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Visceral hypersensitivity is a highly complex and subjective phenomenon associated
with multiple levels of the nervous system and a wide range of neurotransmission. The
dorsal horn (DH) in spinal cord relays the peripheral sensory information into the brain.
Small conductance Ca2+-activated K+ (SK) channels regulate neuronal excitability and
firing by allowing K+ to efflux in response to increase in the intracellular Ca2+ level.
In this study, we examined the influence of SK2 channels in the spinal DH on the
pathogenesis of visceral hypersensitivity induced by colorectal distension (CRD) in rats.
Electrophysiological results showed that rats with visceral hypersensitivity presented
a decrease in the SK channel-mediated afterhyperpolarization current (IAHP), and an
increase in neuronal firing rates and c-Fos positive staining in the spinal DH. Western
blot data revealed a decrease in the SK2 channel protein in the membrane fraction.
Moreover, intrathecal administration of the SK2 channel activator 1-EBIO or CyPPA
alleviated visceral hypersensitivity, reversed the decrease in IAHP and the increase in
neuronal firing rates in spinal DH in rats that experienced CRD. 1-EBIO or CyPPA effect
could be prevented by SK2 channel blocker apamin. CRD induced an increase in c-Fos
protein expression in the spinal DH, which was prevented by 1-EBIO. Together, these
data suggest that visceral hypersensitivity and pain is associated with a decrease in the
number and function of membrane SK2 channels in the spinal DH. Pharmacological
manipulation of SK2 channels may open a new avenue for the treatment of visceral
hypersensitivity and pain.

Highlights:

- Neonatal colorectal distension induced visceral hypersensitivity in rats.
- Visceral hypersensitivity rats presented a decrease in afterhyperpolarization current

(IAHP) and membrane SK2 channel protein in the spinal dorsal horn.
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- Visceral hypersensitivity rats presented an increase in neuronal firing rate in the spinal
dorsal horn.

- Intrathecal administration of SK2 channel activator 1-EBIO or CyPPA prevented visceral
hypersensitivity and decrease in IAHP.

Keywords: small-conductance Ca2+-activated K+ channel 2, visceral hypersensitivity, colorectal distension,
spinal dorsal horn, rats

INTRODUCTION

Visceral hypersensitivity is a hallmark of irritable bowel
syndrome and other gastrointestinal disorders that cause pain.
The mechanism of visceral hypersensitivity and pain is still poorly
understood due to the diverse nature of visceral hypersensitivity
compounded by multiple factors such as sexual dimorphism,
psychological and physical stresses, genetic and epigenetic traits,
and the nature of predisposed disease (Chen et al., 2015;
Elsenbruch and Enck, 2016). We recently demonstrated that early
life stresses, for example, neonatal colorectal distension (CRD),
maternal separation, could induce visceral hypersensitivity in rats
(Wang et al., 2016; Zhang et al., 2016a,b). Visceral information
is collected by thoracolumbar and sacral spinal visceral afferents,
and coded by viscerosomatic neurons in spinal cord, thalamus,
limbic system, and cortex (Larauche et al., 2012; Moloney
et al., 2015). The dorsal horn (DH) in spinal cord is a major
component of the nociceptive system, and the alteration in spinal
neuronal activity may modulate visceral hypersensitivity and pain
(Kawamata and Omote, 1996; Wang et al., 2014; Fu et al., 2016;
Medrano et al., 2016).

Peripheral visceral afferents project into the spinal lamina I,
II (outer layer), V, and X before reaching the intermediolateral
nucleus where the preganglionic neurons are localized (Sugiura
et al., 1989). Visceral hypersensitivity can be induced by the
sensitization of primary sensory neurons innervating the visceral
organs, hyperexcitability of spinal ascending neurons receiving
visceral afferents, and/or dysregulation of descending pathways
that modulate spinal nociceptive transmission (Sengupta, 2009).
Previous studies revealed that nociceptive neurons in the spinal
DH presented higher excitability and exaggerated sensory reflex
to the visceral stimuli in subjects with visceral hypersensitivity
(Lu et al., 2007; Hipolito et al., 2015; Wu et al., 2016). Neuronal
excitability is modulated by membrane ion channels, for example,
small conductance Ca2+-activated K+ (SK) channels (Adelman
et al., 2012).

The SK channels (SK1, SK2, and SK3 channels) distribute
extensively in the brain (Kohler et al., 1996; Deignan et al., 2012),
spinal dorsal root ganglia (DRG) and DH neurons (Mongan
et al., 2005). SK2 channels were localized almost exclusively in
the superficial laminae of the spinal DH, a region in which many
sensory afferents terminate (Sailer et al., 2004; Mongan et al.,
2005). SK2 channels regulate neuronal excitability and firing by
allowing K+ to efflux in response to increases in the intracellular
Ca2+ level (Adelman et al., 2012). SK channels in the spinal cord
are involved in nociception. For example, 1-EBIO, a SK channel
opener, inhibits neuronal activity in the dorsal root (Bahia et al.,
2005). The SK2/SK3 channel blocker UCL 1,848 increases DH

neuronal responses to naturally evoked nociceptive stimuli, and
intraplantar injection of the selective SK channel blocker, apamin,
induces mechanical allodynia and heat hyperalgesia in naive
rats (Pagadala et al., 2013). SK channels in the brain modulate
pathologic pain (Thompson et al., 2015), however, the role of
spinal SK2 channels on the etiology of visceral hypersensitivity
and pain remains elusive. In this study, we adopted CRD to
develop visceral hypersensitivity and examined the mechanism of
SK2 channels on visceral hypersensitivity and pain by examining
SK2 channel-mediated current change and SK2 channel protein
expression. Our data reveal that visceral hypersensitivity is
associated with a decrease in SK2 channel activity and protein
expression in spinal DH neurons.

MATERIALS AND METHODS

Animals
Sprague-Dawley (SD) rats (220–250 g) were purchased from
the Experimental Animal Center of Xuzhou Medical University
(Xuzhou, China). One male rat and two female rats were mated
to produce offspring. After separation on postnatal day 25, male
juvenile rats were grouped into 4 per cage. All rats were housed
in a colony with a standard 12–12 h light–dark cycle (lights on at
07:00 AM), constant temperature and humidity (22◦C and 50%)
with food and water ad libitum. Young rats were subsequently
assigned to different groups when their body weight reached 200–
250 g. All procedures were conducted in accordance with the NIH
Guide for the Care and Use of Laboratory Animals (2011) and
approved by the Institutional Animal Care and Use Committee
at Xuzhou Medical University.

Reagents
Rabbit anti-SK2/KCa2.2 (APC-028) polyclonal antibody was
purchased from Alomone labs (Jerusalem, Israel). Rabbit anti-
c-Fos mAb (CST-2250s), rabbit NeuN (D4G4O) XP mAb
(#24307), and mouse glial fibrillary acidic protein (GFAP) mAb
(#3670) were purchased from Cell Signaling Technology (Boston,
MA, United States). Mouse anti-β-actin mAb (sc-47778) was
purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
United States). Goat anti-Iba-1 (ab5076) polyclonal antibody was
purchased from Abcam (Cambridge, United Kingdom). Mouse
anti-GAPDH (AC001) mAb was purchased from ABclonal
Biotechnology (Woburn, MA, United States). Rabbit anti-
Tubulin β (AP0064) was purchased from Bioworld Technology
(Minneapolis, MN, United States). Alexa Fluor 488 donkey anti-
rabbit IgG (H + L) antibody and Alexa Fluor 594 donkey anti-
mouse IgG (H + L) were purchased from Life Technologies
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(Carlsbad, CA, United States). Alkaline phosphatase goat anti-
rabbit IgG (ZB-2308), alkaline phosphatase horse anti-mouse
IgG (ZB-2310), HRP-labeled goat Anti-Rabbit IgG (H + L)
(A0208), HRP-labeled goat anti-mouse IgG (H + L) (A0216),
BCA protein assay kit (P0012), sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis (PAGE) sample loading buffer
(P0015), BCIP/NBT alkaline phosphatase color development kit
(C3206) and BeyoECL Moon kit (P0018FFT) were purchased
from Beyotime Institute of Biotechnology (Shanghai, China).
Syn-PERTM Synaptic Protein Extraction Reagent (#87793) was
purchased from Thermo Fisher Scientific (Waltham, MA,
United States).

Development and Assessment of
Visceral Hypersensitivity
The paradigm of development and assessment of visceral
hypersensitivity has been well-established (Zhang et al., 2016a).
In brief, rats received CRD on postnatal days 8, 10, and
12 by inserting an angioplasty balloon (length, 20.0 mm;
diameter, 3.0 mm) into the upper rectum and descending colon
(Figure 1A). The balloon was distended with 0.3 mL water at a
pressure of 60 mmHg for 1 min before deflation and withdrawal.
The distention was repeated twice with at least 30 min interval.
The sham group rats were not given water inflation to distension
balloon. Adult CRD was given to rats at 60 mmHg distention for
60 s 10 times with a 15 s interval. Visceral hypersensitivity was
determined by visceral pain threshold in response to adult CRD
and external oblique muscle discharge as described previously
(Zhang et al., 2016a).

Assessment of Pain Threshold
Rats were placed in transparent plastic boxes
(20 cm × 10 cm × 18 cm) on an elevated plexiglas platform
and allowed to habituate to the recording environments for
15–30 min. Rubber balloon in fixed size were inserted into the
upper rectum and descending colon before applying different
expansion pressures to observe the response of abdominal wall.
The pain threshold was defined by the stimulus intensity that
evoked a visible contraction of abdominal wall. CRD was applied
starting at 10 mmHg. For accuracy, each distension was repeated
for three times to calculate an average.

Intrathecal Catheter Implantation
Intrathecal catheter implantation was similar to that described by
Yaksh and Rudy (1976) with some modifications. In brief, rats
were anesthetized with 2% pentobarbital sodium (40 mg/kg, i.p.).
A 2–3 cm longitudinal incision was made through the skin and
muscle on the back of rats to fully expose the L4–5 vertebrae. PE-
10 catheter (OD 0.28 mm, OD 0.61 mm) containing 0.9% sterile
saline was inserted between L4 and L5. Sterile saline (10 µL)
were injected into subarachnoid gap slowly without resistance
and cerebrospinal fluid was out from the crevasse, which showed
that the catheter was unobstructed. The catheter was secured
to the surrounding tissue and the outside end of the catheter
was sealed. The surgery wounds were dressed with antibiotic
powder and rats were allowed to recover for 5 days. 1-EBIO

(300 µg), CyPPA (140 ng), and apamin (5 ng) drugs were given
intrathecally in a volume of 10 µL using a microsyringe infusion
pump (KDS Scientific, Boston, MA, United States) loaded with a
10 µL Hamilton microsyringe.

Electrophysiological Recording
Transverse sections of the lower lumbar and upper sacral segment
(L4–S4) were taken at 250–300 µm in ice-cold slicing solution
(mM): 80 NaCl, 3.5 KCl, 4.5 MgSO4, 0.5 CaCl2, 1.25 NaH2PO4,
90 sucrose, 25 NaHCO3, and 10 glucose. Artificial cerebral
spinal fluid (ACSF) (mM) consisted of 126 NaCl, 2.5 KCl, 1.2
NaH2PO4, 1.2 MgSO4, 26 NaHCO3, 10 glucose, and 2.4 CaCl2.
All solutions were saturated with 95% O2 and 5% CO2. The
slices were incubated in cutting solution at 32◦C for 15 min,
then transferred to the ACSF at room temperature for at least
1 h prior to a submersion recording chamber. Whole cell patch-
clamp recordings were conducted in DH laminae I–II neurons
with a glass pipette filled with an internal solution (mM): 10
phosphocreatine-Tris, 10 HEPES, 10 EGTA, 2 ATP-Mg, 0.5 GTP-
Na, 115 K gluconate, 20 KCl, 1.5 MgCl2; pH was adjusted to 7.2
with KOH (285 mOsm). The resistance was 4–8 M�. Whole-
cell recoding: cells were held in the current-clamp mode at
−60 mV and action potential firings in response to the injection
of depolarizing current pulses were recorded with a patch-clamp
amplifier (MultiClamp 700A, Axon Instruments, Union City,
CA, United States). To measure SK currents, DH neurons were
held in voltage-clamp at a holding potential of −60 mV and
100 ms depolarizing pulse to 60 mV, which was used to evoke
an outward current. Cell-attached recordings were performed
in voltage clamp with the current held around 0 pA. Data
acquisition and analysis were performed using Clampex and
Clampfit 10 (Axon Instruments, San Jose, CA, United States).

Immunofluorescent Staining
Rats were deeply anesthetized and transcardially perfused with
0.9% saline (100 mL/100 g), followed by 4% polyformaldehyde in
phosphate buffer (100 mL/100 g). Spinal cord was harvested and
fixed again in 4% polyformaldehyde overnight and equilibrated
in 30% sucrose solution before being sliced at 30 µm thickness
with a cryostat (Leica CM1800; Heidelberg, Germany). Selected
slices were washed with PBS three times for 10 min and
blocked with 10% donkey serum at room temperature for 2 h
before being incubated with anti-c-Fos antibody (1:6,000), anti-
NeuN antibody (1:1,000), anti-GFAP antibody (1:1,000), anti-
Iba1 (1:1,000) and anti-SK2 (1:150) at 4◦C for 24 h, then was
incubated with Alexa Fluor 488 (1:200) or Alexa Fluor 594 (1:200)
at room temperature for 2 h. DH regions were visualized with a
confocal laser microscope (FV1000, Olympus, Tokyo, Japan).

Western Blot Analysis
Rats were sacrificed approximately 2 h after adult CRD. The
lower lumbar and upper sacral segment (L4–S4) was extracted
and lysed with Syn-PERTM Synaptic Protein Extraction Reagent
(1 mL/100 mg) containing PMSF. Cell lysis was centrifuged at
8.000 rpm for 10 min at 4◦C. The supernatant (whole cell lysis)
was collected and further centrifuged at 15,000 rpm for 20 min
at 4◦C. The supernatant (cytoplasmic fraction) were collected.
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FIGURE 1 | Adult CRD precipitates the visceral hypersensitivity in rats that experienced neonatal CRD. (A) Timeline for CRD and behavioral test in rats. Neonatal
CRD were conducted on postnatal days 8, 10, and 12. Adult CRD and behavioral test occurred between weeks 8 and 12. (B) The pain thresholds of rats that
experienced neonatal CRD decreased significantly at 1 and 2 h after re-exposed to adult CRD compared with that in sham group (p < 0.01, n = 6 per group).
(C) The pain thresholds of rats that experienced neonatal CRD decreased consistently after re-exposed to adult CRD and lasted for 14 days compared with that in
sham group (p < 0.01, n = 6 per group). (D) Neonatal CRD rats presented a significant decrease in pain threshold compared with naïve rats or rats that experienced
either neonatal or adult CRD (p < 0.01; n = 8 per group). (E) Representative EMG recordings at 20, 40, 60, and 80 mmHg CRD in rats at different condition. Data
are expressed as mean ± SEM. ∗∗p < 0.01.

RIPA lysis buffer (500 µL/200 mg) was added to the pellet
(membrane fraction). The sample protein concentration was
determined with BCA. Equal amounts of protein were separated
by SDS-PAGE gels and transferred to the PVDF membrane. After
blockade with 5% non-fat milk for 2 h at room temperature,
the PVDF membrane was incubated with anti-SK2 (1:200) anti-
GAPDH (1:1,000) or anti-Tubulin β (1:3,000) primary antibody
at 4◦C overnight. After TBST washing, the PVDF membrane
was incubated with AP-conjugated secondary antibody (1:1,000)
or HRP-conjugated secondary antibody (1:1,000) for 2 h at
room temperature. Protein bands were illuminated using the
BCIP/NBT alkaline phosphatase color development kit or
BeyoECL Moon kit and captured by using Image ProPlus
image analysis system (Media Cybernetics, Inc., Rockville, MD,
United States).

Statistical Analysis
Data are expressed as mean ± SEM. One-way analysis of
variance (ANOVA) and repeated measures ANOVA were used.

If significance was found, post hoc Bonferroni or S–N–K multiple
comparisons were used. Independent samples Student’s t-test was
also used. All statistical tests were conducted using the SPSS 19.0
(IBM, Armonk, NY, United States) software package. p < 0.05
was considered statistically significant.

RESULTS

Adult CRD Precipitates Visceral
Hypersensitivity in Rats That
Experienced Neonatal CRD
Rats underwent neonatal CRD on postnatal days 8, 10, and 12,
and adult CRD in week 8 to 12 (Figure 1A). Pain threshold
was recorded 0.5, 1, and 2 h after adult CRD. Neonatal CRD
altered the pain threshold (F(1,10) = 12.39). Rats that experienced
neonatal CRD presented lower pain threshold compared to
sham rats at 1 h (t(10) = 4, p < 0.01) and 2 h (t(10) = 4.56,
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p < 0.01) after adult CRD (Figure 1B). Pain threshold on days
1, 3, 7, and 14 after adult CRD revealed a significant change
(F(1,10) = 236.19, p < 0.01). Rats that experienced neonatal
CRD presented lower pain threshold compared to sham rats on
day 1 (t(10) = 10.72, p < 0.01), day 3 (t(10) = 7.6, p < 0.01),
day 7 (t(10) = 10.29, p < 0.01), and day 14 (t(10) = 12.46,
p < 0.01) after adult CRD (Figure 1C). Rats that experienced both
neonatal and adult CRD presented a significant decrease in pain
threshold compared with naïve rats or rats that experienced either
neonatal or adult CRD (F(3,28) = 30.87, p < 0.01; Figure 1D).
Figure 1E showed the respective EMG recording to various
distension pressure in rats that experienced neonatal and/or adult
CRD.

SK2 Channel Protein in Membrane
Fraction and IAHP Are Reduced in Rats
That Experienced Neonatal CRD
Western blot data showed that the spinal SK2 channel protein
in membrane fraction was decreased in rats that experienced
neonatal with or without adult CRD compared with that in rats
only received adult CRD (F(3,8) = 13.67, p < 0.01; Figure 2A).
There was no difference in total spinal SK2 protein in rats that
experienced either neonatal or adult CRD (F(2,18) = 1.18, p = 0.33;
Figure 2B).

Rats that experienced neonatal CRD presented low IAHP
compared to rats without neonatal CRD. The average peak
amplitude of IAHP was 62.2 ± 19 pA and 36.43 ± 18.9 pA
in naïve and neonatal CRD rats, respectively (t(35) = 4.09,
p < 0.01; Figure 2C). Consistently, rats that experienced
neonatal CRD presented an increase in spontaneous neuronal
firing rates compared to the naïve rats (4.77 ± 0.85 vs.
8.70 ± 1.45; t(17) = 2.27, p = 0.04; Figure 2D). The changes
could be reversed by SK channel activator 1-EBIO (100 µM).
Incubation of the spinal slice of rats that experienced neonatal
CRD. 1-EBIO elevated IAHP (23.90 ± 3.51 vs. 49.11 ± 4.37;
t(18) = −4.53, p < 0.01; Figure 2E) and decreased the neuron
firing rate (6.76 ± 0.82 vs. 2.104 ± 0.40; t(18) = 5.11, p < 0.01;
Figure 2F).

SK Channel Activator 1-EBIO Prevents
the Decrease in Pain Threshold and
Increase in c-Fos Protein Expression in
Rats That Experienced Neonatal and
Adult CRD
Rats received intrathecal administration of 1-EBIO
(300 µg/10 µL) 20 min before adult CRD, and behavioral
tests were conducted 2 h after adult CRD. 1-EBIO prevented
the decrease in pain threshold in rats that experienced neonatal
and adult CRD (p < 0.01; Figure 3A). The increase in pain
threshold induced by 1-EBIO could be further blocked by SK2
channel blocker apamin (5 ng/10 µL) (p < 0.01; Figure 3B).
Figure 3D shows the c-Fos immunostaining in the spinal DH
under different conditions (Figure 3D). Quantitative results
showed 1-EBIO could prevent neonatal and adult CRD induced
increase in c-Fos overexpression (p < 0.01; Figure 3C).

SK2 Channel Activator CyPPA and
Blocker Apamin Affect IAHP and Pain
Threshold
Similar to 1-EBIO, CyPPA (20 µM) increased IAHP (32.01± 3.42
vs. 49.311 ± 4.63; t(18) = −3.01, p < 0.01; Figure 4A) and
suppressed neuronal firing rate (5.49 ± 0.51 vs. 2.09 ± 0.20;
t(26) = 6.19, p < 0.01; Figure 4B). Intrathecal CyPPA
(140 ng/10 µL) prevented CRD induced decrease in pain
threshold, which could be blocked by SK2 channel blocker
apamin (5 ng/10 µL) (p < 0.05; Figure 4C). Apamin (100 nM)
decreased IAHP current compared with that in control group
(40.00 ± 7.54 vs. 7.28 ± 2.15; t(10) = 4.18, p < 0.01; Figure 4D).
Figure 4E showed the SK2 channel protein in membrane
fraction under different conditions. Intrathecal administration of
apamin facilitated the decrease in pain threshold caused by CRD
(p < 0.05; Figure 4F).

DISCUSSION

In this study, we explored the role of spinal SK2 channels in
visceral hypersensitivity in a rat model developed by CRD. Rats
with visceral hypersensitivity presented a significant decrease in
membrane SK2 channel protein and IAHP, and an increase in
neuronal firing rate in the spinal DH. SK2 channel activators
1-EBIO and CyPPA could reverse the decrease in IAHP and
neuronal firing rate, and prevent the visceral hypersensitivity
in CRD rats. SK2 channel blocker apamin reduced IAHP and
pain threshold in CRD rats. Our results for the first time
reported the involvement of spinal SK2 channels in the visceral
hypersensitivity, and pharmacological manipulation of SK2
channels may open a new avenue for the treatment of chronic
visceral hypersensitivity and pain.

In line with previous reports (Zhang et al., 2016a), we
validated that neonatal CRD can induce visceral hypersensitivity
and facilitate pain precipitation. Early life is a critical period
for the nervous system development. The adverse events in
early life can disrupt neuronal development, leading to various
endocrine, metabolic, autoimmune, and psychiatric disorders
(Amath et al., 2012), as well as increase the vulnerability
to stressors (Luthar and Zigler, 1991; Gunnar and Quevedo,
2008). We previously reported that microglial activation in the
hippocampus and paraventricular nucleus participates in the
etiology of visceral hypersensitivity to neonatal CRD (Zhang
et al., 2016a). The spinal DH converges peripheral sensory
information and relays to the brain. Abnormalities in the
structure and function of DH are observed in neuropathic
pain, cancer pain, and other pain disorders (Kawamata and
Omote, 1996; Wang et al., 2014; Fu et al., 2016; Medrano
et al., 2016). Nociceptive neurons in the spinal DH presented
higher excitability and exaggerated sensory reflex to the visceral
stimuli in subjects with visceral hypersensitivity (Lu et al., 2007;
Hipolito et al., 2015; Wu et al., 2016). Exploration of the
molecular mechanism in the spinal DH responsible for visceral
hypersensitivity is critical for translational research and drug
development.
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FIGURE 2 | SK2 Channel protein in membrane fraction and IAHP are reduced in rats that experienced neonatal CRD. (A) Spinal SK2 channel in membrane fraction
presented a significant decrease in rats that experienced neonatal and adult CRD compared with that in rats received adult CRD alone (p < 0.05, n = 3 per group).
(B) There was no difference in total spinal SK2 channel protein in rats that experienced neonatal or adult CRD as compared to sham rats (p > 0.05, n = 7 per group).
(C) The average peak amplitude of IAHP in neonatal CRD rats significantly reduced compared with that in naïve rats (p < 0.01, n = 16–21 neurons, six rats per group).
(D) The spontaneous neuronal firing rate in spinal DH increased significantly in neonatal CRD rats compared with that in naïve rats (p < 0.05, n = 9–10 neurons, five
rats per group). (E) 1-EBIO can increase the amplitude of IAHP in neonatal CRD rats (p < 0.01, n = 10 neurons per group). (F) 1-EBIO can decrease the neuronal
firing rate in the spinal DH in rats that experienced neonatal CRD (p < 0.01, n = 10 neurons per group). Data are expressed as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01.

Our data revealed that membrane SK2 channel protein
in spinal DH was decreased in rats that experienced CRD.
Consistently, the SK2 channel-mediated IAHP was decreased. SK2
channels regulate synaptic transmission, neuronal excitability
and firing by allowing K+ to efflux in response to increase in the
intracellular Ca2+ level. The decrease in membrane SK2 channel

will facilitate the intrinsic neuronal excitability and synaptic
transmission, which may induce visceral hypersensitivity and
pain. Moreover, SK2 channel activators 1-EBIO and CyPPA were
found to prevent the precipitation of visceral hypersensitivity and
pain, which further supports the hypothesis that SK2 channels
participate in the pathogenesis of visceral hypersensitivity and
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FIGURE 3 | SK channel activator 1-EBIO prevents the decrease in pain threshold and increase in c-Fos protein expression in rats that experienced neonatal and
adult CRD. (A) 1-EBIO prevented the decrease in pain threshold in rats that experienced neonatal and adult CRD (p < 0.01, n = 6 per group). (B) Apamin blocked
the effect of 1-EBIO (n = 6). (C) 1-EBIO can prevent neonatal and adult CRD induced c-Fos overexpression (p < 0.01, n = 6 per group). (D) c-Fos immunostaining.
Scale bar = 100 µm. Data are expressed as mean ± SEM. ∗∗p < 0.01.

pain. c-Fos is a proto-oncogene that is expressed within some
neurons following depolarization. c-Fos expression might be
used as a marker for neuronal activity throughout the neuraxis
following peripheral stimulation. We found an increase in c-Fos
positive staining in the spinal DH, which was in line with the
increase in spinal neuronal firing in rats that experienced visceral
hypersensitivity. 1-EBIO prevented the increase in c-Fos protein
expression in spinal DH in rats that experienced CRD further
support that activation of SK2 channels presents an inhibitory
effect.

The mechanism underlying the decrease in membrane
SK2 channel protein remains unknown. Activation of cyclic
AMP-dependent protein kinase (PKA) with forskolin causes a
dramatic decrease in surface localization of the SK2 channel
subunit expressed in COS7 cells due to direct phosphorylation
of the SK2 channel intracellular domain (Ren et al., 2006;
Abiraman et al., 2016). The internalization of synaptic SK
channels by PKA enhances excitatory synaptic transmission
and plasticity in the Amygdala (Faber et al., 2008). Blocking
PKA or PKA target domain in SK2 channels blocks the
internalization of SK2 channels after long-term potentiation
(LTP) induction at Schaffer collateral-CA1 synapses (Lin
et al., 2008). The cAMP-PKA pathway augments presynaptic
neurotransmitter synthesis and vesicular transport, maintains
DRG neuronal hyperexcitability by phosphorylating key
transcription factors and synaptic vesicle proteins (King et al.,
2005; Tumati et al., 2011; Zhu et al., 2014; Shao et al., 2016).
These findings suggest that CRD causes the internalization
of SK2 channels by increasing cAMP-PKA activity in
spinal DH.

SK channels are specifically involved in the medium
afterhyperpolarization potential (mAHP) following single or
multiple action potentials in neurons, affecting the intrinsic
excitability of neurons, synaptic transmission and pain sensation
(Bahia et al., 2005; Pedarzani et al., 2005; Lu et al., 2009). In an
animal model of nociception, the AHP is down-regulated in DRG
cells and reticulospinal neurons after nerve injury (McClellan
et al., 2008). In this study, we found that SK2 channel protein
in membrane fraction was decreased, which may result in the
reduction in the amplitude of IAHP contributing to an increase
in neuronal excitability, e.g., increase in neuronal firing rate.

Besides SK2 channels, SK3 channel may also participate the
development of visceral pain. Similar to SK2 channels, high
level of SK3 channel positive staining are expressed in the DH
of spinal cord. Particularly, dense fiber staining was observed
in the laminae I and II (Sailer et al., 2004; Hipólito et al.,
2015). Our data confirm this finding (Supplementary Figure 2).
Moreover, neonatal and/or adult CRD did not alter the SK3
channel protein expression in the spinal cord (Supplementary
Figure 3). Considering the limitation of SK3 channel selective
activator/blocker, the role of SK3 channel in the etiology of
visceral pain need further exploration.

Neuroinflammation participates in the development of
visceral hypersensitivity and pain. We previously reported
microglial activation and increase in proinflammatory cytokines
facilitate the development of visceral hypersensitivity in rats
that experienced CRD (Zhang et al., 2016a). KCNN1-3 genes
are expressed in microglia (Schlichter et al., 2010). SK
channels regulates microglial function and neuroninflammation
(Armstrong et al., 2005; Schlichter et al., 2010; Dolga and
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FIGURE 4 | SK2 channel activator CyPPA and blocker apamin affect IAHP and pain threshold. (A) CyPPA increased the amplitude of IAHP in rats that experienced
neonatal CRD (p < 0.01, n = 10 neurons per group). (B) CyPPA decreased the neuronal firing rate in the spinal DH in rats that experienced neonatal CRD (p < 0.01,
n = 14 neurons per group). (C) CyPPA prevented the decrease in pain threshold in rats that experienced neonatal and adult CRD, which could be prevented by
apamin (p < 0.01, n = 5 per group). (D) Apamin decreased the amplitude of IAHP in rats that experienced neonatal CRD (p < 0.01, n = 6 neurons per group).
(E) Apamin induced a decrease in membrane SK2 channel protein level (p < 0.01, n = 6 neurons per group). (F) Apamin promoted a decrease in pain threshold in
rats that experienced neonatal or adult CRD (p < 0.01, n = 5 per group). Data are expressed as mean ± SEM. ∗p < 0.05; ∗∗p < 0.01.

Culmsee, 2012). For example, the SK3 channel mRNA is
expressed in microglia in the rat striatum (Schlichter et al.,
2010), substantia nigra pars compacta (Armstrong et al., 2005)
of adult rat and mouse brains. SK3 channel blockade decreased
the activity of p38 mitogen-activated protein kinase (MAPK) in
microglia cells and attenuated tyrosine-nitrated proteins in the
neurons exposed to activated microglia (Schlichter et al., 2010).
We found that SK2 channels are co-labeled with GAFP and Iba-1
at the layer I and II of the spinal DH, supporting the involvement
of SK2 channels in the modulation of neuroinflammation
(Supplementary Figure 1).

In this study, we explored the participation of SK2 channels
in spinal DH on visceral hypersensitivity in rats. Our data reveals
that rats with visceral hypersensitivity present a decrease in the
number and function of membrane SK2 channels in the spinal
DH. Pharmacological activation of SK2 channels can prevent
the precipitation of visceral hypersensitivity, and blockade
of SK2 channel can facilitate the visceral hypersensitivity.
Pharmacological manipulation of SK2 channels may open a new
avenue for the treatment of visceral hypersensitivity and pain.
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