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A B S T R A C T   

Coronaviruses are highly pathogenic and transmissible viruses. The SARS-CoV-2 virus that emerged in December 
2019 is increasingly recognized as a serious, worldwide public health concern. Respiratory infections and the 
hyper-inflammatory response induced by SARS-CoV-2 play a key role in disease severity and death in infected 
COVID-19 patients. However, much uncertainty still exists about the pathogenesis and various effects of COVID- 
19 on immune system. It seems that memory T cells can reduce the severity of COVID-19 infection by inducing a 
protective immune response. Memory T cells along with protective antibodies are the main defenses and also 
protective barrier against recurrent COVID-19 infection. The role of Memory T cells varies in different ages and 
the severity of COVID-19 infection varies between children, adults and the elderly. Furthermore, the aim of this 
review is to evaluate the role of memory cells in mild, moderate and severe infected COVID-19 patients with 
different ages.   

1. Introduction 

Since December 2019, an outbreak of coronavirus disease (COVID- 
19) appeared in Wuhan, China, and then spread all around the world 
causing significant numbers of deaths in many countries. COVID-19 
became a major public health problem and was the main cause of res-
piratory distress syndrome with a 3% fatality rate (Yang et al., 2020; 
Calisher et al., 2020). Patients with underlying diseases such as; car-
diovascular disease, diabetes, hypertension, and immune deficiencies, 
are at a high risk of death. In addition, approximately 80% of adults aged 
above 65 years who get a severe COVID-19 infection are hospitalized 
and admitted to intensive care unit (ICU), but there were rare ICU ad-
missions and less than 0.1% of deaths in people aged under 19. The 
reports showed the percentage of hospitalization development in age 
(Weaver et al., 2021; Serpa et al., 2021). According to the infrequency of 
severe COVID-19 in children and adolescents, the knowledge of its 

pathogenesis mechanisms is still restricted. However, features of the 
immune and inflammatory response in children, besides age-related 
extra-immunological factors, like angiotensin I converting enzyme 2 
(ACE2) receptor expression could remarkably help to distinguish the 
different clinical phenotype and disease severity between adult and 
pediatric patients. T cell-dependent cytokine release and direct cellular 
cytotoxicity can also contribute to tissue inflammation and toxicity, 
increasing the possibility that immunosuppression, owing to T cell 
depletion and exhaustion, causes COVID-19 viral persistence and mor-
tality (Li et al., 2020). In this regard, the majority of virus-specific T cells 
undergo apoptosis following viral clearance; however, maintenance of a 
virus-specific memory T cell population is required for long-term anti-
viral immunity (Zheng et al., 2020). This review illustrates the main 
immunopathogenic aspects of COVID-19 and the impact of lymphoid 
memory cells, with a focus on the age-related differences between adult 
and children patients deriving clinical implications. 

Abbreviations: COVID-19, coronavirus disease-19; ICU, intensive care unit; CNS, central nervous system; ACE2, angiotensin-converting enzyme 2; NK, natural 
killer (NK) cells; CRP, C-reactive protein; MNPs, mononuclear phagocytes; BALF, broncho-alveolar fluid; CRS, cytokine release syndrome; TNF, tumor necrosis factor; 
CCL, CC-chemokine ligand; CXCL, CXC-chemokine ligand; EDTA, ethylenediaminetetraacetic acid. 
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1.1. Symptoms and genomic characterization 

The incubation period for COVID-19 can be up to 14 days, but age 
and immune system conditions can shorter this period. The most com-
mon symptoms of COVID-19 infected patients are fever, fatigue, dry 
cough, loss of appetite, body aches, gastrointestinal problems, and 
shortness of breath (Yang et al., 2020; Calisher et al., 2020; Weaver 
et al., 2021; Serpa et al., 2021). Recent evidence has examined the ef-
fects of COVID-19 on the lungs, cardiovascular system, kidneys, 
gastrointestinal organs, and central nervous system (CNS), although the 
lungs are the most affected organ (Li et al., 2020; Zheng et al., 2020; 
Wadman et al., 2020; Gu et al., 2020; Baig et al., 2020; Sarda et al., 
2020). COVID-19 also engaged angiotensin-converting enzyme 2 
(ACE2) as a cell receptor to enter respiratory cells, gastrointestinal cells, 
and renal cells (Huisman et al., 2018; Suleiman et al., 2021). The 
genome sequences of COVID-19 revealed coding regions of COVID-19 
including the spike (S), membrane (M), envelope (E), and nucleo-
capsid (N) proteins. The spike protein is divided into the two S1 and S2 
domains that are responsible for receptor binding and cell membrane 
fusion, respectively (R. Lu et al., 2020; Z. Liu et al., 2020; Tang et al., 
2020). It seems that specific antibodies against S and N proteins can be 
used to diagnose COVID-19 (Y. Liu et al., 2020; Chan et al., 2009; 
Raheem et al., 2021a). 

1.2. Pathogenesis 

Many studies are describing the role of the immune response in pa-
tients with COVID-19. The innate immune system is the first layer of 
defense against pathogens that involves different cells and humoral 
components such as neutrophils, eosinophils, macrophages, mast cells, 
dendritic cells, natural killer (NK) cells, C-reactive protein (CRP), and 
antimicrobial peptides. In addition, innate immunity provides an 
important contribution to initiating adaptive immune response (Turvey, 
2010). Studies have reported patients with COVID-19, especially in se-
vere cases, have an increased neutrophil count and a decreased 
lymphocyte count, as well as high levels of the inflammatory mediators 
and acute-phase protein (like inflammatory cytokine/chemokines and 
CRP) in serum. Since the entrance of COVID-19, pattern recognition 
receptors for coronaviruses such as Toll-like receptor 7, RIG 1, and MDA- 
5 initiate immune response and expression of IFN-γ and inflammatory 
cytokines. Results showed that the portion of mononuclear phagocytes 
(MNPs) in broncho-alveolar fluid (BALF) of patients with severe con-
ditions was higher than mild cases, which led to hyper inflammation. 
The release of a large number of cytokines in patients with severe con-
ditions is similar to the cytokine release syndrome (CRS). High serum 
levels of IL-6, IL-1, IL-7, tumor necrosis factor (TNF), and also inflam-
matory chemokines including CC-chemokine ligand 2 (CCL2), CCL7, 
CCL3, and CXC-chemokine ligand 10 (CXCL10), were observed in in-
dividuals with severe COVID-19 caused hyper inflammation and death, 
even in younger patients (Merad and JCJNRI, 2020; Shi et al., 2020; 
Moore and June, 2020). Furthermore, lymphocyte subsets were signif-
icantly decreased in patients with COVID-19. Helper T (Th) cells, sup-
pressor T cells, memory Th cells, and regulatory T cells were reduced, 
seen more clearly in severe cases, but, the percentage of naive Th cells 
were enhanced (Qin et al., 2020; Schett et al., 2020). 

2. Discussion 

According to similar inflammatory and pathogenicity features of 
COVID-19 in different infected patients, finding a resistant strategy 
against disease is crucial. About one-third of COVID-19 infected patients 
have no symptoms, this is dependent on the patient's human leukocyte 
antigen (HLA) polymorphism, immune system response, presence of 
antibodies, and CD4+ and CD8+ memory cells. Earlier findings 
demonstrated that humoral immune system response (IgG, IgM, and IgA 
antibodies) might not be protective in all COVID-19 patients and cannot 

prevent reinfection. Therefore, the role of CD4+ and CD8+ memory cells 
in the immune response against COVID-19 is significant. Regarding 
imposed since of memory cells in the inhibition of viral disease pro-
gression, the purpose of this study is to assess the role of subsets of 
memory cells in mild and severe COVID-19 patients of different ages. 

2.1. Memory T cell subsets and protective role 

In contrast to naïve T cells, memory T cells circulate in peripheral 
tissues (such as lung, skin, and gut) in addition to lymph nodes, and 
blood, which enhances their ability to respond more effectively and 
faster to infections. They also require less co-stimulation and can 
respond to lower antigen doses (Woodland and Kohlmeier, 2009). 
Memory T cells are divided into numerous subsets: central memory T 
cells (TCM cells), effector memory T cells (TEM cells) (Saule et al., 2006), 
tissue-resident memory T cells (TRM) (Mueller and Mackay, 2016), vir-
tual memory T cells (TVM) (Lee et al., 2011; Marusina et al., 2017) and 
stem memory T cells (TSCM) (Gattinoni et al., 2011a) that are determined 
by their homing, phenotype and migratory properties. 

Although the function and tissue homing of all memory CD4+ T cell 
subsets are different, they play a fundamental role in eliminating path-
ogens (Mueller et al., 2013). CD4+ TCM cells can produce IL-2 cytokine 
more than CD4+ TRM cells, which led to having a considerable capacity 
of proliferation as well as developing B cell expansion and antibody 
production (Wang et al., 2012; MacLeod et al., 2011). While CD4+ TEM 
cells produce IL-4, IL-17, and IFN-γ and supply Ag-specific effector T 
cells rapidly (Jain et al., 2018; Kaech et al., 2002). In addition, CD4+ TEM 
cells can suppress P. chabaudi, a mouse model of malaria, through the 
effects of IFN-γ and IL-10 (Stephens and Langhorne, 2010). CD4+ TRM 
cells operate as the first line of defense in peripheral tissues and elevate 
quick local response to entry sites of infection. They have a regulatory 
function via the expression of the transcription factor Foxp3 (Seneschal 
et al., 2012) and the production of IFN-γ, TNF, and IL-22 (Watanabe 
et al., 2015). Previous researches have indicated that CD4+ TRM cells can 
boost protection against different viruses and bacteria. Lung, mucosal, 
and skin resident memory CD4+ TRM cells provide appropriate protec-
tion against secondary respiratory viral challenge with influenza virus, 
Chlamydia infection, and Leishmania (Teijaro et al., 2011; Stary et al., 
2015; Glennie et al., 2015). Findings have been reported that IFN-γ 
secreted from CD4+ TRM cells, improve Chlamydia trachomatis, genital 
tract herpes simplex virus (HSV), and Helicobacter pylori amelioration 
(Stary et al., 2015; Nogueira et al., 2015; Shin and Iwasaki, 2012; Liu 
et al., 2019). Moreover, CD4+ TRM cells can enhance the distribution of 
lung CD8+ TRM cells in infection with influenza (Laidlaw et al., 2014). In 
contrast, studies showed that memory CD4+ T cell subsets promote 
pathogenesis in multiple sclerosis (MS), psoriasis, rheumatoid arthritis 
(RA), systemic lupus erythematosus, colitis, and type 1 diabetes auto-
immune disease (Raphael et al., 2020). Furthermore, in Parkinson's 
disease, memory CD4+ T cells increased, while naïve T cells decreased 
(Saunders et al., 2012). 

There is an apparent relationship between CD4+ and CD8+ T cells. 
CD4+ T cells enhance the generation and maintenance of effector and 
memory CD8+ T cells population, via direct ligation of CD40 on naive 
CD8+ T cells by CD40L on CD4+ T cells (Bourgeois et al., 2002) and IL-6, 
IL-1, IL-15, and TNF cytokines (Oh et al., 2008). Memory CD8+ T cells 
enable robust protection against invading intracellular pathogens, 
particularly viral infections and tumors (Phan et al., 2016). CD8+ TCM 
and TEM cells recirculate into blood but, CD8+ TRM cells reside in non- 
lymphoid peripheral tissues (e.g., salivary glands, skin, lung, liver, 
kidney, gastrointestinal tract, female reproductive tract (FRT), and 
brain), and lymphoid tissues (e.g., thymus and secondary lymphoid 
organs). Earlier findings demonstrated IL-15 and IL-7 are essential for 
the longevity of recirculating memory CD8+ T cells in secondary 
lymphoid organs (Wu et al., 2018; Schenkel and Masopust, 2014). CD8+

TRM cells play a vital role in anti-viral infection diseases. The protective 
effects of CD8+ TRM cells have been explored in several studies. Several 
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researches have reported that through vaccinia virus (VACV) (Jiang 
et al., 2012), pulmonary influenza virus (Zarnitsyna et al., 2016; Wu 
et al., 2014), respiratory syncytial virus (RSV) (Kinnear et al., 2018), 
herpes simplex virus (HSV) (Gebhardt et al., 2009), and local murine 
cytomegalovirus (MCMV) infections (Thom et al., 2015), CD8+ TRM cells 
are generated and produce IFN-γ and TNF-α cytokines to orchestrate 
strong antiviral immune response (McMaster et al., 2015). 

2.2. Age-associated vulnerability in response to COVID-19 

As mentioned, COVID-19 is an age-related disease, and the mortality 
rate increases with aging. It is also noticeable that COVID-19 outbreak 
and mortality is higher in men than in women at the same age (Pal-
aiodimos et al., 2020; Jin et al., 2020; Raheem et al., 2021b). Aging is a 
sophisticated mechanism that includes deadly and non-deadly diseases 
and suppresses the immune system response. Age-related changes can 
lead to the decline in production of new naïve T cells at the end of pu-
berty (Chinn et al., 2012) and at 40–50 years of age (Naylor et al., 2005), 
decrease in proliferation and differentiation of B and T cells in lymph 
nodes (Brien et al., 2009) and dysregulation of T cells migration (Li 
et al., 2012), which could diminish the quick response of the immune 
response to infections (Schett et al., 2020; Richner et al., 2015). How-
ever, patients with underlying diseases are more vulnerable to COVID- 
19, even at a young age (Blagosklonny, 2020). 

2.3. COVID-19 in infants and children 

Several researchers have reported that in addition to adults, infants 
and children are susceptible to COVID-19 (Ludvigsson, 2020; Zhou et al., 
2021). Infants are extremely vulnerable to respiratory viral pathogens, 
and their mortality rate is enlarged which is probably due to an imma-
ture immune response. The findings demonstrated that in influenza 
infection, CD4+, and CD8+ lung tissue-resident TRM cells of infants 
produce a protective response (Siegrist, 2007). Although, most of their 
peripheral T cells are naïve (Thome et al., 2016) and lung-localized TRM 
cells are reduced in adults. In contrast, in infants, transcription factor T- 
bet level is enhanced, this is correlated with reduced development of 
TRM cells and the survival factor CD127 (Zens et al., 2017). Investigators 
also have examined the effects of COVID-19 on children. A recent study 
demonstrated, unlike the other respiratory infections, COVID-19 was 
milder in children, and most of the children were asymptomatic (Sinha 
et al., 2020). But, the evidence showed Streptococcus pneumonia and 
Haemophilus influenza type B caused pneumonia in children, and they 
have been identified as major contributing factors for death under the 
age of 5 (Adkins et al., 2011). The researchers observed clinical symp-
toms of COVID-19 in children were less severe than in adults, and the 
mortality rate is low. Cough, pharyngeal erythema, and fever are the 
majority of symptoms among children (X. Lu et al., 2020; Suksatan et al., 
2021). 

Most recently research indicated that national dissimilarities in 
COVID-19 impact could be a limited extent elucidated by the different 
national BCG childhood vaccination policies (Miller et al., 2020; Netea 
et al., 2020). According to cross-protection, in vitro memory T cells 
which are specific for unrelated pathogens, probably can play important 
role in protective immunity arising from heterologous infectious agents. 
Analogous epitopes shared between BCG and SARS-CoV-2 have been 
recognized as the potential for cross-reactive in adaptive immunity 
(Welsh and Selin, 2002; Eggenhuizen et al., 2021) Although in vivo ef-
fect of cross-reactive T cells in BCG vaccinated individuals, particularly 
memory T cell subsets should be characterized. 

Recently, Cohen and et al. investigated SARS-CoV-2 specific T cell 
responses in children. Infected children had notably lower CD4+ and 
CD8+ T cell responses to SARS-CoV-2 structural compared to infected 
adults. Effector and memory CD4+ T cells responses to structural SARS- 
CoV-2 proteins remarkably elevated with age, whereas CD8+ T cell 
responses enhanced with time post-infection (Cohen et al., 2021). 

Also, laboratory tests in children showed neutrophil counts reduced, 
but lymphocytes counts were not different from adults. Inflammatory 
mediators such as CRP and IL-6 were not elevated, and enhanced LDH 
was observed in children, which cause cardiopulmonary disease. 
Although lung injuries were observed in some cases in children, clinical 
symptoms were mild compared to adults (Du et al., 2020). A possible 
explanation for these results may be the lack of adequate inflammatory 
memory cells, low ability to cell-mediated attacks on lung tissue, and 
fewer ACE2 receptors in the lungs, and other organs in early life. 
Another possible explanation is the lack of devastating inflammatory 
response and cytokine storm that leads to exacerbation of the disease. 

2.4. COVID-19 mild, moderate, and severe infections among adults and 
elderly patients 

To realize how immune responses make processes in the elderly and 
young hosts differently, we require to discover how the innate and 
adaptive systems differ during the natural aging process. The reduction 
of hematopoietic output causes an age-related diminution of naive 
lymphocytes in the circulation. Besides the B cells population, there is a 
vast range of age-related functional changes in peripheral B cells that 
could alter antibody responses to infections and vaccines in the elderly 
(Riley et al., 2017). In addition, since T lymphocyte cells leave their 
developmental sites and resettle to secondary lymph tissue, they 
encounter age-related stromal failure (Masters et al., 2019).In opposi-
tion to young people, older adults are exposed to the coronaviruses, 
therefore, memory cells level is enhanced, and the inflammatory 
response is more intense, which in the elderly and patients with un-
derlying disease contribute to multi-organ dysfunction and a severe 
form of the disease (Abdulamir, 2020). The relationship between cyto-
kine profile and age has been widely investigated. The findings showed 
that cytokine profiles are age-related, and the T cell population pre-
sented various functions in children, adults, and the elderly. Also, data 
suggested that children's cells are rarely susceptible to stimulation 
compared to adults (Booth et al., 2014). Along with COVID-19 growth in 
children, there is increasing concern over the progression of the disease 
in the elderly. In elderly infected patients, hyper-functional immune 
response causes cellular exhaustion (e.g., lymphopenia), hyper- 
inflammation, and cytokine storm that give rise to death. On the other 
hand, it has been shown that in older adults D-dimer levels, more than 1 
μg/mL and elevated Sequential Organ Failure Assessment (SOFA) 
scores, were predisposing factors for death with COVID-19 (Zhou et al., 
2020). In other words, hyper-functional immune response and following 
outcomes, are stronger reasons than COVID-19 virus numbers for death 
(Smits et al., 2010). In addition, differentiation of naïve T cells to 
memory T cells enhanced with age (Davenport et al., 2019). Some au-
thors have speculated that diminished myeloid cell antigen-presenting 
cell (APC) function in older adults, probably aggravated immune 
evasion by SARS-CoV-2 infection (Zhao et al., 2016). 

Bronchoalveolar lavage fluid analysis (single-cell RNA-seq tech-
nique) demonstrated the whole number of tissue-resident CD8+ T cells 
was greater in moderate disease patients than that in those with severe 
disease. Also, this study deduced that lung macrophages present in 
Bronchoalveolar lavage fluid of severe COVID-19 patients expressed 
chemokines highly likely to recruit inflammatory monocytes, while lung 
macrophages expressed higher amounts of T cell-recruiting chemokines 
in moderate COVID-19 patients, supporting the hypothesis that T cell 
migration to the lungs is not the leading cause of lymphopenia which is 
observed in the severe forms of the disease (Liao et al., 2020a). In res-
piratory infections cases, TRM can provide protection against severe 
pulmonary disease by blocking the spread of viral disease from the upper 
to lower respiratory tract which has been demonstrated obviously in 
influenza A infection (Pizzolla et al., 2017). 

In line with recent studies, pre-existing T cell immunity against 
SARS-CoV-2 is likely against common cold viruses in 20–50% of the 
unexposed individuals (Grifoni et al., 2020a). Severe COVID-19 patients 

M. Jafari et al.                                                                                                                                                                                                                                  



Gene Reports 26 (2022) 101503

4

demonstrated lower TCR avidity and clonal expansion. As memory T 
cells have a less activation threshold, numerous low avidity memory 
cells may be involved and prohibit naïve T cell activation and high- 
affinity selection (Lanzer et al., 2018). Additionally, evaluation of 
immunological age-related interaction memory on COVID-19 severity 
indicates that SARS-CoV-2 reactive T cells in hospitalized patients 
demonstrate notably lower functional avidity compared to non- 
hospitalized patients. Increasing T cell abundance in severe COVID-19 
did not arise from an expansion of individual clones but instead re-
flected a broad polyclonal response. in mild disease, the most expanded 
clones were generally exclusive to the cytotoxic cluster while several 
clusters were observed in more severe disease. (Bacher et al., 2020) This 
evidence indicates a need to understand the various aspects of COVID-19 
that exist among mild, moderate, and severe patients. 

In a major study, Wen, W. et al. found that in patients in the early 
recovery stage of COVID-19 (who recovered in less than seven days), 
CD4+ and CD8+ T cells, NK and naïve B cells diminished significantly, 
while plasma cells and inflammatory genes increased. On the other 
hand, in patients in the late recovery stage, NK and T cells were elevated, 
and inflammatory genes decreased (Wen et al., 2020). Also, the 
magnitude of memory cells responses and COVID-19 disease severity 
were investigated up to 8 months in hospitalized and non-hospitalized 
adults. Given to result, memory CD8+ T cell frequencies were not 
higher in hospitalized cases compared to non-hospitalized cases, and 
memory CD4+ T cell frequencies were lower in hospitalized cases 
compared to non-hospitalized individuals. Moreover, memory B cells 
specific for the spike protein existed in almost all COVID-19 individuals, 
with no apparent half-life at 5 to 8 months after infection (Dan et al., 
2021), while Other studies of B cell memory against other infections has 
been distinguished to be long-lived (Palm and Henry, 2019). In other 
research on the magnitude of memory cells against COVID-19 particu-
larly in the elderly, it was found CD4+ T cell responses appear to be 
more substantial than those of CD8+ T cells. In other words, the COVID- 
19-specific CD4+ T lymphocytes' existence is significantly associated 
with decline COVID-19 severity than the antibodies and CD8+ T cells 
(García-Torre et al., 2021). Interestingly, in hematological malignancy 
elderly patients who became infected with SARS-CoV-2, although titers 
of SARS-CoV-2-specific IgG were reduced on account of anti-CD20 
therapy, it was not associated with increased mortality, disease 
severity, or viral load (Bange et al., 2021). It stands to reason that when 
the humoral immune response is inadequate, effector and memory T 
cells have a host protective role in COVID-19 patients particularly. Also, 
‘virtual memory’ CD8+ T cells (TVM) have been most broadly studied in 
mice, but a human similar population has been recognized 
(CD45RA+KIR+NKG2A+Eomes+) that is related to age. Cytokines (IL- 
15, IL-18, and type I IFNs) trigger the activity of Virtual memory CD8+ T 
Regardless of cognate antigen during viral infections. Although this 
could be considered a benefit in the elimination of the virus, it could also 
have detrimental effects on the host if remained unregulated. However, 
the role of these cells in COVID-19 patients should be further investi-
gated (Kim and Shin, 2019). Furthermore, Thevarajan, I. et al. showed 
activated CD4+ and CD8+ T cells, follicular T-helper cells, antibody- 
secreting cells, and IgM/IgG SARS-CoV-2-binding antibodies, were 
enhanced in mild-to-moderate COVID-19 hospitalized patients (The-
varajan et al., 2020). 

2.5. Role of memory cells in protective immunity against COVID-19 

There has been little agreement on what mechanisms can give rise to 
the progression or inhibition of disease. A considerable amount of 
literature has been published on the role of antibodies in COVID-19. 
Several studies have revealed that the presence of CD4+ T cells is 
necessary for generating antibody responses against infection with 
coronavirus, vesicular stomatitis virus (VSV), yellow fever virus, or 
vaccinia virus (Swain et al., 2012). Yuchun, N. et al. point out neutral-
izing antibodies response to SARS-CoV, can enlarge approximately 20 

days post-infection against viral N and S proteins and can last for 150 
days (Yuchun et al., 2004), whereas in SARS-CoV-2, neutralizing anti-
bodies are not protective (Pan et al., 2020). Recent evidence suggests 
that restriction in antibody response in COVID-19 may be due to the 
absence of germinal centers. They observed in thoracic lymph nodes and 
spleens of deceased COVID-19 patients, germinal centers were absent, 
and the absence of germinal centers interacted with a defect in Bcl-6+

TFH cell differentiation, antibody affinity maturation, somatic hyper-
mutation, and accumulation of extra-follicular TNF-α. Whereas in mild 
and convalescent COVID-19 patients, virus-specific CD4+ and CD8+ T 
cells, B cells, TFH cells, and circulating IgG, and IgM in their periphery 
were perceived (Kaneko et al., 2020; Duan et al., 2020). 

In contrast to some other evidence, Duggan, NM. et al. claimed 
reinfection in COVID-19 patients is possible. They reported that an old 
male with underlying diseases that previously recovered from COVID- 
19, re-infected with newly positive RT-PCR, 48 days after the first pre-
sentation (Duggan et al., 2020). It seems possible that these results are 
due to a strong viral immune escape mechanism that contributes to virus 
escape from innate immune cells, neutralizing antibodies, and reduction 
in interferons production (Weisblum et al., 2020). Although differences 
of opinion still exist, there appears to be some compromise that 
amelioration of COVID-19 refers to adaptive immunity and memory 
cells. Prior studies have argued about a dual role for T cells in COVID-19 
infection. Some authors have demonstrated that lung injuries may be 
due to the overreaction of T cells (Xu et al., 2020) but, others support the 
protective role of T cells in disease progression (Diao et al., 2020). 
However, depending on time and adaptive immune response value, both 
of the two theories can happen (Peeples, 2020). Peng, Y. et al. confirm 
the association between SARS-CoV-2-specific T cell responses and re-
covery from COVID-19. They have illustrated in severe subjects, mem-
ory T cells responses were greater than mild COVID-19 subjects, which 
are associated with response to ORF3a, membrane, and spike proteins. 
In contrast, in mild cases, nucleoprotein-specific CD8+ T cells were 
elevated (Dong et al., 2020). This finding corroborates the ideas of Liao, 
M. et al. who suggested that adaptive T cell responses are probably 
protective in SARS-CoV-2 infection. They observed clonal expansions of 
CD8+ T cells in BALF of mild COVID-19 patients (Liao et al., 2020b). 
Moreover, Sahin, U. et al. has been reported that the BNT162b1 mRNA 
vaccine against COVID-19, activated virus-specific CD4+ and CD8+ T 
cells, produced neutralizing antibodies and improved IFN-γ secretion. 
They indicated that CD4+ and CD8+ T cells immune responses were not 
dose-dependent and may provide permanent immunity against COVID- 
19 (Sahin et al., 2020). Additionally, some studies showed the devel-
opment of a unique, innate memory cell population of natural killer cells 
(NKG2C) in response to viral and bacterial infections, such as cyto-
megalovirus (Foley et al., 2012; Jaiswal et al., 2019), influenza (Goodier 
et al., 2016; Jaiswal et al., 2020a), HIV (Gondois-Rey et al., 2017), 
Hantavirus (Björkström et al., 2011) and Mycobacterium tuberculosis 
(Suliman et al., 2016), that inhibit expansion of lower respiratory in-
fections. In addition, the absence of NKG2C+ NK cells, in other coro-
navirus infections in particular SARS-CoV-1, contributed to the 
exacerbation of the disease (National Research Project for SARS BGJA-
JoCP, 2004). These findings support the idea that NKG2C+ NK cells may 
constrain the deterioration of COVID-19 infected cases (Jaiswal et al., 
2020b). The reported data supports the assumption that memory cell 
cross-reactions can have an effect on SARS-CoV-2 control. A widespread 
phenomenon is heterologous viral immunity that happens when humans 
are exposed to various antigens following vaccination and infection, and 
particular virus memory T cells, cross-react with epitopes expressed by 
other, unrelated viruses (Welsh et al., 2010). Grifoni, A. et al. reported 
SARS-CoV-2-specific CD4+ T cell responses were observed in both 
recovered from COVID-19 and unexposed cases. Furthermore, they 
showed CD8+ memory responses to SARS-CoV-2 were established in 
70% of recovered patients. This result may be explained by the pre- 
existent cross-reactive immune memory to other coronaviruses (Gri-
foni et al., 2020b). These findings match those observed in some other 
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studies. According to Guo, T. et al. and Li, C.K. et al. studies, memory T 
and B cells of SARS-CoV-1 infection can be sustained for a long time and 
improve adaptive immune response against SARS-CoV-2 infection (Guo 
et al., 2020; Li et al., 2008). Although the evidence showed in SARS- 
CoV-1 infection, memory B cell responses were momentary (Channap-
panavar et al., 2014a; Channappanavar et al., 2014b), while memory T 
cell responses were a strength for a long time (Le Bert et al., 2020). 
Studies showed that in COVID-19 infected patients, memory B cells 
declined. However, plasmablasts were significantly increased, and in 
some cases, IgG was available in plasma that can be attributed to the 
expansion of immunoglobulins by pre-existing specific memory B cells 
for other coronaviruses (De Biasi et al., n.d.). Although some former 
studies on SARS-CoV-1 and MERS-CoV infection have indicated that T 
cell responses were more supporting compared to antibody responses, 
there is no precise information on how long adaptive immune memory 
lasts in COVID-19 convalescent patients (Tang et al., 2011; Zhao et al., 
2017). In another major study into this area, Sekine, T. et al. demon-
strated memory T cells have a fundamental role in inducing long-lasting 
immunity in individuals with COVID-19. They observed in the acute and 
recovery phase of COVID-19, T cells exhibited a cytotoxic and stem-like 
memory phenotype, respectively. In addition, they reported in mild 
cases or antibody-seronegative family members, COVID-19 specific T 
cells were identified and robust memory T cell response can hamper 
recurrent severe COVID-19 (Sekine et al., 2020). Lately, stem cell-like 
memory T (TSCM) cells were considered to possess the capacity for 
self-renewal and multipotency to revive the broad spectrum of memory 
and effector T cell subsets (Gattinoni et al., 2017; Gattinoni et al., 
2011b). In this regard, Hyung Jung et al. demonstrated the preservation 
of SARS-CoV-2-specific memory T cell responses in COVID-19 conva-
lescent patients over 10 months post-infection. Interestingly, SARS-CoV- 
2-specific TSCM cells scarcely expressed PD-1 and TIGIT, illustrating that 
SARS-CoV-2-specific TSCM cells are not exhausted-like progenitors (Jung 
et al., 2021). 

3. Conclusion 

Memory cells play a pivotal role in the rapid and appropriate 
response to infectious agents, especially viral agents. The role of mem-
ory cells in the induction of effector T cells and the production of pro-
tective and neutralizing antibodies has been identified and 
demonstrated. In this study, by confirming the effective and protective 
role of antibodies in patients with COVID-19, the role of memory cells 
was fully investigated and mentioned. The function of memory cells in 
individuals of different ages as well as various genetics and history of Ag 
exposure indicate the role of memory cell importance. A high percentage 
of patients do not show any symptoms after exposure to the COVID-19. 
Even the antibody titer is not detectable in many of these people, which 
may be due to the inhibition of the virus through the protective effect of 
memory cells. On the other hand, a small percentage of patients who 
develop symptoms, have different outcomes depending on the type and 
population of memory cells (whether they produce antibodies or not). A 
large percentage of these patients can overcome the disease due to the 
strength of the immune system and the type of memory cells and about 
less than 5% of patients will die as a result of immune system activation 
and cytokine storm. In infants and children, the absence of inflammatory 
memory cells is considered a protective factor to prevent cytokine 
storms and severe forms of COVID-19. But in adults, cross-reactive 
memory cells determine the degree of disease. In fact, the patients 
with cross-reactive memory cells can show low or mild symptoms, while 
patients with inflammatory memory cells can move to a severe form of 
the disease and establish the inflammation expansion. Moreover, Pre- 
existing memory indicated a general mechanism of immune- 
modulation towards neo-antigens, commonly in the elderly. Low avid-
ity pre-existing T cell memory negatively impacts the T cell response 
quality against SARS-CoV-2, which may give rise to unsuitable immune 
responses chiefly in elderly patients. Unfocused and low avidity 

response may consequence of preferential recruitment of a vast pre- 
existing memory repertoire generally existing in the elderly. All in all, 
pre-existing SARS-CoV-2 cross-reactive memory T cells in unexposed 
individuals are prevalent in humans and develop with the immunolog-
ical age but do not demonstrate aspects of a protective cross-reactive T 
cell population. Also, TRM could prevent the spread and replication of 
upper respiratory tract SARS-CoV-2 infection. Although the role of cross- 
reactive TRM, induced by seasonal coronaviruses, can block transferring 
SARS-CoV-2 from the upper respiratory tract to the lung and finally 
weaken severe COVID-19 remains unresolved. Besides, whether SARS- 
CoV-2–specific TRM are induced after COVID-19 and if these cells will 
provide enough protection for a long-time also have been remaining 
unanswered. According to the relationship between COVID-19 severity 
and age, it will be substantial to perceive whether the elderly have been 
exposed to more human coronavirus infections and whether this expo-
sure makes strong memory T cell responses. Because with age insuffi-
cient TCR diversity may prevent vast memory T cell development. 

Therefore, given the importance of vaccination, vaccines under 
development should focus on the characteristics, population, and 
response of memory cells, more than the production of neutralizing 
antibodies, because memory cells can produce antibodies. On the other 
hand, monitoring the population of memory cells in healthy or at-risk 
individuals is very important for proper prevention or treatment. 
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