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Inflammatory bowel disease (IBD) is a chronic relapsing-remitting immune-mediated

disorder affecting the gut. It is common in Westernized regions and is increasing in

incidence in developing countries. At a molecular level, intrinsic deficiencies in epithelial

integrity, mucosal barrier function, and mechanisms of immune response and resolution

contribute to the development of IBD. Traditionally two platforms have been utilized

for disease modeling of IBD; in-vitro monolayer cell culture and in-vivo animal models.

Both models have limitations, including cost, lack of representative cell types, lack of

complexity of cellular interactions in a living organism, and xenogeneity. Organoids,

three-dimensional cellular structures which recapitulate the basic architecture and

functional processes of the organ of origin, hold potential as a third platform with

which to investigate the pathogenesis and molecular defects which give rise to IBD.

Organoids retain the genetic and transcriptomic profile of the tissue of origin over time

and unlike monolayer cell culture can be induced to differentiate into most adult intestinal

cell types. They may be used to model intestinal host-microbe interactions occurring

at the mucosal barrier, are amenable to genetic manipulation and can be co-cultured

with other cell lines of interest. Bioengineering approaches may be applied to render

a more faithful representation of the intestinal epithelial niche. In this review, we outline

the concept of intestinal organoids, discuss the advantages and disadvantages of the

platform comparative to alternative models, and describe the translational applications

of organoids in IBD.
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INTRODUCTION

Inflammatory bowel disease (IBD) is an immune-mediated relapsing-remitting chronic disorder
affecting the gut. Alterations in the intestinal microbiome, defects in mucosal barrier defense and
aberrant innate and adaptive immune responses appear to be critical to the development of IBD
(1–7). Clinically, two major phenotypes exist, Crohn’s disease (CD) and ulcerative colitis (UC).
CD features transmural inflammation in a “skip lesion” or discontinuous pattern. Although it may
affect any part of the gut the terminal ileum is most frequently involved (1, 2, 8–10). UC affects the
colon only, although a reactive “backwash ileitis” may occur. Inflammation is limited to the mucosa
and submucosa and occurs in a continuous pattern, with rectal involvement extending proximally
for a variable distance. Crypt abscesses due to accumulation of neutrophils are characteristic
(5, 6, 11).
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PATHOGENESIS

The underlying mechanisms which contribute to the etiology of
IBD are highly complex and not yet fully elucidated. Genetic
susceptibility, environmental factors, defects in mucosal barrier
function, immune dysregulation, and dysbiosis have all been
demonstrated to contribute to disease pathogenesis (12–18).
Activation and recruitment of CD4+ T cells to the intestinal
tissue and production of a proinflammatory cytokine cascade,
particularly the Th1- and Th17-associated cytokines TNFα,
IFNγ, IL-12, IL-21, and IL-23 in CD and Th2-associated
cytokines IL-4 and IL-13 in UC are commonly observed
(5, 19–21).

Loss of a functional epithelial barrier and increased
permeability of the mucus gel layer, permits abnormal contact
of luminal organisms with the epithelium, provoking an
inflammatory response from the immune system located in the
lamina propria (14, 22–25). Failure of inflammation to resolve
along with lack of restoration of normal mucosal homeostasis
results in progression to chronic inflammation, inadequate
epithelial restitution, and ongoing tissue damage (26). This is
accompanied by characteristic disturbances in the composition
of the gut microbiome, with a reduction of obligate anaerobes
such as Firmicutes, an increase in facultative anaerobes such as
Enterobacteriaceae and the presence of invasive strains such as
adherent-invasive E.coli (AIEC) (27–30).

Genome-wide association studies have thus far identified
up to 250 susceptibility loci involved in IBD. The most
well-known of these is the Crohn’s susceptibility locus
CARD15, formerly known as NOD2, which is responsible
for sensing of luminal bacterial organisms; others include
IL23R and ATG16L1, which play roles in IL23 signaling and
autophagy, respectively (13, 31, 32). Many susceptibility loci
are genes coding for components of the mucosal barrier. These
include proteins responsible for assembly and maintenance
of epithelial tight junctions, intercellular adhesion and
polarity, mucin and glycoprotein synthesis, bacterial sensing
mechanisms, and epithelial wound healing and restitution
(13, 33, 34).

Current therapeutic strategies in IBD primarily function
by modification of the immune response. Biologic therapies
targeting the cytokines TNFα, IL-12 and IL-23, and integrin
blockers which limit the migration of leukocytes to the
GI tract have greatly expanded the repertoire of treatment
options (35–37). However, up to 40% of patients fail to
respond to biologic therapies, and up to 50% develop
secondary treatment failure after an initial successful
response (38). Although impaired barrier function is also
a critical event in initiation and perpetuation of IBD no
therapies directed at augmenting the barrier deficiency which
occurs in IBD have successfully been developed for clinical
practice. Due to the phenomenon of treatment-resistant
IBD in a substantial proportion of patients, alternative
strategies aimed at improving intestinal barrier function
are warranted. Development of such therapies requires
highly faithful modeling of the intestinal barrier in the
preclinical setting.

CURRENT MODELS OF IBD

Traditional models for IBD comprise animal models and
monolayer cell culture. Some animal models used to study IBD
such as DSS-colitis and TNSB-colitis are extensively utilized and
well-described (39, 40). In addition to chemically induced colitis,
the creation of transgenic and knockout animal strains permit
investigation of inflammation arising from specific defects in
innate and adaptive immune responses (41–44). These models
have the benefit of replicating the complex organization and
simultaneous interactions that occur in the gut in a whole
organism. Such models have been indispensable in unraveling
the complex pathophysiology and molecular abnormalities that
occur in IBD.

However, in-vivo disease modeling in animals does have
some limitations. Chemical induction of colitis occurs by a
heterogeneous mechanism to that by which inflammation occurs
in human disease. While cell culture can be rapidly established,
the length of animal reproductive cycles means that animal
experiments are a slower process. Ethical considerations exist
with the use of higher vertebrates which do not apply to cell
culture. In addition, while the host-microbial interactions and
inflammatory processes that occur in animal models are broadly
applicable to humans, particular aspects of the microbiome,
inflammatory response, and mucosal defense may be species-
specific (45–47). Finally, animal models are poorly predictive of
drug response and toxicity in humans (48, 49).

In-vitro immortalized intestinal human cell lines such as
Caco-2, T84, and HT-29 cultures are excellent for investigating
specific molecular interactions and signaling pathways under
highly controlled conditions. They are derived from human
tissue, are low-cost and can be rapidly established. However,
monolayer cultures are reductive as a model and cannot replicate
the complex interactions that occur in-vivo.

ORGANOIDS

Organoids are defined as 3-D structures derived from either
pluripotent (embryonic or induced pluripotent), or adult tissue-
resident stem cells, which spontaneously self-organize and
undergo a degree of differentiation, producing functional cell
types, and which have the capacity to undertake some functions
of the relevant organ (50).

While systems for maintaining intestinal tissue explants ex-
vivo had been described since 1992, (51, 52) it was Eiraku
et al. (53) and Sato et al. (54), respectively, who first
successfully developed a method of producing the stem-cell
derived, constructs known today as organoids. Studies by Sato
et al. derived these from Lgr5+ adult stem cells (ASCs), first
from murine and subsequently human intestinal crypts. They
self-organized into crypt-villus type architecture and had the
potential to produce most mature cell lines of the gut (54–
58). Since then organoid cultures have been successfully derived
from other anatomical locations, including colonic, gastric and
esophageal tissue (55, 56, 59–62).

Organoids derived from small bowel tissue are sometimes
referred to as enteroids or simply small bowel organoids, while
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organoids derived from colonic tissuemay similarly be referred to
as colonoids. They can be expanded from small volumes of tissue,
including from endoscopic biopsies. Lgr5+ ASCs can be induced
to differentiate into organoids containing all cell lines propagated
by the gut, including mature enterocytes, Paneth cells, goblet
cells, enteroendocrine, and tuft cells (48, 54, 55, 63). PSC-derived
organoids can additionally generate adjacent stromal cell types.
They recapitulate the spatial organization and polarity observed
in the intestinal mucosa. Gut organoids are also capable of many
of the functions of the source tissue, including endocrine and
paracrine secretion, filtration, molecular transport, absorption,
and contraction (48).

By contrast, while cheap and rapidly established, immortalized
monolayer cell lines cannot recapitulate the complex
cell-cell interactions or interactions with the extracellular
microenvironment which occur in whole organisms (64, 65).
Typically only single cell types are represented (66). It is not
possible to culture rarer intestinal cell types such as tuft cells, and
it can be difficult to acquire immortalized cell lines which secrete
mucus to mimic the mucosal barrier which exists in-vivo (48, 61).
Further, as monolayer cell cultures are derived from malignant
cells they intrinsically demonstrate different properties to those
of non-malignant cells, particularly with respect to epithelial
integrity, cell polarity, and adhesion. These cells are not fully
differentiated, and cell division in monolayer cell culture does
not respond to the usual cellular signaling mechanisms which
regulate this process in-vivo (48, 61, 67) (Table 1).

Organoids theoretically have the potential to bridge the
gap between monolayer cell culture and whole-organism
environments. They are derived from human tissue and
recapitulate the complex cellular organization seen in-vivo.
However, they avoid the issues of xenogeneity which may be
associated with animal models (68, 69). Organoids are also less
costly and can be more rapidly established than animal models
while retaining the potential for highly controlled molecular and
genetic manipulation which is the salient attractive feature of
monolayer cell culture (Table 1).

TRANSLATIONAL APPLICATION OF
ORGANOID MODELS IN IBD

Physiological Modeling of the Intestinal
Niche
Differential protein expression, gene expression, cell migration,
organization, survival, and cell signaling have been observed in
organoid cultures comparative to monolayer cell culture (70–73).
Defects in the function of multiple epithelial cell types have been
demonstrated in IBD, underlining the need for a physiologically
relevant model which includes multiple cell lineages (74–78).
Gut organoids may also be co-cultured with non-epithelial cell
lines of interest in order to more accurately represent the
intestinal mucosal niche. Co-culture of gut epithelial organoids
with cell lines such as macrophages and lymphocytes and with
mesenchymal cells demonstrate promise in providing a more
physiologically relevant model of the gastrointestinal mucosal
environment (79–82).

TABLE 1 | Characteristics of different modeling platforms in IBD.

Feature 2D cell

culture

Animal

models

Organoids

Cost + ++ ++

Culture cycle length + +++ ++

Presence of all intestinal cell types – ++ ++

Presence of non-epithelial elements

of intestinal niche

– +++ +/–

Genetic stability + +++ ++

Suitability for high-throughput

studies

++ – ++

Suitability for drug toxicity screening – ++ ++

Host-Microbe Interactions
Due to this ability to accurately simulate the intestinal
microenvironment, intestinal organoids represent exciting
models for investigating the host-microbial interactions which
are key to the pathogenesis of IBD. Organoids have already been
successfully utilized as a more accurate model for human virus
infection. In a study by Saxena, fully differentiated cells present
in organoid culture supported greater rotavirus viral load and
replication than had been previously observed in monolayer
culture; and infection of enteroendocrine cell types in addition
to enterocytes with rotavirus was demonstrated (83). Organoids
have also been used to investigate norovirus, which is difficult to
cultivate in monolayer cell culture. Previously only successfully
cultured in B cells, organoids permitted culture of norovirus in
duodenal, jejunal, and ileal cell types with viral replication and
growth occurring within (84). Current applications of organoids
include disease modeling of SARS-CoV-2 in respiratory and
small intestinal derived cell types, with viral infection, replication,
and host viral response observed ex-vivo (85–87).

Organoid cultures have also been applied to simulate host-
bacterial interactions. Salmonella, H. pylori, C. difficile, and
pathogenic E. coli infection have all been modeled in organoid
cultures (66, 88–91). In one study, gastric organoids which secrete
mucous, include multiple epithelial cell types and retain the
polarity of the in-vivo gastric epithelium have been successfully
utilized as a model for host-microbe interactions in H.pylori
infection (66). Interestingly, duodenal, ileal and colonic organoid
cultures derived from different donors demonstrate a differential
response to infection and differing patterns of bacterial adhesion,
possibly due to the genetic variability based on the tissue of origin
(89). A co-culture model developed to study the host-pathogen
interactions of C. jejuni incorporates intestinal enterocytes,
mucin-secreting goblet cells and dendritic cells, thus combining
a mucus-secreting epithelial layer with cellular elements of the
intestinal innate immune system (92).

As well as modeling invasive microorganisms, organoids
can also be used to study interactions between the gut
and commensal microbiota. In one study, microbiota were
found to play a role in epithelial regeneration in murine
small bowel organoids. The pattern recognition receptor
NOD2, single nucleotide polymorphisms (SNPs) of which are
highly associated with Crohn’s disease, is highly expressed in
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mouse intestinal stem cells (93–96). Stimulation of NOD2 by
MDP (peptidoglycan muramyl-dipeptide), a bacterial cell wall
constituent, enhanced organoid survival and protected them
from oxidative-stress mediated cell death (96, 97). Organoids
derived from adult and fetal murine tissues have also been
utilized to determine developmental expression patterns of
components of the innate immune system, including NOD2,
TLR4, and TLR5 (98). Exposure of murine intestinal organoids to
gut commensal bacteria includingAkkermansia muciniphilia and
Faecalibacterium prausnitzii has been shown to induce changes
in gene expression and transcription, particularly of genes
responsible for lipid metabolism (99). Similarly, exposure to the
organism Bacteroides thetaiotaomicron and cytokine signaling
via IL-22RA1 induces upregulation of Fut2 and increased
fucosylation, which in turn inhibits colonization by opportunistic
Enterococcus faecalis strains (97, 100, 101). Finally, alterations
in the microbiome have been associated with colonic neoplasia;
colonic organoid models have been used to demonstrate a
mutational profile induced by exposure to colibactin synthesized
by genotoxic E. coli which is also associated with colorectal
cancer in-vivo (102). Thus, organoid systems may be utilized to
explore activity of the gut microbiome on the epithelium and
mechanisms of homeostasis (Figure 1).

Disease Modeling
Unlike organoids derived from pluripotent stem cells, which
rapidly accumulate mutations and epigenetic modifications,
ASC-derived organoids are relatively genetically stable (103, 104).
They retain the genetic profile and also the transcriptional
and epigenetic landscape of the primary tissue from which
they are derived (73, 105–107). While the majority of IBD is
polygenic, some monogenic forms exist. These are mediated
by specific genetic defects in epithelial dysfunction and stress
response, defects in immune regulation of regulatory T cells
or immunodeficiencies of phagocytic cells (108). Organoids
represent useful models for studying these rare diseases, as well
as other genetically determined intestinal disorders (109).

It is possible to culture intestinal organoids derived from
patients with active IBD (110, 111). In one study, IBD colonic
organoids demonstrated a distinct phenotype to those derived
from control tissue, with a smaller size, increased cell death,
abnormal cell polarization, and poorer budding capacity (110).
Interestingly, they also expressed reduced quantities of the
tight junction proteins ZO1, Occludin, and Claudin-1 as well
as alterations in the expression of adherens junction and
desmosomal proteins. These altered expression patterns persisted
when the inflammatory stimulus was withdrawn (111). The
phenotype and altered transcriptional profile noted in the
IBD-derived organoids was inducible in the control organoids
with administration of pro-inflammatory cytokines (TNFα, IL-
1, and IL-6). Hibiya et al. demonstrated that murine colonic
organoids which are exposed to chronic inflammatory stimuli
(TNFα, IL-1β, IL-6, LPS, flagellin) underwent upregulation
of the NFκB signaling pathway, which persisted after stimuli
removal (112). These organoids also underwent transformation
to an undifferentiated state, along with upregulation of genes
related to oxidative stress and carcinogenesis (Smox and

CD151), suggesting their potential utility as a model to
study the epithelial changes which occur in colitis-induced
carcinogenesis. Vermeire et al. also generated CD and UC-
derived organoids which were subsequently exposed to TNF and
flagellin, resulting in modulation of expression of the SARS-
CoV-2 receptor ACE2. These changes were restored to baseline
with anti-TNF treatments (113). Other studies utilizing patient-
derived organoids from pediatric IBD patients demonstrated
alterations in DNA methylation and transcriptional profiles,
which correlated with treatment outcomes (114). Finally, a
study by Jardine et al. successfully used colonic organoids
generated from patients with TTC7A deficiency to perform
high-throughput drug screening for candidate therapeutic agents
(115). Loss of TTC7A causes intestinal epithelial apoptosis and
immune defects which presents clinically as very early onset IBD.
Thus, primary organoid cultures from inflamed tissue seem to
represent an applicable model for investigation of the epithelial
and mucosal abnormalities which occur in IBD (Figure 1).

Bioengineering and Gut-on-a-Chip
In the small intestine the mucosa of the gut is folded into
villi and microvilli to maximize available surface area for
absorption. Bioengineering techniques such as 3D printing and
laser ablation allow the creation of scaffolds which recreate this
intestinal topography. These can be directly seededwith epithelial
organoids or used as molds to create hydrogel-based porous
copies which reproduce the microanatomy of the gut (116).
Alternatively, bioink comprising cell aggregates or organoids
may be imprinted along with the desired biomaterials (hydrogels,
matrix components) onto the scaffold via a computer-aided
transfer process (117, 118). This allows for the creation of
highly accurate and reproducible models with each component—
organoids, biomaterial, and scaffold—spatially aligned at the
desired patterns, gradients, and densities set by the modeling
software. Such methods will help to address both reproducibility
and scaling-up of organoid cultures into larger tissue constructs.
Some 3D gut models aimed at investigating the pathophysiology
of inflammatory bowel disease are already in use (119).

Aside from gut anatomy, intestinal motility and luminal
flow are physiologic functions of the gut which are difficult to
mimic ex-vivo. These can be simulated via epithelial cell-lined
microfluidic platforms, sometimes referred to as a “gut-on-a-
chip” (120–122). Such platforms permit recapitulation of flow
patterns, mechanical deformation, shear stresses, and peristaltic
activity with greater accuracy than has been possible previously
(117, 123–125). Organoid-lined laser-ablated microchips with
active perfusion of media components have also been developed,
which permit simulation of intestinal homeostasis and cell
turnover with a reduced need for passaging (126). These
platforms are being utilized to further investigate the gut-
microbiome relationship by inoculation with bacterial cultures
and examining the effect of the physical environment on
intestinal host-microbe interactions (127–132) (Figure 1).

Regenerative Medicine
The concept of mucosal healing as key to sustained remission
of IBD has become increasingly prominent in recent years. This
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FIGURE 1 | Applications of intestinal organoids in inflammatory bowel disease. Original figure (created with BioRender.com).

denotes absence of all mucosal ulceration at endoscopy, rather
than resolution of clinical symptoms and serum biomarkers of
inflammation alone (133, 134) Mucosal healing correlates with
improved long-term clinical outcomes, including steroid use,
hospital admissions and need for surgery in both CD and UC
(135–139). The European Crohn’s and Colitis Organization lists
mucosal healing as a therapeutic target in its 2017 consensus
guidelines for both UC and CD (140, 141). Local transplant
of organoids to aid mucosal healing has been proposed as
a potential therapy in IBD to aid epithelial regeneration and
achieve mucosal healing (142). Studies using murine colitis
models have demonstrated that human small bowel and colonic
organoid cultures can engraft onto the ulcerated mucosa and
reconstitute the normal crypt-villus architecture (58, 143, 144).
More recently, patient-derived small intestinal organoids have
been successfully expanded ex-vivo and engrafted into mice,
with the ultimate aim of creating autologous small intestinal
transplants to treat intestinal failure (145) (Figure 1).

Limitations of Organoids as a Model
Platform
Despite the advantages described above, there are limitations
associated with the use of organoids. Comparative to two-
dimensional models they are more costly and less accessible,

and require specialized medium to be maintained in culture.
Matrigel and similar matrices in which they are typically cultured
are expensive and increase the difficulty of manipulation.
Particular studies such as transport and luminal exposure
studies require injection of organoids which is a technically
difficult and labor-intensive procedure; alternatives such as
computer-assisted injection are again expensive and not readily
available. Access to human tissue for generation of primary
organoid cultures can be limited (78, 146). They are typically
derived from epithelial tissues and so other components of the
intestinal niche, including immune and mesenchymal elements,
are underrepresented (146). As they are three-dimensional
structures, this presents difficulty for investigations requiring
access to the apical and basolateral surfaces. For this purpose
they may be dissociated into 2D structures; however this disrupts
their crypt-villus architecture and terminates their culture cycle
(146). Finally, reproducibility of organoid cultures is challenging,
as constructs of differing sizes and morphology result when they
are grown in-vitro.

CONCLUSION

In summary, intestinal organoids represent a promising novel
platform for further elucidating the host-microbe interactions,
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mucosal barrier deficiencies and genetic defects which underpin
the pathogenesis of inflammatory bowel disease. Patient-derived
organoids may have translational applications in the future as
local therapy to aid mucosal healing. However, many limitations
yet remain with this model. Some of these may be addressed
by innovations such as computer-assisted bioprinting and 3D
printed scaffolds to aid in reproducibility, and development of
co-culture systems including immune and neuronal components
to increase the physiological relevance of organoids as a platform
for investigation of IBD.
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