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Abstract: As the global SARS-CoV-2 pandemic continues to plague healthcare systems, it has
become clear that opportunistic pathogens cause a considerable proportion of SARS-CoV-2-associated
mortality and morbidity cases. Of these, Covid-Associated Pulmonary Aspergilliosis (CAPA) is a
major concern with evidence that it occurs in the absence of traditional risk factors such as neutrope-
nia and is diagnostically challenging for the attending physician. In this review, we focus on the
immunopathology of SARS-CoV-2 and how this potentiates CAPA through dysregulation of local
and systemic immunity as well as the unintended consequences of approved COVID treatments
including corticosteroids and IL-6 inhibitors. Finally, we will consider how knowledge of the above
may aid in the diagnosis of CAPA using current diagnostics and what treatment should be instituted
in probable and confirmed cases.
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1. Introduction

Coronaviruses are a family of enveloped, positive-sense single-stranded RNA viruses
known to cause upper respiratory tract infections and have been responsible for three
pandemics to date [1]. In December 2019, a novel coronavirus, Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) or COVID-19, was identified, which as of 13 Febru-
ary 2022, has resulted in >400 million cases and >five million deaths worldwide [2]. Key
to the pathogenicity of SARS-CoV-2 is extensive lung disease, which is due to multiple
mechanisms including immune cell infiltration, alveolar capillary damage, alveolar oedema
and haemorrhage alongside microthrombi formation leading to immunothrombosis. Im-
portantly, SARS-CoV-2 has tropism for several cells outside of the respiratory system and as
such can present with additional features including diarrhoea, headache and acute kidney
injury [3,4]. Common laboratory findings during active disease include lymphopenia,
which is proportional to the severity of disease, hyperfibrinogenaemia, hyperferritinaemia
and increased d-dimer values and C-reactive protein (CRP). While 80% of COVID-19 in-
fected patients will suffer a mild disease, 15% suffer severe disease requiring hospitalisation
and 5% require ITU-level support [5,6].

Co-infection and superinfection rates in SARS-CoV-2 patients have been reported
at 19% and 24%, respectively, which contribute disproportionately to recorded mortality
and can be bacterial, viral or fungal in nature. While challenging to diagnose, clinical
suspicion should be raised of coinfection/superinfection where there is progression of lung
infiltrates, low and worsening PaO2/FiO2 ratio and majorly the persistence of fever, which
is the most predictive [7,8]. Of these, COVID-19-Associated Pulmonary Aspergilliosis
(CAPA) is of particular concern. CAPA affects up to 30% (3.8–35%) of the most severely
affected patients who are treated in the Intensive Treatment Unit (ITU) due to the associ-
ated multiorgan failure and immunopathological changes severe disease provides and is
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associated with poor outcomes. Importantly, the incidence of CAPA varies considerably
among countries and units and is likely underdiagnosed, further contributing to the poor
outcomes observed [9–12]. While this is a new entity, it is important to recognise a similar
presentation is well described in post influenza patients [13]. Both of these entities are
associated with increased mortality, morbidity, duration of hospital stay and mechanical
ventilation duration [14,15].

Aspergillus is a ubiquitous environmental thermotolerant fungal family consisting
of >200 known species and is found primarily in the soil. Aspergillus spores can easily
be aerosolized and can travel a considerable distance, allowing them be taken up by the
respiratory system of humans. The average adult inhales >100 aspergillus conidia daily,
which can be a coloniser of the respiratory system on diagnostic sampling. Due to their
small size (2–3 µM), they can easily enter the alveolar compartments of the lungs where they
can adhere to the basal lamina of airway epithelia but are normally effectively cleared in an
immunocompetent host. Of all species of aspergillus, Aspergillus fumigatus (A. fumigatus)
is by far the most common species isolated in both invasive fungal disease and cases of
confirmed CAPA worldwide although other species have also been described [16,17].

The primary risk factor for invasive fungal disease is being immunocompromised
and chiefly those who are neutropenic, which can be qualitative or quantitative in nature,
highlighting the role of neutrophils in preventing fungal disease. Other risk factors include
impaired physical barriers through trauma or injury as well receipt of glucocorticoids
(Table 1). As such, at-risk groups include oncology, solid organ transplant recipients and
haematological patients, intensive care unit populations and those with chronic and struc-
tural lung disease, as these allow a niche for inhaled aspergillus conidia to invade locally
and germinate, allowing for dissemination [18]. A key difficulty, however, as highlighted
is distinguishing between Aspergillus colonisation and invasive infection given the ubiq-
uity of these fungi in clinical samples such as throat swab, tracheal aspirate, etc. Current
diagnostic algorithms for Invasive Fungal Infection (IFI) including CAPA struggle in this
regard although a newer diagnostic guideline (AspICU) algorithm categorises colonisation
separately but at the expense of fungal biomarkers [19]. Therefore, CAPA requires strong
clinical suspicion and the integration of clinical, radiological and biomarker correlates to
correctly make the diagnosis, all of which individually can be difficult to intepret and may
be confounded by comorbidities and implemented therapies. This assessment therefore in
severely affected SARS-CoV-2 patients requires a plethora of investigations and expertise
to form a multidisciplinary team including radiologists, intensivists, infectious disease
experts and microbiologists. Complicating this further is the lack of a unifying definition
of CAPA and the lack of standardised treatment regimes, which are based on invasive
asperigllosis and not aspergillosis, complicating SARS-CoV-2 infection [9,10].

Table 1. Risk Factors for Invasive Fungal Disease [8,13,19].

I. Glucocorticoid treatment
II. Qualitative or quantitative neutrophil deficiency (Absolute count < 0.5 × 109/L)
III. Impaired integrity of physical barriers, e.g., Burns, Mucositis, Peripheral line insertion
IV. Increase gut wall permeability e.g., Surgery, Total Parenteral nutrition, Intestinal perforation
V. Stem Cell and Solid Organ Transplantation
VI. Fungal Colonisation

2. SARS-CoV-2 and the Immune System

COVID-19 is caused by the SARS-CoV-2 virus, of which several variants have been
identified to date including most recently the Omicron variant (November 2021) [20]. While
SARS-CoV-2 has a very similar structure to the related coronaviruses, Middle Eastern
Respiratory Syndrome (MERS) (50% homology) and Severe Acute Respiratory Syndrome
(SARS) (79% homology), which have both resulted in pandemics, there are important
differences that have led to its global dissemination [1]. Common among the coronaviruses
are four conserved structural proteins, Spike (S), Envelope (E), Nucleocapsid (N) and
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Envelope (E), alongside which there are associated non-structural proteins (NSPs) and
accessory proteins. Of these, the (S) protein has been found to be important in SARS-
CoV-2 evasion of humoral immune responses while NSPs have been found to modulate
and suppress interferon expression, which is a key facet of antiviral immunity, thereby
enhancing virulence [21].

Unlike in MERS and SARS, SARS-CoV-2 has multiple changes in the (S) protein, which
is implicated in viral envelope cell binding and subsequent viral entry. The Angiotensin
Converting Enzyme 2 (ACE2) receptor, a component of the renin and angiotensin system,
is the primary receptor for SARS-CoV and SARS-CoV-2 infection and is highly expressed
on type 2 pnuemocytes and epithelial cells of the intestine and kidney, helping to explain
the predilection for extrapulmonary symptoms such as diarrhoea and acute kidney injury
in infected individuals. For effective SARS-CoV-2 cellular infection, transmembrane serine
protease 2 (TMPRSS2), a cell surface protease, is required, which cleaves and activates the
S1 and S2 subunits of the (S) protein. [22,23]. More recently, it is has been appreciated that
there is also expression of the ACE2 receptor on select CD68+ macrophages, suggesting
there is direct infection of cells of the innate immune system allowing for immune evasion
and helping to explain the high incidence of macrophage activation syndrome and the
cytokine storm noted with resultant complications in those with severe disease [24].

Upon SARS-CoV-2 entry into the cell, there is activation of the cellular immune re-
sponse through the activation of pathogen recognition receptors (PRRs) that recognise
Pathogen-Associated Molecular Patterns (PAMPs), which may be bacterial, viral or fun-
gal in nature. Several PRR subtypes exist including Toll-like Receptors (TLRs), C-type
Lectins (CTLs), Retinoic Acid Inducible I like receptors (RIG-I) and Nucleotide-binding
oligomerization domain Receptors (NODs). Together these sense multiple different types
of pathogens and substrate types. TLR 3, 7 and 8 recognise SARS-CoV-2 RNA in differ-
ent cellular compartments including the endosome while TLR4 can directly recognise
the (S) protein, leading to downstream effects including myeloid differentiation primary
response 88 (MyD88) mediated signalling that leads to nuclear factor-κB (NF-κB) acti-
vation stimulating the host inflammatory response [25,26]. Interestingly this interaction
between TLR4 and the (S) protein has been found to reciprocally increase ACE2 receptor
expression, which has been hypothesised to lead to greater cellular infection and hyper-
inflammation [27]. Other significant PRR-PAMP interactions include SARS-CoV-2 RNA
and Melanoma Differentiation-associated protein 5 (MDA5), a RIG-I like receptor and RNA
helicase enzyme [21]. Upon this interaction, enhanced Mitochondrial Antiviral Signalling
(MAVS) occurs, leading to further activation of NF-κB through IκB phosphorylation and
proinflammatory cytokine release, thereby stimulating and localising neutrophils and
macrophages as well as phosphorylating Interferon Regulatory Factor 3 and 7 (IRF 3, IRF7),
which can then bind to the promoter region of interferon β (INFβ [28]. Through the above,
we have upregulation of cellular and systemic anti-viral immunity and stimulated IFNβ,
which interacts with the IFNα/β receptor in an auto/paracrine fashion leading to local
response. IFNβ release leads to activation of Janus Kinase 1 (JAK1) and the tyrosine kinase
TYK 2 leading to STAT1 signalling (signal transducer and activator of transcription 1).
STAT1, STAT2 and IRF9 then as a complex (ISGF3) bind onto DNA and lead to promotor
binding and interaction at the interferon-stimulated response element (ISRE) with subse-
quent interferon-stimulated gene (ISG) activation [21]. The interferon response involves
>300 molecules and the transition of the cell into an antiviral state, which includes enhanced
antigen presentation as well as effector function of circulating and local B, T, Dendritic and
Natural Killer Cells. One key product includes 2′-5′-oligoadenylate synthetase-RNase L
that has inherent endoribonuclease activity and can lead to single-strand RNA (ssRNA)
degradation while amplifying the antiviral response through positive feedback of IFNβ

signalling [29,30].
To avoid interferon responses, multiple viruses have developed multiple methods

to avoid detection and enhance their pathogenicity. SARS-CoV-2 Open reading frame 6
and 8 (ORF6 and ORF8) proteins can bind to and inhibit interferon signalling by blocking
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STAT1 importation into the nucleus as well as nuclear export of PRR mRNA in a similar
but less efficient manner to SARS-CoV [31,32]. Moreover, there is evidence of detectable
mutations in interferon signalling pathways (e.g., TLR3 and IRF7) in those with severe
SARS-CoV-2 disease as well as enhanced autoantibody levels to type 1 interferons with
neutralising activity in vitro in ~13% of patients with severe/life threatening SARS-CoV-2
infection. This seroprevelance is approximately 15 times greater than in healthy controls,
further hampering effective antiviral immunity and helping to predispose patients to severe
disease. As such, their presence could be used as a risk stratification measure in future if
they can be routinely and reliably tested in the clinical environment [21,33,34].

The delays in interferon responses create time for viral replication to occur unhin-
dered, allowing for dissemination and a hyperinflammatory response, which is mediated
by cell injury and the release of danger-associated molecular patterns (DAMPs) that lead
to further stimulation of the innate immune response [22]. While there is aberrant inter-
feron responses in SARS-CoV-2, early trials investigating the use of interferons have shown
SARS-CoV-2 to be intrinsically more susceptible to interferons than other coronaviruses and
in select studies has been found to reduce viral shedding time, hospital stay and duration
of illness; however, this has not been demonstrated in larger randomised contrail trials
(RCTs). Moreover, combination therapy of interferons with existing antiviral medications
such as Remdesevir, a nucleotide analogue and viral RNA-dependent RNA polymerase
inhibitor, did not improve outcomes. As such, interferons are not recommended in unwell
SARS-CoV-2 patients. [35,36]. Due to perturbations in antiviral immunity in the setting of
SARS-CoV-2, disseminated infection can occur with simultaneous activation of multiple
components of the innate and adaptive immune system. When this process occurs in an
uncontrolled fashion, a deleterious and futile immune response is produced, characterized
by a cytokine milieu called the ‘cytokine storm’. This process is frequently observed in
patients requiring ITU support and who succumb to SARS-CoV-2 infection. It is typified by
greatly increased levels of the proinflammatory cytokines IL-1α, IL-6 and TNFα, which are
produced primarily by macrophages, mast cells, endothelial and epithelial cells through
NF-kB induction, which is seen as the orchestrator of this clinical presentation, making it
an attractive target for intelligent drug design [5]. The levels of these cytokines have been
found to correlate with nasopharyngeal SARS-CoV-2 viral load, with their release into the
local and systemic circulation leading to the further localisation, influx and hyperactivation
of macrophages, monocytes and dendritic cells, leading to perpetual inflammation and
tissue injury. However, it is appreciated that in SARS-CoV-2 infection, there are both
reduced numbers and cytotoxic activity of circulating NK, CD4+ and CD8+T cells with
a move towards senescence further contributing to suboptimal outcomes [5,37]. In these
circumstances due to extensive and diffuse alveolar damage, adult onset respiratory dis-
tress syndrome (ARDS) and haemodynamic stability, multi-organ failure and death can
quickly follow unless treatment is initiated. Importantly, this phenomenon is not unique to
SARS-CoV-2 infection and may also be seen in H1N1 influenza, Epstein Barr Virus (EBV),
SARS-COV and MERS, although not as frequently [38].

The complement system is an important part of the innate immunity and is involved in
the detection of microorganisms and the priming of both arms of the immune system and is
increasingly being recognised as an important contributor to SARS-CoV-2 pathology. While
there are three methods of complement activation (classical, lectin and alternative), all
mechanisms lead to the formation of several important molecules including C3b, which can
opsonize pathogens for phagocytosis by circulating neutrophils and macrophages, and C5a,
an anaphylatoxin and neutrophil activator, attractor and aggregator, and the membrane
attack complex (C5b-C9), which leads to bacterial and infected host cell death [39]. Simi-
lar to SARS, SARS-COV-2 shows the ability to activate the lectin pathway by interacting
with mannose-binding lectin (MBL). In SARS-CoV-2-infected patients, there is high-level
deposition of MBL, C3, C4 and C5b-9 on pulmonary epithelial cells and pnuemocytes,
leading to tissue injury. Moreover, the deposition of this complement leads to local en-
dothelial injury and exposure of the basement membrane. This allows for subsequent
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C5a and C5a receptor binding, leading to endothelial cell activation, platelet granule de-
granulation and neutrophil extracellular trap (NET) release, which contribute to resultant
immunothrombosis [24]. Neutrophils are the predominant circulating leucocyte and are
raised in SARS-CoV-2 and are localised to sites of SARS-CoV-2 replication such as the
pharynx and lung. One key contribution of neutrophils to SARS-CoV-2 is NETs, which
are composed of multiple extracellular chromatin fibres that are covered in antibacterial
proteins including cathelicidins, neutrophil elastase (NE), myeloperoxidase (MPO), pro-
teinase 3, pentraxan 3 and α-defensins. These are extruded in a lytic fashion from the cell
membrane and represent a form of cell death for the neutrophil [3,40]. NETs are released
to physically limit the invasion of pathogens by entrapping bacteria, fungi, protozoa and
viruses, which are too large to be phagocytosed and are released on exposure to SARS-CoV-
2 in an ACE2-dependent manner and are demonstrably raised in the serum of patients with
severe SARS-CoV-2 infection and highly concentrated in the pulmonary tissue of autopsy
specimens. Moreover, higher serum MPO-DNA levels have been found to predict the risk
of poor outcomes such as intubation (p < 0.001) and death (p < 0.0005) [3,41,42]. Overall,
NETs’ pathological role in severe SARS-CoV-2 includes vaso-occlusion, endothelilits and
pulmonary epithelial cell necrosis while also increasing IL-1β production, leading to further
macrophage recruitment and activation. This local tissue damage exacerbates the inflam-
matory cascade and in doing so, contributes to the poor outcomes of severe SARS-CoV-2
infection and NET formation; NETosis is a mechanism and a potential drug target of the
future [3,43,44].

3. Aspergillus in Health and SARS-CoV-2

In health, the first point of contact of inhaled conidia will be the airway epithelium,
which is a ciliated stratified epithelium capable of eliminating conidia through secreted
mucus by goblet cells; the coordinated beating of cilia and the mucociliary escalator lead to
either their swallowing or expectoration [10,19,45]. Importantly however, A. fumigatus can
circumvent these mechanisms through toxin production and in the setting of concurrent
disease, can enter the lower airways. Upon reaching the lower airways, conidia will be
exposed to different antimicrobial proteins including defensins and lactoferrins, which will
be upregulated in the presence of A. fumigatus. Moreover, there is direct interaction with
cells of the innate system through PAMP-PRR interaction with pulmonary macrophages
able to produce chitinase, which breaks down the aspergillus cell wall while circulating
neutrophils can produce NETs and pentraxan 3. Pentraxan 3 is a soluble recognition recep-
tor also recognized by epithelial cells and can opsonise conidia in an FcyRII-dependent
manner for destruction by neutrophils and macrophages and prevent their germination
into more invasive hyphae. It also works to activate the complement system against as-
pergillus by C3b binding, leading to alternate pathway activation. Aspergillus conidia,
however, have mechanisms to evade complement activation including the masking of sur-
face (1,3)-β-d-Glucan (BDG) and mannose by RodA, a surface hydrophobin, and through
recruitment of complement inhibitors such as Aspf2 as well as the degradation of C3, C4
and C5 through protease secretion [46,47]. This critical role of pentraxan in preventing
invasive aspergillosis is evident in pentraxan knock-out mice who were more susceptible
to disease and showed clinical improvement upon its administration. Interestingly, serum
pentraxan levels in ITU SARS-CoV-2 patients are unaffected versus those with sepsis from
other pathogens, which may explain the heightened risk of CAPA in these patients [47].
Dendritic cells work as a link between activating the innate and adaptive immune response
while also directly phagocytosing aspergillus and leading to further increase in proin-
flammatory cytokine release as well as an adaptive Th1-mediated response. Indeed, both
Th1 and Th17 adaptive responses predominate in fungal disease with IL-17 binding to
swollen conidia versus resting conidia, which may exist in biofilms, and resulting in further
clearance driven by alveolar macrophages [10,22]. Paradoxically, increased Th17 signalling
in the setting of severe SARS-CoV-2 infection can lead to increased invasive aspergillosis
risk [48,49].Responses in SARS-CoV-2 are attenuated with autoantibody formation occur-
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ring in ~10% of severely ill SARS-CoV-2 patients. Diminished IFN-β secretion reduces
the efficiency of dendritic cell-mediated Th1 responses that are important in aspergillus
eradication while decreased Type 3 interferons, e.g., IFN-λ, can reduce neutrophil activity
against A. fumigatus, which is indispensable for the prevention of subsequent invasive
disease [50].

As we have discussed, severe SARS-CoV-2 is associated with widespread immune
change and also diffuse pulmonary epithelial and alveolar damage, which creates a niche
for secondary infection with CAPA, complicating SARS-CoV-2 infection in 3.8–35% of ITU
patients depending on the population studied [10]. Typical cases occur in ITU SARS-CoV-2
patients who are older, have a higher sequential organ failure assessment (SOFA) score, are
mechanically ventilated and require vasopressor support. The mortality of 565 mechanically
ventilated patients with proven/probable CAPA in the large French national multicentre
MYCOVID study was 61.8% [51]. Important to note is that CAPA’s mortality persists
even after adjustment for age, the SOFA score and the need for organ support against
SARS-CoV-2 controls. As such, severe COVID19 is itself a risk factor for CAPA with it being
an extremely rare disease in non-severe SARS-CoV-2 infection [52,53]. Typical risk factors
for invasive fungal infections such as aspergillosis include underlying haematological
disease and immunosuppression, which can be either primary or secondary to chiefly
chemotherapy or corticosteroid therapy. More recently, ITU stay, broad-spectrum antibiotic
use and comorbidities such as chronic obstructive pulmonary disease (COPD), cirrhosis,
chronic kidney disease and non-haematological cancer are being recognised as additional
risk factors for invasive fungal disease [54]. Severe SARS-CoV-2 infection is characterised by
the cytokine storm with IL-6 critical to this process and the attenuation of antiviral immunity.
IL-6 is upregulated in cells infected with aspergillus, highlighting the role that its inhibition
has in the pathogenesis of CAPA [22,55]. Moreover, sustained high levels of IL-6 and
TNFα can lead to reduced macrophage maturation and reduced Major histocompatibility
complex (MHC) Class 2 expression, compounding the risk of IFI further [56]. Antibiotic use
in SARS-CoV-2 is high and often in the absence of supporting evidence and can be a cause
of considerable harm. In a recent meta-analysis of >30,000 SARS-CoV-2 patients, ~75%
received antibiotics despite the bacterial co-infection rate being only 8.6%. Epidemiological
evidence suggests broad-spectrum antibiotic use may increase CAPA risk through selection
processes although this is not a universal finding [57,58]. A possible relationship between
antibiotic use and CAPA could be through increased release of bacterial PAMPs, which
upon leading to induction of the immune response, increases aspergillus gliotoxin release,
which is highest in A. fumigatus and has broad immunosuppressive actions. These include
inhibition of NF-kB leading to enhanced apoptosis, reduced reactive oxygen species (ROS)
formation by phagocytes as well as decreased cytotoxic T-cell activity [59,60].

The risk from CAPA is also iatrogenic in nature and greatly increased because of
the treatments we have deployed. The Randomised Evaluation of COVID-19 Therapy
(RECOVERY) is an international clinical trial that has synthesised evidence on potential
treatments for COVID-19 since 2020. One of the key and earliest discoveries was the
beneficial outcomes found in patients who received Dexamethasone, a high-potency glu-
cocorticoid. At present, 6 mg Dexamethasone (or alternative steroid dose equivalent) is
a key pillar of COVID-19 treatment, given for up to 10 days, reducing mortality by 36%
and 18% in invasively ventilated and non-invasively ventilated patients, respectively [61].
Dexamethasone and other glucocorticoids have several key side effects that include im-
munosuppression through the curtailing of both the adaptive and innate immune systems.
Mechanisms of this include decreased phagocyte adherence to endothelium, extravasation,
ROS formation and phagocytosis by inhibiting the recruitment of key proteins such as the
LCSII protein. This allows for the persistence of aspergillosis conidia and their subsequent
germination into hyphae. In addition, glucocorticoids can reduce NF-kB activation, leading
to depressed priming of both arms of the immune system with evidence glucocorticoids
can directly promote aspergillosis growth—something that was not observed with other
human steroids. It is of no surprise, therefore, of the correlation between glucocorticoid



Int. J. Mol. Sci. 2022, 23, 3228 7 of 15

use in diverse patient populations (e.g., COPD, collagen disorders, cancer) and invasive
aspergillosis infection [62–64].

In a meta-analysis of cohort studies of ITU COVID-19 patients, glucocorticoid use was
linked with a 10-fold increase in candiademia and a relative risk ratio for CAPA of 1.98
(95% CI 1.08–3.63) [65]. Other immunosuppressive treatments deployed in the SARS-CoV-2
arena include the soluble IL-6 receptor inhibitor Tocilizumab, which is used for a diverse
range of rheumatological conditions. Through effective inhibition of IL-6, decreased in-
flammation, cytokine storm progression and tissue fibrosis are possible with evidence
of reconstituted cytotoxic potential of immune cells including NK cells. Overall efficacy
suggests that when administered at 8 mg/kg, Tocilizumab significantly reduces mortality
(OR 0.62; CI 0.55–0.70, p < 0.00001), and length of hospital stay, particularly in mechanically
ventilated ITU patients [65,66]. However, similar to Dexamethasone, coinfection and super-
infection are key risks and may go undetected due to delayed/absent CRP rise due to IL-6’s
role in CRP production. In one retrospective observational study, 26.7% of rheumatological
patients post Tocilizumab suffered infectious complications at a median of 10.5 days post
administration. In a meta-analysis of 33 studies in SARS-CoV-2 patients, there was no sig-
nificantly increased incidence of secondary infection (OR 1.12 95% CI 0.87–1.43, p = 0.0376)
apart from fungal infection in Tocilizumab recipients (OR 2.02, p = 0.036) [67,68].

The risk of CAPA, particularly with Tocilizumab, is partly explained by the impor-
tance of IL-6 in epithelial integrity with inhibition increasing the risk of invasive disease of
any germinating conidia [69]. The observations for fungal infection corroborate a recent
multinational multicentre trial of 592 ITU patients where the hazard ratio for CAPA in
Tocilizumab recipients was 2.45 (95% CI 1.41–4.25) and was higher than that for dexam-
ethasone (HR 1.01). Importantly, this risk was compounded in those requiring invasive
ventilation; HR 3.4 (95% CI 1.84–6.25) and of older age; HR 1.18. It is important to note that
a consistent observation between CAPA and Tocilizumab without concurrent corticosteroid
use has not been found [56]. Because of the above mechanisms, tolerance of the lung
microenvironment to Aspergillus conidia is achieved, allowing them to propagate and
germinate, which is key to their subsequent angioinvasion [70]. This invasion leads to the
occlusion of small- to medium-sized pulmonary arteries leading to subsequent pulmonary
necrosis, infarction and haemorrhage, leading to the clinical worsening that is observed.
Moreover, during this process, an embolic phenomenon may occur through haematoge-
nous spread of hyphae to other organs. This can result in subsequent thrombosis and
infarction of distant tissues and involvement of other organs with complications of invasive
aspergillus including endocarditis, central nervous system infection and stroke and may
eventually culminate in multiorgan failure and death [71,72].

4. Challenges in Diagnosing CAPA

Diagnosing CAPA is challenging and requires the correct interpretation of clinical,
radiological and biochemical parameters including serum fungal biomarkers. At present,
there is no standardised definition for CAPA. Of the diagnostic algorithms that exist to help
in this regard with respect to IFI, there are major limitations and assignment of patients
as proven, putable, possible and probable. To be defined as a proven case for histological
examination, which is the gold standard test, is not always appropriate considering the
coagulopathy seen in the critically unwell and the risks in performing bronchoscopy given
the inherent risk of aerosol contamination of the surroundings and nosocomial SARS-CoV-2
transmission [73].

The European Organization for the Research and Treatment of Cancer/Mycosis Study
Group (EORTC/MSGERC) algorithm, only validated in haematological patients, requires
the presence of host risk factors that can be absent in SARS-CoV-2 patients and does not
recognise aspergillus colonisation [19].

More recently, the AspICU algorithm, which is adapted to the ITU environment,
has been produced and does differentiate between putative CAPA and colonisation but
does not rely on fungal biomarkers. When compared to EORTC/MSGERC in 27 proven
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invasive pulmonary aspergillosis (IPA) patients, of which 15 had a positive serum galac-
tomannan (GAL), 16 would be considered as putative through the AspICU algorithm. The
ECCM/ISHAM criteria are perhaps the most clinically useful as they have wide range
of clinical specimen types including tracheal aspirates and sputum although the risk of
aspergillus contamination of these sources cannot be underemphasised [19,74]. Radiologi-
cal findings are included in all diagnostic criteria of IFI. In severe SARS-CoV-2 imaging,
findings include bilateral pulmonary infiltrates, ground glass opacities, nodules and frank
consolidation, which means there is significant overlap with invasive pulmonary aspergillo-
sis, making the radiological diagnosis of CAPA extremely difficult and as such a reliance on
microbiological tests is unsurprising [75]. Of the fungal biomarkers used to diagnose CAPA,
BDG and galactomannan (GAL) are the most commonly used, but neither test achieves
the required sensitivity, specificity or predictive value to be used to solely diagnose IFI.
Importantly, these are not available in all local laboratories and can be raised in a plethora
of settings leading to false positive and negative results (Table 2) [76–84].

Table 2. False positive and false negative testing in serum fungal biomarkers [76–84].

Biomarker False Positive False Negative

β-D-Glucan (BDG)

• Germinoma Penicillin G
and other antimicrobials

• Bacteraemia
• Nocardiosis
• IVIg
• Albumin
• Haemodialysis
• Glucan-containing

Gauze

• Lipaemic blood samples
• Haemolysed samples
• Non-BDG containing

fungi (e.g., Cryptococcus,
Mucormycosis,
Blastomycosis)

Galactomannan (GAL)

• Piperacillin tazobactam
• Co-amoxiclav
• Ampicillin
•

Phenoxymethylpenicillin
• Cefepime
• IVIg
• TPN
• Increasing age or

newborn
• Antifungal therapy
• Cotton gauze
• Damaged intestinal

mucosa

• Variable GAL release
• Renal dialysis

(1,3)-β-d-Glucan is fungal cell wall polysaccharide, which is found in most fungal cell
walls with few exceptions and is sporadically released into the circulation during the fungal
growth cycle. While the gold standard for diagnosing IFI is biopsy and identification of
fungi in specimens on staining, sampling from bronchoalveolar lavage (BAL) also reports
high yield and can also be tested for BDG and GAL positivity. However, as mentioned,
bronchoscopy has inherent risks, being invasive and aerosol generating, with the positivity
of fungal culture in invasive aspergillosis suboptimal at 45–60%. As such, serum BDG
is a safer measurement with serial measurements available; indeed, there is evidence
that early negative BDG or GAL during antifungal therapy can help predict positive
outcomes [85]. A Cochrane review conducted in 2020 highlighted the considerable variation
in sensitivity (27–100%) and specificity (0–100%) across all diagnostic BDG platforms in
immunocompromised and critically ill patients although there was large variation in
defined possible/probable cases of IFI amongst included studies [86]. As such, a negative
result cannot exclude invasive fungal disease. Galactomannan (GAL) is a fungal cell wall
polysaccharide and similar to BDG, is released particularly during aspergillus growth and
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development. Overall, the pooled sensitivity and specificity of serum BAL and GAL is
0.48–0.92 and 0.85–0.95, respectively, with positive serum GAL only found in invasive
disease. However, there are estimates of only 20% CAPA patients having positive serum
GAL with cases of negative GAL well described [74]. As such, BAL-GAL is the best type of
diagnostic sampling. At present, an ODI cut-off of GAL of 1.0 in BAL has been proposed
over the traditional 0.5, as this has the best overall sensitivity 0.75–0.86, with specificity
0.94–0.95, although these values are significantly reduced in those who are pre-emptively
put on mould active antifungals [87].

Importantly, in those in whom Tracheal aspirates were performed, GAL ODI cut-off
values ≥2.0 showed a high degree of concordance with BAL Aspergillus PCR and culture.
As such, tracheal aspirates could be an underutilised sampling approach to diagnosing
CAPA and identifying patients who may benefit from a more invasive BAL [12].

Recently, a serum GAL lateral flow assay (LFA) was developed that has already
been used in haematological malignancy patients with excellent sensitivity (96.9%) and
specificity (98%) achieved at a galactomannan index of 0.5 [81]. This has the obvious
advantage of being non-invasive with a shorter turnaround time with results available
between 15–30 min. When used in the setting of a mixed cohort of patients including
59 severe SARS-CoV-2 ITU patients at 0.5 ODI cut off, the sensitivity and specificity of the
GAL LFA were 78.6% and 80.5%, respectively, with significant agreement with serum GAL
(p < 0.001). While this study was limited in being a retrospective analysis hampered by its
low number of proven cases and low number of CAPA cases, it illustrates the utility that
this emerging technology may have in the clinical setting [88,89].

It is important to note that there are different forms of this technology with Aspergillus
lateral flow devices (LFDs) and LFAs in circulation. A recent review compared the perfor-
mance of both of these in serum in the setting of invasive aspergillosis in 101 post-allogenic
hematopoietic stem cell transplantation patients. Overall, of 86 patients with proven and
probable invasive aspergillosis, the aspergillus LFD was positive in only nine (10.5%), while
the LFA performed only marginally better: 18 (20.9%) with false positive results up to
12.7%. The sensitivity of the LFD and LFA was 40% with specificity of 86.8% and 89%,
respectively. The sensitivity did not improve with serial testing. Therefore, it appears the
serum aspergillus LFA is slightly better as a potential screening test for allowing further in-
vestigations for IFI to be performed, including BAL, where the LFA had better performance
as a diagnostic tool (sensitivity 100%, specificity 81%) [90].

Chronic Pulmonary Aspergillosis refers to a spectrum of conditions with chronic
cavitary pulmonary aspergillosis (CCPA) the most common and is classically not associated
with background immunosuppression. In this setting, the sensitivity and specificity of
GAL in BAL were 77.2% and 77%, respectively, versus 66.7% and 63.5% in serum (cut-off
index 0.4) [91]. When utilised here, the aspergillus LFD had a comparable sensitivity of 62%
and 67.7%, which was broadly unchanged upon using BAL samples (sensitivity 66.7% and
specificity 69.2%), which was only marginally improved when using a GAL cut-off index
of 0.6 (sensitivity 72.7%, specificity 83.1%). Therefore, while the reliability of the device is
insufficient, its turnaround time may be of use particularly in resource-limited countries
or centres for aspergillosis screening [92]. In a retrospective testing of 238 SARS-CoV-2
patients of which 148 serum and 196 samples were obtained, the aspergillus LFA in BAL
showed that at the 0.5 cut-off overall sensitivity for proven, probable and possible diagnoses
of CAPA was 72% and 100% in BAL fluid and tracheal aspiration, respectively, with a
corresponding specificity of 79% and 44%. In serum, however, an overall sensitivity and
specificity of 20% and 93% was achieved. This highlights once again that the use of LFA
over LFD for tracheal aspirate samples may assist in identifying patients who may benefit
from further invasive investigations, highlighting the possible risk of CAPA early [93].

5. Therapeutics in CAPA

Upon diagnosis of CAPA, early treatment is important to improve mortality, which
can be considerable. Voriconazole and Isavuconazole are widely used as a first-line treat-
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ment with equivalent efficacy for CAPA although with the former there are important
considerations concerning drug–drug interaction through its CYP2C19 and CYP3A inhi-
bition and therefore the need for therapeutic drug monitoring. For vorincazole, trough
concentrations of 2–6 mg/L are recommended, although this may be challenging to achieve.
This is particularly important in patients who may be receiving Extracorporeal Membrane
Oxygenation (ECMO) as their respiratory support in whom antifungal pharmacokinetics
can be severely deranged [74,94].

The preferential use of triazoles in this setting mirrors the landmark study by Herbrecht et al.
2002, which compared voriconazole and amphotericin B (AmB) in invasive aspergillosis
where the mortality hazard ratio was 0.59 in the voriconazole group [95]. There are, how-
ever, no direct RCTs comparing antifungals in CAPA. Voriconazole requires therapeutic
drug monitoring and can cause renal dysfunction. This is particularly the case with intra-
venous Voriconazole, which contains sulphobutylether-β-cyclodextrin (SBECD) that acts
to improve voriconazole solubility and can accumulate in the kidneys. As highlighted,
SARS-CoV-2 can cause renal dysfunction and as such, extra care must be taken to monitor
for this. Moreover, the Food and Drug Agency states intravenous voriconazole use should
be avoided in patients with CrCL < 50 mL/min or requiring haemodialysis. The British Na-
tional Formulary does not share this view, however, and advises caution and highlights the
oral route of therapy as an alternative [96,97]. In one retrospective observational study of
166 patients receiving voriconazole for at least three days, 42 patients (CrCl < 50 mL/min)
received intravenous voriconazole, 77 (CrCl > 50 mL/min) received intravenous voricona-
zole and 47 (CrCl < 50 mL/min) received oral voriconazole. On days 3 and 7 and at the
end of treatment (EOT), renal review changes as per the RIFLE criteria were found in
19 (11.4%),14 (8.4%) and 28 (16.9%) patients, respectively. In multivariate analysis, it was
shown those who developed day 3 injury with ≤7 days voriconazole exposure were more
likely to be on concurrent antibiotics, particularly penicillins and fluoroquinolones (OR 30.7,
p < 0.0001), received treatment with immunosuppressive agents (OR 7.90, p = 0.009) and
had concurrent haematological malignancy and previous fluconazole use within 30 days
(OR 7.80, p = 0.001). However, after receiving three days of treatment, even at day 7 or
EOT assessment, there was no link between the route of administration and baseline renal
function and subsequent renal dysfunction. Upon reviewing overall risk factors, those who
had baseline liver dysfunction had the highest risk of renal impairment with voriconazole
levels ≥5.0 mcg/mL significantly associated with worsening renal function at the end
of treatment [96]. This suggests IV Voriconazole is safe but needs to be considered on a
case-by-case basis, particularly in the context of other employed treatments such as antimi-
crobials that are commonly deployed in the treatment of SARS-CoV-2. Other antifungals
including Liposomal AmB are well recognised to cause significant renal toxicity but may
have a role in CAPA, particularly if there is local epidemiological evidence of high triazole
resistance amongst aspergillosis infections (>5% isolates), and susceptibility testing should
be routinely performed. Classical mutations include the TR34/L98H mutation, which is an
environmental resistance mutation and likely linked to fungicide use and has been reported
globally. Triazole resistance in one case series was calculated at ~3.7% of CAPA cases in a
recently published German ITU study and as such is not insignificant [98–100]. Therefore,
clinicians should be aware of this when assessing treatment response in CAPA. At present,
the duration of therapy is undefined, but most authorities agree it should be 4–6 weeks
with clinical review at the end of treatment. Some experts suggest 6–12 weeks therapy with
follow-up CT imaging to demonstrate resolution of lesions with longer courses emphasised
in immunocompromised individuals and those with cavitatory disease [74]. Due to the
above, the role of antifungal prophylaxis is being considered although this is not a practice
in the setting of the related influenza-associated aspergillosis. Two observational studies
that used intravenous posaconazole or inhaled amphotericin B as antifungal prophylaxis
in unwell SARS-CoV-2 patients reported significantly reduced incidence of CAPA and
aspergillus colonization rates; however, there was no difference in 30-day mortality versus
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controls [101,102]. These findings require further RCT analysis to define the role that
antifungal prophylaxis may have in preventing CAPA.

In summary, given the high morbidity and mortality of CAPA, which occurs in the
most severely affected SARS-CoV-2 patients and leads to progression of symptoms, during
initial assessment and treatment, these cases should be under inpatient care. This should
ideally include a wide array of medical specialties including Radiology, Microbiology,
Infectious Diseases and Respiratory. Upon recovery, treatment should be continued until
symptoms and radiological improvement are noted and upon discharge, regular outpatient
follow-up is mandated.

6. Conclusions

While SARS-CoV-2 infection for the majority of those affected is a mild illness, in at-risk
populations, it can cause severe disease leading to mechanical ventilation, haemodynamic
instability and death. This novel coronavirus leads to multiple downstream immune
system changes of particular antiviral and innate immunity, which allows for SARS-CoV-2
propagation and progressive lung damage and can predispose patients to the cytokine
storm, particularly in those who are comorbid. Among co-infections, CAPA is an increasing
concern and is a significant risk in patients who receive Tocilizumab therapy and likely
remains undiagnosed in a significant proportion of infected individuals. While serum
fungal biomarkers can be used, they have significant limitations, with BAL sampling
achieving the highest sensitivity and specificity to identify probable cases, although there
are significant risks in this arena and as such, galactomannan LFA and tracheal aspirate
sampling may prove useful. Clear challenges therefore exist in improving the identification
of cases and further understanding the pathophysiology of CAPA, which remains poorly
understood. Treatment should be for at minimum 4–6 weeks with voriconazole with close
clinical correlation and repeat imaging at the end of treatment to demonstrate cure.
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