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Abstract

Background: Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown
and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset,
further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem
studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways
and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry
information about otherwise inaccessible pathological processes.

Results: To access this information we probed relative levels of close to 600 secreted signaling proteins from
patients’ blood samples using antibody microarrays and mapped disease-specific molecular networks. Using these
networks as seeds we then employed independent genome and transcriptome data sets to corroborate potential
pathogenic pathways.

Conclusions: We identified Growth-Differentiation Factor (GDF) signaling as a novel Alzheimer’s disease-relevant
pathway supported by in vivo and in vitro follow-up experiments, demonstrating the existence of a highly
informative link between cellular pathology and changes in circulatory signaling proteins.

Background
Plasma proteins provide a sampling of biological pro-
cesses throughout the organism and have been applied
to diagnose or monitor human disease. However, in neu-
rodegenerative disorders it has so far been more difficult
to use unbiased large-scale proteomic approaches to
discover blood-based biomarkers for diagnostics [1–3].
While individual patient samples might be insufficient
for reliable classification tasks based on plasma pro-
teins alone, patient populations could instead be used
to smoothen variability and identify underlying common
changes linked to disease mechanisms. To achieve this, we

propose a medium-scale proteomic strategy that concen-
trates on secreted signaling proteins involved in cellular
communication. Changes in these signaling proteins may
result from pathogenic processes or indicate cellular re-
sponses to disease. A screen focused on these proteins
may not only reduce the proteome test space dramatically
but also provide mechanistic insight [4]. Here, we exam-
ined whether this approach can robustly identify proteins
and biological pathways linked to sporadic late-onset
Alzheimer’s disease dementia (AD).

Results
To monitor the secreted signaling proteome in plasma,
we manufactured glass-based microarrays with commer-
cially available antibodies to measure the relative levels
of close to 600 distinct secreted signaling proteins. Using
these arrays, we obtained quantifiable results for 582
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signaling proteins (Additional file 1: Figure S1A to D
and Additional file 2) in archived blood plasma from 47
sporadic, cognitively impaired AD patients and 52 non-
demented, closely age- and sex-matched controls ob-
tained from two clinical centers (Additional file 1: Table
S1). While these proteins do not encompass all secreted
signaling proteins, they do provide a strong representa-
tion of all major signaling pathways and represent the
largest dataset of this kind available today (Additional
file 1: Figure S1A). Raw data were processed, normalized
(Additional file 1: Figure S2), and then subjected to three
parallel analyses, aimed at integrating both molecular
and clinical data, followed by external and internal valid-
ation steps (Fig. 1a).
To identify signaling proteins with significantly changed

plasma levels in AD we calculated corrected p-values for
the quality controlled, centered, and normalized array
data. Principal component analysis showed that our data
were relatively free of obvious batch effects or confound-
ing factors (Additional file 1: Figure S3). Clustering of the
top 50 most different proteins illustrated clear differences
between AD and control samples (Fig. 1b and c). Using
the most significant proteins (FDR < 0.05, corresponding
to pcorr < 0.015) as a starting point, we then queried known
pathway or physical interaction databases to test the hy-
pothesis that the signaling proteome could be mined to
identify pathologically disturbed pathways (i.e., deregu-
lated pathways should reveal themselves through changes
in multiple receptors and/or ligands). This approach
greatly reduces the chance of false-positive discoveries in
contrast to following individually significant but uncon-
nected leads. Using this methodology we identified
highly interconnected clusters of receptors and ligands
with growth factor activity (“TGFβ/GDF/BMP signaling”
and “Angiogenesis”) or with activity linked to apoptosis
(Fig. 1d). Reassuringly, the direction of changes was often
coherent within each cluster/sub-cluster (Fig. 1d). Individ-
ual proteins can show highly significant differences between
cohorts and, at the same time, exhibit large overlaps in the
observed protein level ranges, highlighting the need for suf-
ficient sample sizes and cohort stratification (Fig. 1e and
Additional file 1: Figure S4).
To determine to what extent the observed changes in

the AD signaling proteome are AD specific or the result
of general neurodegeneration or other unrelated pro-
cesses, we collected plasma samples from an additional
92 patients (Additional file 1: Table S2) suffering from
semantic-variant primary progressive aphasia (svPPA), a
sub-type of frontotemporal lobar degeneration (FTLD).
SvPPA is almost always associated with Trans-activation
response element (TAR) DNA-binding protein 43 (TDP-
43)-aggregate pathology and appears to have weak gen-
etic linkage [5–7]. This makes svPPA an ideal candidate
to compare distinct neurological pathologies between

two unrelated, sporadic, progressive dementias (svPPA
vs. AD) via signaling proteome analysis [8]. The svPPA
samples were prepared, handled, and analyzed in parallel
to the AD samples to minimize experimental variations.
We found 39 proteins with significant changes in both

AD and svPPA (Fig. 2a, inset; p = 7.3×10−5 by hypergeo-
metric test). Intriguingly, when we compared signifi-
cance and direction of protein changes between the two
pathologies, we found a perfect correlative trend of up/
up or down/down amongst the 39 overlapping proteins
(p < 1.8×10−12 by binominal test), indicating that a more
general disease-profile does exist (Fig. 2a, red boxes).
Additionally, we were able to identify proteins with
svPPA-specific (Fig. 2a, purple box) and AD-specific
proteome signatures (Fig. 2a and b, yellow box), respect-
ively. A more detailed analysis of the svPPA findings is
published elsewhere [9]. Manual literature curation of
the AD-specific hits yielded numerous proteins involved
in TGFβ/GDF/BMP signaling, complement activation,
apoptosis, or with otherwise strong AD literature,
suggesting that those pathways could play a role in
AD (Fig. 2b). These findings indicate that a mixture
of both disease-specific and nonspecific signaling pro-
files can be obtained from blood and that compara-
tive proteomics can be applied to identify disease-
specific changes.
Changes in protein levels provide a binary view on AD

(significantly changed or not). However, disease is a
gradual process with patient’s cognition becoming in-
creasingly more impaired. To explore the relationship
between cognitive performance and relative plasma pro-
tein levels, we correlated the levels of 582 proteins with
the Mini-mental state [10] examination (MMSE) scores of
the respective patient (Fig. 3a and b, and Additional file 2;
Spearman rank correlation and p-value [prho] as well as ex-
plicit p-values through 1000-fold sample permutations
[pperm]). Applying the same network exploration method
as before, we identified again many proteins involved in
TGFβ/GDF/BMP signaling and apoptosis to be positively
or negatively correlated with cognitive performance
(Fig. 3c), lending further support to our AD-specific
findings above. While proteins involved in “Comple-
ment” activation were detected by the MMSE correl-
ation analysis, they did not meet the cutoff criteria in
the differential analysis, indicating that the comple-
ment driven effects are more subtle and gradual in na-
ture (Fig. 3c). This finding highlights the fact that
analyzing a continuous functional parameter such as
MMSE can retrieve additional non-binary pathways of
interest.
Testing for mean differences in plasma protein levels

allows us to identify proteins with significantly different
levels of expression between AD and controls. However,
we hypothesized that additional insight could be gained
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from comparing changes in co-expression of signaling
molecules as this might carry information on the pair-
wise relationship between the underlying signaling
proteins and regulatory pathways, and on how this re-
lationship is affected in disease [11].

To assess changes in co-expression, we calculated the
Spearman correlation between each protein pair under
healthy control and under AD conditions and then
subtracted these correlations from each other, creating
co-expression and differential co-expression networks

a
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d

b

Fig. 1 The circulatory AD signaling proteome reveals changes in cellular communication. a Overview of the experimental and analysis workflow.
Plasma samples were collected at clinical centers, relative protein abundance was determined by antibody microarray and three types of analyses
were performed: Protein level, MMSE correlation (cognitive performance), and protein co-secretion analysis. The analyses results were then integrated
in a network and pathway enrichment framework and finally subjected to internal and external validation. b Heat map representation of the protein
level analysis showing the top 50 most different proteins after unsupervised clustering (q < 0.05), separating samples into AD (pink, right) and controls
(blue, left) and proteins into higher in control (blue, top) and higher in AD (pink, bottom). c Volcano-plot showing the distribution of all proteins and
naming those significantly different between AD and control subjects (pcorr < 0.01). d A network representation of the most significantly changed
proteins (pcorr < 0.015; un-connected proteins omitted) after integration with known pathway and physical interaction data reveals many
densely connected hits in pathways related to TGFβ/GDF/BMP, angiogenesis, and apoptosis signaling. e Example scatter plots of the six top
changed proteins (see dashed box in e, mean ± s.e.m; all p-values are corrected for multiple hypothesis testing)
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respectively (Fig. 4a and b). It can be shown that these net-
works carry valuable biological information by comparing
co-expression profiles and gene ontology (GO) biological
process similarity between genes/proteins (Additional file
1: Figure S5). We found that protein pairs with high dif-
ferential co-expression profile correlation (R > 0.35;
Additional file 1: Figure S5) have significantly higher
median GO semantic similarity scores than expected by
chance, indicating that these protein pairs are function-
ally related.
Having established that meaningful biological informa-

tion is contained within the co-expression profiles, we used
hierarchical clustering [12] to arrange signaling proteins
based on their co-expression profile correlations (Fig. 4c).
Using DAVID [13, 14], we identified several clusters of
proteins that were significantly enriched for a number
of ontology terms (Fig. 4c). These protein clusters rep-
resent signaling molecules whose co-expression profiles
change in a highly parallel fashion in AD, which in turn
could indicate that the underlying regulatory pathways
participate in AD pathogenesis. The most significantly
enriched clusters were “Complement” (p = 9.7 × 10−10),
“Regulation of growth” (p = 0.00018) and “Apoptosis”
(p = 0.0037; all EASE score p-value based on 562 unique
gene background). In this approach, the size (and number)
of clusters identifiable is limited by the overall number of

proteins probed: While it is apparent that cluster a-d and
e-g could be grouped into larger “superclusters”, probing
these superclusters for enrichment is not useful as they
contain 25–45 % of all probed proteins (Fig. 4c).
Exploring the “Regulation of growth” cluster in more

detail, we observed several sub-clusters that partially
aligned with known biological relationships, often bridg-
ing regulatory pathways together (Fig. 4d). For example
APOE deficient mice are prone to atherosclerosis, but
C3 modulation of lipid metabolism can protect them
[15], while VEGFC is a marker for advanced atheroscler-
osis and hypercholesterolemia in the same animals [16].
TGFβ and interferons (IFN) have antagonizing relation-
ships in the control of inflammation [17], while interferons
reduce ghrelin (GHRL) expression [18], and Follistatin-
like 1 (FSTL1) is controlled by TGFβ [19]. We also noticed
that numerous proteins were directly or indirectly associ-
ated with or regulated by TGFβ/GDF/BMP signaling (e.g.,
TGFBR1, FSTL1, THBS1, MMP11, GREM1, GDF3,
GDF5, GDF9), making that pathway a lead candidate to
test for its involvement in AD. These data suggest that
co-expression analysis can be used to identify clusters
of proteins and regulatory pathways that are linked
through similar co-expression profiles, potentially indi-
cating pathways that are affected by or affecting AD
pathology simultaneously.

a b

Fig. 2 The plasma proteome contains disease specific information. To assess the specificity of the proteins identified in the expression level
analysis, AD samples were compared to another, unrelated progressive dementia (svPPA = semantic-variant primary progressive aphasia).
a Plotting signed, log-transformed pcorr-values (more extreme = greater significance) of the AD vs. svPPA analysis show preserved directionality
(binominal test) and can be used to categorize proteins into four distinct groups: “General neurodegeneration” (pAD & psvPPA < 0.05, same direction of
changes in both diseases; red box); “Non-significant” (pAD & psvPPA > 0.05; green box), “svPPA specific” (pAD > 0.05, psvPPA < 0.05; purple box); “AD specific”
(pAD < 0.05, psvPPA > 0.05; yellow box). Venn diagram showing the overlap of significantly changed proteins in AD or svPPA samples (top-left
inset; threshold pcorr < 0.05; overlap significance by hypergeometric test). b Zooming into the “AD specific” box (see dashed box in a), many
proteins can be identified as part of TGFβ/GDF/BMP, complement, or apoptosis signaling in addition to numerous proteins with strong supporting AD
literature (manual curation)
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Because protein quantification is notoriously difficult
[1, 2, 20, 21] we examined the existing published litera-
ture for suitable non-proteomics data that could be used
to validate our experimental approach. Recently, a large
post-mortem study examined the mRNA expression
levels in tissue from late-onset AD and control patients
(cerebellum, pre-frontal cortex, and visual cortex) and

provided data on the correlation between transcript
levels and brain atrophy and Braak staging, which pro-
vides a measure of tangle pathology [22]. Using this
dataset, we asked whether proteins that we found to be
significantly correlated to cognitive performance (MMSE)
also show a significant correlation between pre-frontal cor-
tex transcript level and brain pathology (Braak stage and

a

b c

Fig. 3 Correlation of cognitive function with the circulatory AD plasma proteome. a Proteins that exhibit significant correlation between
cognitive function (evaluated by MMSE = Mini-mental state examination score) and protein levels ranked by correlation (cutoff prho < 0.05,
Spearman rank correlation; pperm based on 1000 MMSE-score permutations; dashed red line indicates pperm = 0.05 threshold). Many proteins are
part of TGFβ/GDF/BMP, complement, or apoptosis signaling. b Example scattergrams of the top positive and negative MMSE-correlated proteins
(red line indicates regression with 95 % confidence intervals). c Network representation of significantly correlated proteins after integration with
known pathway and physical interaction data reveals many densely connected hits in pathways related to TGFβ/GDF/BMP, complement, and
apoptosis signaling
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Fig. 4 Protein co-expression analysis. a Schematic, hypothetical example of differential protein correlation: Proteins A to D exhibit a certain
correlation pattern in control samples (top row) and a different pattern in AD samples (middle row). Subtracting the control correlations from
the AD correlations yields the differential correlation “AD-Control” that captures the direction and magnitude of the correlation changes in
disease (bottom row). b Zoomed-in correlation matrices for 50 proteins out of 582: Pairwise protein correlation in control samples (top left), AD samples
(top right) and calculated differential correlation (bottom left; random subset of proteins in alphabetical order, Spearman rank correlation).
“GO BP” represents the pairwise semantic similarity score of the protein pairs from ~0.1 (very different) to ~0.9 (very similar) in the “biological
process” gene ontology as a measure for distance in the ontology tree and shared membership in biological processes. c Heat map of the differential
profile correlations of all 582 proteins after unsupervised clustering with optimal leaf ordering. Positive correlations between two proteins indicate that
these proteins change their correlations to many other proteins in a highly parallel fashion. Different clusters of proteins with similar profiles can be
identified and are each significantly enriched for biological processes (boxes a-h, annotation below heat map; p-value based on a modified Fisher exact
p-value; N =members with annotation/cluster size; three most significantly enriched clusters are underlined). d Cluster “a Regulation of growth”
zoomed in with detailed sub-structure (same color scale as c)
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atrophy). And indeed, 29.4 % of the proteins (15/51) we
had identified using MMSE as trait also have significant
transcript-Braak stage correlations (p = 0.0017, Chi2-test,
Fig. 5a), while 33.3 % (17/51) exhibited transcript-atrophy
correlations (p = 0.0195, Chi2-test, Fig. 5a). This supports
the notion that our experimental approach focusing on cir-
culatory signaling proteins is able to enrich for proteins
linked to AD brain pathology.
The results thus far from the differential protein level

analysis, the correlations with cognitive function, and
the co-expression network analysis consistently impli-
cate the complement pathway, apoptosis, and a signaling
network around the TGFβ superfamily in AD. We were
particularly intrigued by this latter network, and its GDF
family members, many of which had not been linked to
AD. To further validate the significance of this finding
we asked whether any of the proteins in this pathway –
including intra- or extracellular ones not measured with
the array – were additionally linked to AD at the gen-
omic or transcript level. We used the Gene Ontology to
identify a list of 114 genes linked to the TGFβ/GDF/
BMP signaling pathway (Additional file 2) and queried
two large AD data sets consisting of meta-data from 10
genome-wide association studies with a total of 8,309 AD
cases and 7,366 cognitively normal elders [23] and AD
brain transcriptome data from 181 AD and 125 controls
[24] for significant SNPs or mRNA changes within the
TGFβ/GDF/BMP pathway associated with AD.
We found significantly more SNPs in genes associated

with TGFβ/GDF/BMP signaling than what would be ex-
pected by chance (p = 8.0×10−17, Kolmogorov-Smirnov
test, Fig. 5b). Specifically, several genes that are involved
in GDF3/Activin-receptor signaling had significant asso-
ciations (GDF3, ACVR1B, SMAD3; see Additional file
2). Similarly, we found significantly more mRNAs with
altered expression in AD brains associated with TGFβ/
GDF/BMP signaling than what would be expected by
chance (p = 1.3×10−20, Kolmogorov-Smirnov test, Fig. 5c
and Additional file 2), including CFC1 (Cripto, a co-
factor of GDF3), and Activin-receptor subunits 2B and
1C (ACVR2B/ACVR1C, GDF3 receptors). Taken together,
multiple layers of experimental evidence suggest that
changes at the genome, the transcriptome, and the prote-
ome level in TGFβ/GDF/BMP signaling are associated
with AD (Fig. 5d-f).
Activin receptors and its ligands Inhibin A and B,

GDF1, GDF3, GDF5, and the ligand binding proteins
CFC1/cripto and gremlin were most prominently altered
in AD throughout our study (Figs. 1d, 3c, 4d, 5f ). While
TGFβ and TGFβ-receptor signaling has been studied ex-
tensively in the context of AD and neuroinflammation
[25, 26], and BMP9/GDF2 has been identified as a regu-
lator of cholinergic neuronal development [27], Activin
receptor signaling and GDFs have not been studied in AD.

GDF3 represents a particularly intriguing candidate: it is
highly expressed in the human brain [28] and mouse den-
tate gyrus (Fig. 6a), is part of the co-expression cluster a
(Fig. 4c and d), exhibits significant SNP enrichment (Add-
itional file 2), is positively correlated with cognitive per-
formance (pperm = 0.038), yet its effects on neurons or the
brain are unknown.
Given that we observed reduced GDF3 plasma levels,

we first investigated whether these changes may be re-
flective of GDF3 levels in human AD brains. To do this,
we measured the processed, active form of GDF3 in tissue
extracts of AD and age matched control patients and
found a significant reduction in the cortex (n = 16–18 sub-
jects per group, p = 0.02, Fig. 6b), but not in the cerebel-
lum, an area unaffected by AD (n = 8 subjects per group,
p = 0.15, Additional file 1: Figure S6A and B). To evaluate
our svPPA vs AD comparison, which predicted that GDF3
reduction is AD-specific, we measured activated GDF3 in
cortical extracts from svPPA patients and controls and
found no difference in GDF3 levels (n = 5 subjects per
group, p = 0.08, opposite trend to AD, Additional file 1:
Figure S6 C and D). While these studies support our
plasma proteomic findings, the source and functional sig-
nificance of GDF3 within the brain remain unclear.
Because GDF3 is highly expressed in the mouse den-

tate gyrus (a neurogenic area; Fig. 6c) and previous stud-
ies show a role for GDF3 in regulating embryonic and
cancer stem cell fate and differentiation [29–31] we
asked whether GDF3 regulates adult neurogenesis. We
first cultured primary adult mouse neural progenitor cells
(NPCs) under non-differentiating and differentiating
conditions and measured GDF3 mRNA. Inducing NPC
differentiation into neurons and astrocytes caused a
marked upregulation of GDF3 (Fig. 6d), suggesting that,
unlike in embryonic stem cells [32], adult NPCs are not
the main source of secreted GDF3 and adult hippocam-
pal GDF3 likely derives from mature cell types [28]. To
assess whether GDF3 affects NPC function, we exposed
primary adult NPCs to increasing concentrations of re-
combinant mouse GDF3 and measured proliferation.
Indeed, GDF3 increased NPC proliferation as measured
by BrdU incorporation (Fig. 6e) and changes in neuro-
sphere number (Fig. 6f ). Given that GDF3 has been im-
plicated in embryonic stem cell fate [29, 30] and is
capable of differentiating PC12 cells [33], we next inves-
tigated whether GDF3 promotes neuronal differentiation.
To evaluate neuronal differentiation we utilized NTERA
cells stably transfected with Doublecortin (Dcx) promoter-
controlled eGFP, as previously described [34]. NTERA
cells cultured with GDF3 showed a prominent increase in
Dcx expression compared to control cells (Fig. 6g and h),
which was also confirmed by western blot (Additional file
1: Figure S6E and F). Furthermore, a recent study demon-
strated the potential importance of developmental factors
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Fig. 5 (See legend on next page.)
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such as the Repressor element 1-silencing transcription
factor (REST) in AD pathology [35]. Intriguingly, GDF3
and REST appear to be controlled by shared transcrip-
tion factor binding [36], potentially hinting at common
upstream disturbances. Taken together these findings
suggest that GDF3 plays an important role in NPC pro-
liferation and neuronal differentiation and that it’s
levels are altered in AD.

Discussion
This study uses a new approach to discover biological
pathways associated with AD dementia by measuring
hundreds of circulatory proteins involved in cellular
communication. Combined with multiple levels of statis-
tical and bioinformatics analyses and leveraging current
pathway knowledge, we were able to build networks of
proteins deregulated in AD. We provide evidence that this
approach has considerable robustness for the discovery of
proteins and pathways linked to AD and successfully val-
idate it against existing datasets. We show that genomic
and transcriptomic data can be used to corroborate sus-
pected disease-specific pathways and identify GDF3 as a
new regulator of adult neurogenesis. Given the important
function adult hippocampal neurogenesis has in rodent
behavior related to memory and learning, the recent
discovery of significant hippocampal neurogenesis in
the adult human brain even with advanced age [37],
and previous implications of disturbed neurogenesis in
AD [38, 39], changes in neurogenesis caused by abnormal
GDF3 signaling might well have a role in the development
or progression of AD.
Currently, our approach is limited only by the availabil-

ity of high-quality, verified antibodies able to reliably bind
signaling molecules in plasma. Future developments in the
production of antibodies or antibody alternatives such as
aptamteres [40, 41] will likely enable researchers to probe
even broader sets of circulating antigens. However, with
increasingly large numbers of analytes ever-closer atten-
tion has to be paid to the statistical methods involved in
identifying interesting candidates. Independent sample
cohorts that are probed using different experimental

approaches should always be considered, similar to the
approach we are taking in this study. Nevertheless, there
are certain limitations to consider when pursuing the bio-
logical interpretation of high-throughput proteomic stud-
ies [42]: (1) Protein coexpression data is currently still
fairly noisy, resulting in networks with noisy edges making
cluster definition challenging. To deal with this problem
we based most of our analysis on much more vetted path-
way or protein-protein interaction data. (2) Most proteins
act in transient and changing complexes and how to de-
fine these overlapping clusters is not trivial. (3) Similarly
difficult is to avoid arbitrarily breaking large clusters into
random smaller ones and to identify the “correct” number
of clusters from a priori knowledge. (4) If possible,
running replicates will reduce clustering error and using
learning through training and test sets can similarly im-
prove the validity of the results [43]. However, availability
of precious sample material and cohort sizes often limits
the ability to perform these steps. Encouragingly, these
limitations are subject to very active ongoing research
efforts and novel methodologies will likely enable us to
avoid many of these pitfalls in the future.
Motivated by the idea to specifically monitor the cellular

communication factors secreted into the bloodstream, we
naturally had a strong representation of inflammatory and
growth factor related proteins in our screen. In the
complete human proteome, additional proteins and pro-
tein fragments have the potential to being secreted into
the bloodstream and could provide mechanistic insight
into further pathological processes active in AD, which we
likely missed in our current screening format. Additional
pathways or protein sets could easily be added to future
versions of the screening platform as antibodies become
available. Conversely, there may be other inflammatory
and signaling-related pathologies that were left undiscov-
ered due to limited sample numbers and increasing cohort
sizes could ameliorate this limitation, although we esti-
mate to have recovered 50–75 % of the true positive hits
(Additional file 1: Figure S4). Finally, using gene ontology
enrichment to identify classes of interesting genes inher-
ently carries over the annotation and research bias present

(See figure on previous page.)
Fig. 5 External Validation. To assess the biological validity of our findings top proteins were cross-referenced at the transcript or genomic level to
external datasets containing AD brain mRNA transcriptome data or AD genome-wide association data, respectively. a Pre-frontal cortex transcripts
in AD brain corresponding to proteins that correlated with MMSE in our study (see Fig. 3a) correlate strongly with Braak stage or brain atrophy
(pre-frontal cortex) beyond what is expected by chance (chi2-test). b Based on meta-data from AD GWAS studies 114 genes which are part of
“TGFβ/GDF/BMP signaling” exhibit higher than expected enrichment for significant SNPs (gene-wide p-value using VEGAS; cumulative curve
comparison by Kolmogorov–Smirnov test). c Pre-fontal cortex transcripts for 120 genes of the TGFβ/GDF/BMP signaling pathway show many
more significant transcript changes in AD than expected by chance (explicit p-value through sample permutation; cumulative curve comparison by
Kolmogorov–Smirnov test). d Graphical representation of 92 proteins of TGFβ/GDF/BMP signaling pathway and integration with the findings from the
various studies as indicated (only nodes with hits ≥ 1 are shown). Proteins are positioned relative to their location in the cells (extracellular, membrane
bound, intracellular) and edges indicate physical or functional interactions (small border diagrams highlight proteins with associated significant
changes). e Detailed pathway diagram for GDF-Activin receptor signaling. f Examples of protein (top row) and mRNA changes (bottom row)
among the members of the GDF-Activin receptor signaling cascade (all corrected p-values)
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Fig. 6 (See legend on next page.)
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from GO [44]. This can be mediated somewhat by using
more data-driven ontology approaches such as NeXO and
CliXO [45, 46], although research bias cannot be over-
come that way. We thus encourage the reader to not
purely rely on the enrichment terms that we provide for
the identified protein clusters, but to interpret the proteins
of interest in the broader framework of biological
knowledge.
Over the past decade, numerous studies [20, 21, 47–59]

have been performed to identify biomarker sets in AD
plasma samples (Additional file 1: Figure S1A), leading to
the recognition of a number of biological pathways and
proteins potentially affected in the disease [60]. Analyz-
ing pathway enrichment in combined cohorts from
multiple studies, Kiddle and colleagues [3] found the
most significant enrichment in proteins linked to
“Complement and coagulation cascades” (p = 9.78 × 10−25)
and “Cytokine-cytokine receptor interaction” (p = 2.07 ×
10−18), which is in good agreement with the pathways
implicated in our screen (Figs. 3 and 4). Using a similar
meta-analysis approach to identify individual proteins
related to AD pathology, Chiam et al. report multi-
cohort support for the involvement of Complement C3,
Complement Factor H, and Plasma protease C1 inhibi-
tor [60], all of which were identified in our screen as
well (Fig. 3). For many of the other proteins and path-
ways implicated in this study (for example GDF), little
comparable data exist, as they are not covered by the
most widely used Rules Based Medicine (RBM) 190
analyte panel.
The approach presented here could be extended to

study abnormal cellular processes in other CNS diseases
or conditions where affected tissues are similarly difficult
to access. Collectively, our data support the presence of
an accessible and informative link between molecular
(mRNA), cellular (Braak stages), structural (atrophy), and
functional (MMSE) changes in the brain and circulatory
signaling proteins. Exploiting this link, may aid in the de-
sign of novel therapeutic and early diagnostic strategies
for sporadic AD.

Conclusion
Neurodegenerative disorders are widespread, devastating,
poorly understood, and largely untreatable with current
knowledge. One difficulty lies in the fact that the brain is
extraordinarily sensitive and cannot easily be examined on
the cellular or molecular level in the diseased patient.
Here, we instead created and analyzed a large set of blood
protein data from Alzheimer’s disease and healthy control
patients for changes in cellular communication factors,
leading to the discovery and validation of altered GDF sig-
naling in sporadic Alzheimer’s disease brain tissue. We
achieve this by integrating multiple levels of ‘omics data,
linking blood to brain tissue changes, thus opening up po-
tentially new avenues for treatment and diagnosis.

Methods
Nomenclature
This is a proteomics study. To highlight this fact, we la-
beled hits in the first analyses (Figs. 1b and 2a) with pro-
tein names. Due to space restrictions in figure design,
we labeled hits in all other figures with the HUPO gene
names of the corresponding protein or mRNA products.

Human plasma samples
All participants underwent thorough and standardized
history and physical exams. For the antibody arrays,
we used a total of 99 archived human plasma samples
with ethylenediaminetetraacetate (EDTA) as anticoagulant
collected at the University of California San Francisco
(San Francisco, CA) and the Mayo Clinic (Rochester, MN
and Jacksonville, FL; Additional file 1: Table S1). Plasma
was produced by standard blood processing, then aliquots
were frozen and stored in aliquots at −80 °C, avoiding
freeze thaw cycles. Informed consent was obtained from
human subjects according to the ethics committee guide-
lines at the respective clinical centers. All patients were
clinically diagnosed with AD based on the 1984 NINCDS-
ADRDA Alzheimer’s criteria with additional attention to
the 2011 revisions [61] and (if possible) post-mortem tis-
sue analysis (27 of the 47 AD cases). Details on the svPPA

(See figure on previous page.)
Fig. 6 GDF3 regulates neurogenesis and is reduced in AD brains. a To test whether GDF3 levels are also reduced in AD brains, Human AD and
control cortical grey matter regions were lysed and the detergent soluble protein fraction was probed by western blot. Levels of active GDF3
(b) were quantified relative to neuron-specific enolase (NSE). c To identify areas in the brain where GDF3 may have a functional role, we referred
to The Allen Brain Atlas, which showed strong RNA expression in the mouse hippocampus (blue = high expression). d Using qPCR, GDF3 mRNA
expression was detected in non-differentiated adult mouse NPCs and NPCs cultured in differentiating conditions. e To determine whether
GDF3 affects stem cell function, adult mouse NPCs were provided recombinant mouse GDF3 and NPC proliferation was assessed using BrdU.
f Recombinant mouse GDF3 was also provided to dissociated adult mouse neurospheres and the number of newly formed neurospheres was
subsequently quantified. g To investigate whether GDF3 promotes neurogenesis, human-derived NTERA cells stably transfected with Dcx pro-
moter-controlled eGFP were provided recombinant human GDF3. Shown are representative images of DCX-GFP fluorescence expression from an entire
well of NTERA cells treated with GDF3 or control for 30 days. h DCX-GFP fluorescence area was quantified relative to the cellular area detected by
brightfield microscopy. Results were compared by a one-way ANOVA with a Dunnett's post-test (b,e), an unpaired Student’s t test (d), or a two-way
ANOVA with a Bonferroni post-test (f,h) and are representative of at least 2 independent experiments (b n= 16 –18 per group, d,e,f,h; n = 3 per group).
Values are mean ± s.e.m.. *p < 0.05, **p < 0.01, ***p < 0.001 compared to respective control groups
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plasma samples are provided in Additional file 1: Table S2.
A total of 92 svPPA patients from the University of
California San Francisco or Mayo Clinic Jacksonville
were identified whose clinical features conformed to re-
vised consensus diagnostic criteria for svPPA [62]. Patient
consent had been administered at the respective sample
collection centers and research has been conducted ac-
cording to the principles expressed in the Declaration of
Helsinki. Analysis of de-identified samples was performed
with research approval by the Stanford University institu-
tional review board.

Antibody-microarray production
Plasma protein levels were measured using antibody-
based protein microarrays. We used a custom-expanded,
commercially available microarray with modified anti-
body content (custom L-Series, RayBiotech Inc., Norcross,
GA) containing 474 antibodies against chemokines and
cytokines printed in triplicates by the company, plus 17
control antibodies. Additionally, we produced a custom-
made in-house array that contained a separate set of 119
antibodies against secreted signaling factors printed in
quadruplicates, plus 7 control antibodies. A total of 617
antibodies were measured. Subsequent quality control
steps removed 11 antibodies with extremely low or no sig-
nal and control antibodies (see Antibody-Microarray Data
Preparation below) yielding a total of 582 analyzed anti-
bodies (Additional file 2 and Additional file 1: Figure S1
and S2C). Some antibodies target the same protein mul-
tiple times (such as precursor/full-length/truncated forms,
14 proteins and 32 antibodies total; see Additional file 2).
The microarray production protocol was the following:
antibodies of interest were selected based on their bio-
logical role as secreted signaling factors and the availability
of ELISA-grade quality batches to ensure likely detection
of the epitope in liquid solution. The arrays were printed
onto SuperEpoxy glass slides (Arrayit, Sunnyvale, CA)
using a custom-built robotic microarrayer fitted with
sixteen SMP4B pins (Arrayit). After drying the slides
overnight they were vacuum-sealed and stored at −20 °C
until use.

Plasma sample preparation and antibody-microarray
incubation
The human plasma samples were thawed at room
temperature and diluted 5-times in PBS without Ca2+/Mg2+

(pH 6.5) followed by 10,000 g centrifugation in a swing
bucket centrifuge for 10 min at Room temperature. The
lipid layer on top was carefully removed with the house
vacuum. Without disturbing the platelet pellet 300 μl was
carefully removed for dialysis (96 well Dispodialyzer/5 kDa,
Harvard Apparatus, Holliston, MA) into PBS (pH 6.5) at
4 °C in multiple steps including a last over-night step to
yield a maximally pure plasma protein fraction in an

appropriate buffer for the biotinylation reaction. The
dialyzed plasma was diluted again 6-times in PBS and
recombinant Green fluorescent protein (GFP) was spiked
into the samples as positive control at a final concentration
of 1 μg/ml. The plasma proteins were N-terminally bio-
tinylated (NHS-SulfoBiotin, Thermo Scientific, Rockford,
IL), reaction was stopped with 0.1 M glycin final concentra-
tion and unbound biotin removed by multiple dialysis
against PBS (pH 6.5 and last at pH 8). Then samples were
diluted in 3 % casein in PBS (pH 7.4) and the individual
samples were incubated on blocked antibody arrays over-
night at 4 °C. Blocking was performed by incubating dried
arrays in 4 °C precooled 3 % casein in PBS (pH 7.4) over-
night on a shaker (30 rpm) at 4 °C. After multiple washing
steps antibody-bound protein was detected using 0.5 μg/ml
Alexa Fluor 555 conjugated streptavidin (Invitrogen)
on a GenePix Pro 4000B scanner (Molecular Devices,
Sunnyvale, CA, Additional file 1: Figure S1D). Samples
for both AD and svPPA studies were processed in parallel
in randomized order in one batch.

Data processing and figure generation
Raw data from the array scanner were provided as im-
ages (.tif files) and spot intensities (Excel.xls files; Micro-
soft, Seattle, WA). Excel files were condensed into one
file (tab-delimited.txt file) and non-analyzed data rows/
columns were removed using RDBmerge (Ron de Bruin,
www.rondebruin.nl). Unless otherwise stated, data pro-
cessing and statistical testing were performed in Matlab
R2012a (MathWorks, Natick, MT). Figures were gener-
ated directly in Matlab or data were transferred and
plotted in Prism 5.0f (GraphPad Software, La Jolla, CA).
Figures were then arranged for publishing using Illustrator
CS5 and Photoshop CS5 (both Adobe, San Diego, CA).

Antibody-microarray data preparation
To determine spot intensities, we calculated the mean pixel
intensity per spot. To determine background intensities we
calculated the median pixel intensity per background
“doughnut” (Additional file 1: Figure S1D). Individual array
spots were background subtracted locally (by subtracting
the median background across spot replicates in each sam-
ple). Spots with a residual intensity less than 10 % above
background were set to ‘ND’ (non-detectable). Antibodies
with more than 55 % ‘ND’ values were excluded from the
analysis (N = 11), yielding a total of 582 quantifiable anti-
bodies (Additional file 2, for ‘ND’-count distribution see
Additional file 1: Figure S2C). ‘ND’ values were then re-
placed with the greater of the half the minimum non-‘ND’
value per sample replicates, the half the minimum non-
’ND’ value of that antibody across all samples (if the sam-
ple replicates were all ‘ND’), or 1. The spot data were Log2
transformed, replicate averaged, and iteratively (i = 50)
row- and column-wise median centered (subtract the
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column-wise median from the values in each column/
row of data, so that the mean or median value of each
column/row is 0) and normalized (multiply all values in
each column/row of data by a scale factor S so that the
sum of the squares of the values in each column/row is
constant across columns/rows) following a procedure de-
scribed in the Cluster 3.0 manual [63]. Finally the data
were Z-scored, leaving approximately normally distributed
data for analysis with a mean of 0 and a standard deviation
of 1 (Additional file 1: Figure S2D to F, 86 % of all anti-
bodies have normal distributions based on one-sample
Kolmogorov-Smirnov test).

Principle component analysis
To assess the influence of potentially confounding factors
such as plasma source, patient age, or patient gender, we
performed a Principle Component Analysis in Matlab using
the Z-scored data and the built-in princomp function.

Differential protein level analysis
To identify proteins with significant changes in plasma
levels (based on Z-score values) we calculated permutation-
corrected p-values (pcorr) for Control vs. AD for every
protein (unpaired two-tailed t-test, 10,000 class label
permutations) using the mattest Matlab function. To
compute false-discovery rates, we adopted a direct ap-
proach to estimate q-values [64] using the mafdr Matlab
function. Proteins with a significant difference between
AD and Control samples and a q < 0.05 were considered
having different plasma levels (a total of 50 proteins). An
identical approach was used for the svPPA data.

Network representation
To link the proteins with changed plasma levels to bio-
logical pathways, we mapped these proteins onto known
protein networks using the Genemania-app [65] in
Cytoscape 3.0.1 [www.cytoscape.org, [66]]. Pathway data
came from NCI-Nature [67], Reactome [68–70], and
[71]. Physical interaction data came from Biogrid Small
Scale [72], IREF Interact, and IREF Small Scale [73]. We
allowed for some nodes above the significance threshold
to be added by the algorithm to connect cliques (dashed
nodes, p-value indicted in figure). To test for enrichment
in biological function, we queried Gene Ontology [74, 75],
KEGG [76], and Panther [77] databases using DAVID [13]
with the 564 unique genes representing the 582 proteins
tested as background.

Mini-mental State Exam (MMSE) correlation
MMSE scores were recorded at the time of plasma ac-
quisition at the respective clinical centers. Scores were
available for 44/47 AD patients and 26/52 Control pa-
tients (Additional file 2 and Additional file 1: Table S1).
MMSE scores were correlated to Z-scored protein levels

using Spearman’s rank correlation. Correlation significance
was assessed using Spearman’s p-value (pRho: significance
that slope is not 0) and by computing an empirical p-value
by permuting protein scores over MMSE scores 1,000-
times (pPerm: Number of times that random MMSE-Protein
data yields correlation greater than observed/1,000). Net-
work representation was performed as described above.

Differential co-expression analysis
Co-expression analysis was performed to identify pro-
teins involved in AD pathogenesis that would inform us
on more specific pathways than the broad ones impli-
cated in the differential analysis above. Besides the mere
difference in expression levels, proteins may differ in
how they correlate with each other between disease and
controls. We sought to discover protein networks that
are changed between AD and Control by evaluating dif-
ferential correlation matrices in an approach analogous
to methods developed for analyzing genetic interaction
profiles [78]. We thus created separate correlation matri-
ces (Spearman’s rank correlation) in Matlab of all of the
proteins measured for AD and Control signaling pro-
teomes, respectively. Since cohort sizes were almost
equal for AD and Controls we then calculated differen-
tial correlation profiles from these correlation matrices
and used unsupervised clustering to identify 8 distinct
clusters of proteins with highly similar differential cor-
relation profiles (Fig. 4c, boxes). To demonstrate that
differential co-expression data contains valuable biological
information, we created semantic similarity scores for each
protein pair [79]. Protein pairs with high differential
co-expression profile correlation exhibited high semantic-
similarity profile correlations as well (Additional file 1:
Figure S5).

Braak staging and atrophy correlation
Braak staging and atrophy data were downloaded from
the supplemental data file of [22]. We then filtered the
data for mRNAs that had been reported to exhibit sig-
nificant correlation to either Braak staging or atrophy
data in the pre-frontal cortex. Expected values were cal-
culated by determining the total number of proteins
tested that were reported to have significant correlations.
Observed values were calculated by determining the
total number of proteins within our MMSE correlation hit
list that were reported to have significant correlations. Sig-
nificance testing was performed using the chi2-test.

Single Nucleotide Polymorphism (SNP) analysis
Datasets and SNP association testing. Summarized infor-
mation from tests of genetic association of AD with SNPs
located in the candidate gene regions was culled from a
recent large genome-wide association study (GWAS)
conducted by the Alzheimer Disease Genetics Consortium
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(ADGC) [23]. Naj et al. computed results for SNPs through-
out the genome in their discovery sample composed of
8,309 AD cases and 7,366 cognitively normal elders from
ten independent Caucasian data sets. Details of the proce-
dures for quality control, genotype imputation, and popula-
tion substructure adjustment are published elsewhere [23].
Genotyped and imputed SNPs were tested for association
with AD in each dataset separately using a logistic general-
ized linear model (GLM) in case–control datasets and a lo-
gistic generalized estimating equation (GEE) in family-based
datasets, controlling for intra-study population substructure.
Genotyped SNPs were coded as 0, 1, or 2 according to the
number of minor alleles under the additive genetic model.
For imputed SNPs, a quantitative estimate between 0 and 2
for the dose of the minor allele were used to incorporate the
uncertainty of the imputation estimates. All analyses were
performed using the GEE [80] and GWAF [81] programs in
the R statistical software package. SNP association
results obtained from individual datasets were combined by
meta-analysis using the inverse variance method imple-
mented in the software package METAL [82] (http://
www.sph.umich.edu/csg/abecasis/Metal/index.html).

Gene-based multiple testing corrections
We corrected for testing multiple SNPs in a gene after
accounting for correlation between SNP genotypes due
to linkage disequilibrium. Each gene tested was treated
as an independent hypothesis and the effective number
of tests per gene was obtained by a previously described
method [83]. The Versatile Gene-based Association Study
(VEGAS) approach [84] was used to summarize the
strength of association of a gene with AD based on the
number of SNPs tested in the gene and size of the gene.
This method computes a gene-based test statistic based
on the SNP p-values within the gene, and then uses simu-
lation to calculate an empirical gene-based p-value. The
distribution of empirical p-values was then plotted and
tested against an expected distribution of p-values using
the Kolmogorov-Smirnov test.

mRNA expression analysis
The dataset comprises gene expression data from brain
tissues that were posthumously collected from more
than 600 individuals with AD diagnosis, HD diagnosis,
or with normal non-demented brains. We used a subset
of dorsolateral prefrontal cortex (PFC, Brodmann area 9)
samples from 181 AD case and 125 controls. Only neuro-
pathologically confirmed AD subjects with Braak stage > III
were included in this profiling experiment; Braak stage and
atrophy were assessed by pathologists at McLean Hospital
(Belmont, MA). The samples were flash frozen in liquid ni-
trogen vapor with an average postmortem interval (PMI) of
about 18 h.

A total of 1 μg of mRNA extracted from each tissue
sample was amplified to fluorescently labeled cRNA, and
profiled by the Rosetta Gene Expression Laboratory in
two phases using the Rosetta/Merck 44 k 1.1 microarray
(GPL4372) (Agilent Technologies, Santa Clara, CA). The
average RNA integrity number of 6.81 was sufficiently
high for the microarray experiment monitoring 40,638
transcripts representing more than 31,000 unique genes.
The expression levels were processed and normalized
to the average of all samples in the batch from the
same region using Rosetta Resolver (Rosetta Biosoftware,
Seattle, WA).
All microarray data generated in this study are available

through the National Brain Databank at the Harvard Brain
Tissue Resource Center (http://www.brainbank.mclean.org/
). This microarray dataset is MIAME compliant. The raw
and final processed data for each hybridization are available
upon request. The essential sample annotation including
experimental factors and their values (e.g., gender, age,
PMI, pH) is available and summarized in [24].
The differential gene expression was assessed using

the standard t-test. The distribution of p-values was then
plotted and tested against an expected distribution of
p-values using the Kolmogorov-Smirnov test.

Western blot
Active GDF3 levels were determined in fresh tissue sam-
ples not part of the plasma screen (Additional file 1:
Table S3). Hippocampal samples were a random subset
picked blindly from the same donors as the cortical sam-
ples. All tissues or cells were lysed in RIPA buffer and
total protein concentrations were determined with a
BCA Protein Assay Kit (Thermo Scientific, Waltham, MA).
10–20 μg of total protein was loaded for each sample into
pre-cast 4–12 % bis-tris gels and run with MOPS buffer
(Invitrogen, Carlsbad, CA). Gels were transferred onto
PVDF membranes (Millipore, Billerica, MA). Antigen spe-
cific primary antibodies were incubated overnight at 4 °C
and detected with species-specific horseradish-peroxidase
labeled secondary antibodies. An ECL Western Blotting
Detection kit (GE Healthcare, Cleveland, OH) was used to
obtain a chemiluminescence signal, which was detected
using Amersham Hyperfilm ECL (GE Healthcare). Band
quantification was performed using ImageJ software (ver-
sion 1.46; NIH, Bethesda, MD). Bands of interest were nor-
malized to actin or neuron specific enolase for a loading
control. For active GDF3 we used anti-GDF3 antibodies
from Novus Biologicals (Littleton, CO; NBP1-96508).

Cell culture assays
Human NTERA cells expressing eGFP under the DCX
promoter were maintained in DMEM media containing
10 % FBS. To induce differentiation, cells were plated in
96 well plates. One day after seeding, 10 μM of retinoic
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acid and designated concentrations of recombinant carrier-
free human GDF3 (R&D Systems, Minneapolis, MN; at 0,
10, 50, or 150 ng/mL) were added to the culture media of
each corresponding NTERA treatment well. Cells were
maintained under these conditions for 2 weeks, during
which media was replaced every 3 days. Cells were then
cultured for an additional 2 weeks with continued GDF3
treatment, in the absence of retinoic acid.

Cellavista
Adult neurosphere number, eGFP expression (relative
to cell confluence), and number of proliferating NPCs
were quantified after GDF3 treatment using an Innovatis
Cellavista Imager (Dynamic Devices, Wilmington, DE). To
quantify NPC proliferation, 10x images were collected by
Cellavista and BrdU+ nuclei were detected and quantified
by Cellavista software using the cell nuclei count function.

Adult hippocampal NPC isolation
Hippocampal NPCs were isolated from 6 week old male
and female mice [85]. NPCs were maintained on poly-
D-lysine (Sigma, St. Lous, MO) and laminin (Invitrogen)
coated 10 cm plastic plates in neurobasal A media
(Invitrogen) with 1× B27 supplement without vitamin
A (Invitrogen) and 1× GlutaMAX-I supplement (Invi-
trogen) and 20 ng/ml each of recombinant human
FGF-basic (Peprotech, Rocky Hill, NJ) and recombin-
ant human EGF (Peprotech) at 37 °C and 5 % CO2.
All experiments used NPCs below passage 20 and
were repeated at least once with male NPCs and once
with female NPCs.

GDF3 treatment of proliferating NPCs
5000 cells were plated per well in a 96 well poly-D-
lysine/laminin-coated plate with 0, 0.01, 0.1, 1, 10 or
100 ng/ml recombinant mouse GDF3 (R&D Systems) in
normal growth media. Cells were allowed to grow for
4 days, with a ½ media change on day 2 (which replaced
full growth factors [85] and ½ of GDF3 treatment). After
4 days in treatment, 20 μM bromodeoxyuridine (BrdU,
Sigma) in sterile PBS was added to all wells and cells were
fixed with 4 % paraformaldehyde 2 h later for 10 min.

Immunocytochemistry
Fixed cells were rinsed with 0.1 M phosphate buffered
saline (PBS) 3 times then blocked with 10 % normal
donkey serum (NDS, Jackson ImmunoResearch, West
Grove, PA) and 0.3 % Triton-X 100 (Sigma) in PBS for
30 min. Cells were incubated overnight in primary anti-
body, rat anti-BrdU (1:500, AbD Serotech, Raleigh NC)
in 10 % NDS in PBS at 4 °C. Cells were then rinsed and
incubated in secondary antibody, Alexa488 anti-rat (1:200,
Invitrogen) in 10 % NDS in PBS. After rinsing, total
BrdU+ cells were imaged and quantified using an

automated Cellavista microscope system (Hoffman-La
Roche, Basel, Switzerland).

NPC differentiation
Murine NPCs were differentiated for 8 days [85]. Briefly,
cells were plated at 200,000 cells/well in a poly-D-lysine/
laminin-coated plate in either full growth factor media
(20 ng/ml of EGF and FGF2; proliferative conditions) or
in media with only 5 ng/ml FGF2. After 2 days, the
proliferative wells and the 2d differentiation wells were
harvested while the 4d and 8d wells received a complete
media change to media with no growth factors added. At
day 4, the 4d wells were harvested and the 8d wells received
a ½ media change with no growth factors added. A ½
media change was repeated on day 6 and the remaining
wells were harvested on day 8.

RNA harvesting and conversion to cDNA
Cells were removed from the plate using Accutase Cell
Dissociation Reagent (Invitrogen) then centrifuged at
400 g for 5 min. The cell pellet was stored at −80 °C
until later RNA extraction. RNA extraction was performed
using the RNeasy Mini Kit (Qiagen, Venlo, Netherlands)
as per manufacturer instructions. The resulting RNA was
quantified using a nanodrop spectrophotometer and RNA
purity was confirmed using A260/A280 ratios. 500 ng of
RNA was treated with DNase I as per manufacturer in-
structions (Invitrogen) to eliminate any genomic DNA
contamination and then converted to cDNA using Super-
Script III first-strand synthesis system (Invitrogen) as per
manufacturer instructions. cDNA was diluted 1:5 in water.

Real-time quantitative PCR
2 μl of cDNA was quantified in duplicate for each sample
using LightCycler 480 SYBR Green I (Roche) on a LightCy-
cler 480 II as per manufacturer instructions. Cycling condi-
tions were: 15 min at 95 °C, 45 cycles of [15 s at 94 °C, 25 s
at 58 °C, 20 s at 72 °C]. Melt curve cycles immediately
followed and were: 5 s at 95 °C, 1 min at 65 °C and then
gradual temperature rise to 97 °C at a rate of 0.11 °C/s
followed by 30s at 40 °C. GDF3 levels were normalized to
MAPK3 [86] as a reference gene because MAPK3 has been
shown not to change with differentiation in contrast to
many other standard housekeeping genes such as actin,
which change dramatically during the differentiation
process [87]. Melt curve analysis was performed to verify
primer specificity and all primers were tested in a dilution
series before use. Data is displayed as fold change above
proliferative condition mRNA levels using 2^(ΔΔCt) values.
Primer sequences were obtained from the MIT/Harvard

PrimerBank.
GDF3 fwd: 5’ATGCAGCCTTATCAACGGCTT
GDF3 rev: 5’AGGCGCTTTCTCTAATCCCAG
GDF3 PrimerBankID: 6679979a1
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MAPK3 fwd: 5’ TCCGCCATGAGAATGTTATAGGC
MAPK3 rev: 5’ GGTGGTGTTGATAAGCAGATTGG
MAPK3 PrimerBankID: 21489933a1

Additional files

Additional file 1: Patient and antibody information, raw and processed
data. (XLSX 6303 kb)

Additional file 2: Supplemental demographic information Tables S1-S3
and additional Figures S1-S7. (PDF 2603 kb)
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