
Americans was identified in all combined haplotypes
with CCA combination (Figs. 5 and 6). However, due to
the sample size, the effect was not statistically signifi-
cant. In addition, all African American infants with a
coding block haplotype GG had CCA combination in
their promoter region; therefore, there was a similar
additive protective effect of GG in African Americans
(Additional file 2). There was no relationship between
BSS and the other two coding block haplotypes in African
Americans (Additional files 3 and 4). This was also true
for the combined haplotypes (Additional files 5 and 6).

In both Caucasian and African American infants, there
were no significant relationships between BSS and cod-
ing block haplotypes except for GG haplotype among
African Americans (Additional file 2). This was also true
for the combined haplotypes. In general, there was no
significant relationship between BSS and any haplotypes
in Caucasian infants. There was no similar promoter
haplotype CCA relationship with BSS in Caucasians as
observed in the African Americans (Fig. 4).

Discussion

In this study we have identified a haplotype in the pro-
moter region of the ADRB2 gene which is associated
with a decreased BSS in African American infants. This
promoter haplotype of the ADRB2 gene was not associ-
ated with the severity of respiratory infections in Cauca-
sian infants. The common coding block polymorphisms,
corresponding to amino acid changes at codons 16 and
27, were not associated with a protective effect on sever-
ity of respiratory infections in Caucasian or African

Table 3 Allele frequencies of the 5 ADRB2 SNPs (P value compares the frequency difference between Caucasian and African

Americans)
SNP Caucasian African American P value

(N=261) (N=113)

N Allele frequencies (%) N Allele frequencies (%)
rs1432623 T 252 429 57.1 1 446 554 0.785
rs11168068 T 252 42.5 575 110 450 55.0 0.679
12400707 A/G 260 423 57.7 1 441 559 0.832
rs1042713 A/G 233 36.9 63.1 104 50.0 500 0.033
rs1042714 C/G 244 572 42.8 106 788 212 <0.001
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Fig. 1 BSS distribution across each genotype of 3 promoter SNPs, stratified by race. The scatter plots of the distribution of BSS across genotypes
of 3 promoter SNPs (rs1432623, rs11168068, and rs2400707) separately for Caucasian and African American infants. We further overlay box-and-whisker
plot of BSS on each scatter plot. P values were obtained from non-parametric Kruskal-Wallis test

American infants. Our results agree with the studied
conducted by Janssen and colleagues, who found no re-
lationship between the SNP rs1042713 and susceptibility
to RSV bronchiolitis in a European population [17].

This observation that the CCA promoter region haplo-
type is associated with a protective effect on respiratory
viral infection severity is similar to our observation in a co-
hort of adults hospitalized for an asthma exacerbation,
where this haplotype was associated with spirometric

improvement in response to asthma-specific therapy that
included beta-agonists and corticosteroids [34]. In that
study, we noted spirometric improvement only in Cauca-
sian patients, although the small number of African Ameri-
can non-responders in that cohort may have limited our
ability to detect a similar effect in African Americans [34].
The mechanism by which a haplotype in the promoter
region of the ADRB2 gene is associated with a decreased
BSS is not known. However, we can speculate that



Wau et al. BMC Medical Genetics (2015) 16:82 Page 7 of 12
rs1042713
Caucasian African American
p=0.215 p=0.140
n= 92 n=110 n= 31 n=27 n=50 n=27
12 —Qo —o— 12 -o— o
a0 03; o:o : :
a0 1o [ ) |
2 10 4 oo () ® 10 — ' o
8 @ O oo ! o! ol
0 00 —caE— o ! oobo
= o cwo : \ !
5] 8 — @ o 8 — X o o
3 fele ] ®® o o, )
1) —ces=—] a» oo po o
L oa@o o @ e} o
% 6 o™ —c—] 6 — ()
= fes) oo o o
] @0 o@o 0o o
5 o @o
@ 4 — 00 ®»® o 4 — 0 00 Qo
o® ) ) o o
@ o® o @o
2 — éo oTo ) 2 — o t=)
| o0 10 T |
camp o@o ®I0 oo anm® @
I ] 1 I ] |
0 - ole R —o— 0 - ®le odo —abo
GG AG AA GG AG AA
rs1042714
Caucasian African American
p= 0.466 p=0.327
n=79 n=121 n=44 n=63 n=41 n=2
12 Caacd o 12 —Te- —e—
cw oo @ : |
! a o010 | 10
10 A oo ) o010 10 — @'o o!
8 abd odo es @b d
” oo a@ap o o) od o
2 ® ‘oo o 'o o
o 8 — 000 om®mo ® o 8 — 0('? :
3 a»o auno o @O ,
7] 0o @o @0 =
L F=ee—] @ oo o
% 6 — 0 o ) 0o 6 — @o
= @0 o [<>9)
] @o oao @ o o
s ® oam o
& 4 — oo @0 X 4 oo
o @00 \® oo
o oq ©,0 oao ® o
o
2 —eor—— ém E 2 - @0 )
010 [e]] | 10
00} an® o0 o L eecs
I ] 1 I 1
0 - a3 - —s 0 - -@bo -eeko-
CcC CG GG CcC CG GG

Fig. 2 BSS distribution across each genotype of 2 coding SNPs, stratified by race. The scatter plots of the distribution of BSS across genotypes of
2 coding SNPs (rs1042713 and rs1042714) separately for Caucasian and African American infants. We further overlay box-and-whisker plot of BSS

on each scatter plot. P values were obtained from non-parametric Kruskal-Wallis test
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Table 4 Haplotype frequencies of the ADRB2 promoter and
coding block SNPs (Haplotype genotypes with less than 2 %
frequency were not shown in the table)

Caucasians African Americans P value
(N=261) (N=113)
Promoter haplotype
CCA 4277 44.86 0636
TG 56.20 53.74
Coding block haplotype
AC 3740 5047 0622
GC 19.01 2897
GG 43.18 20.56
Combined haplotype
CCAGG 4132 20.56 <.001
TTGAC 3533 25.70
TTGGC 19.63 2804
CCAAC 1.24 23.83

ADRB2 promoter haplotype may alter ADRB2 expres-
sion on airway smooth muscle cells and thereby influ-
ence basal airway tone. McGraw et al. showed that SNPs
in the promoter region of the ADRB2 may regulate gene
expression [46]. Moore et al. demonstrated that ADRB2
genetic variants are associated with differences in
ADRB2 expression in cultured human airway smooth
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muscle (HASM) cells, an in vitro system used as a model
for changes in the human airway [47] These studies were
performed prior to identification of the complex pro-
moter haplotypes, and we are not aware that these hap-
lotypes have been studied in HASM. Small differences in
airway tone could thus be important in the setting of
acute viral respiratory infections.

Although beyond the scope of the current observa-
tional study, we also speculate that ADRB2 genotype
might also influence response to bronchiolitis-specific
therapy. The primary goal of TCRI was to establish a
longitudinal, prospective investigation of infants and
their biological mothers on the acute and the long-term
health consequences of varying viral respiratory tract in-
fections on early childhood outcomes [37]. Although a
BSS was assigned for each infant at acute care visit or
hospital admission, we did not study or quantify the ef-
fects of different treatments, including beta-agonist ther-
apy. A number of clinical studies have suggested that
some infants with bronchiolitis appear to improve with
bronchodilator therapy, while on average it is not effica-
cious [48-50]. As ADRB2 is the primary target of bron-
chodilator therapy, variation in response to beta-agonists
might reflect genetic variants in ADRB2.

The diversity of SNPs of the ADRB2 gene was ex-
plored by Drysdale et al, using immortalized lympho-
cytes from 23 Caucasians, 19 African-Americans, 20
Asians, and 15 Hispanic-Latinos [27]. This report from
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2000 included the 2 coding block SNPs (+46 and +79)
and a number of promoter SNPs extending to 1023 bp
upstream of the translation start site. Hawkins et al. ex-
amined a 5.3-kb region of the ADRB2 in 429 Caucasians
and 240 African-Americans and identified similar minor
allele frequencies in the 3 promoter SNPs (-2387, -2274,
and -1343) and in the coding block SNPs discussed in
this manuscript [28]. Such frequency distributions ob-
served in our study are consistent with the allele fre-
quencies reported in the reference population of the
International HapMap Project [51] and Hawkins et al.
[28]. Our stratified analyses by race therefore allow us to
detect the association between severity of a respiratory
illness and haplotype frequency within each racial group,
and to minimize the spurious associations due to such
population substructure.

We recognize that the significance of our findings is
limited by our small sample size and in classifying infants
in this study by a severity score rather than by measuring
some direct response to bronchodilator therapy. However,
BSS correlated with the severity of disease (classified as
upper respiratory and lower respiratory illness) well. Our
sensitivity analyses with the severity of disease (upper ver-
sus lower respiratory illness) showed consistent results in-
dicated that BSS is a valid surrogate of disease severity.
Lastly, although a p value of 0.042 is at the threshold of
statistical significance, this p value reflects sample size of
113 African Americans in our study. Whether the

association between BSS and CCA haplotype in African
Americans is powerful or not depends upon not only p
value, but also upon the effect size such as odds ratio and
the clinical significance of the findings. As a difference of
0.5 in BSS is considered as clinically significant, a 65 % re-
duced odds of developing a more severe disease (higher
BSS) comparing 2 copies of CCA with 0 copy of CCA
might also be clinically significant and meaningful.

We hope that this hypothesis-generating study will en-
courage the incorporation of pharmacokinetic data in fu-
ture studies of bronchiolitis. Although validation studies
in other populations are needed, this study underscores
that the development of personalized approaches to the
treatment of bronchiolitis may benefit from the analysis
of specific genetic variants.

Conclusions

In summary, we have observed that promoter region
haplotype of ADRB2 CCA is associated with a protective
effect on respiratory illness severity in African American
infants. In this era of personalized medicine, ADRB2
genotype may be predictive of the severity of respiratory
viral infection and potential response to therapy for the
most common acute infant illness and one for which we
currently have no therapy. Next steps would be to valid-
ate these findings, as well as evaluate available clinical
trial data for which DNA might be available.
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