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Abstract

We present the results of a study investigating whether there is an effect of Anodal-Tran-

scranial Direct Current Stimulation (A-tDCS) on working memory (WM) performance. The

relative effectiveness of A-tDCS on WM is investigated using a 2-back test protocol using

two commonly used memory visual stimuli (shapes and letters). In a double-blinded, rando-

mised, crossover, sham-controlled experiment, real A-tDCS and sham A-tDCS were applied

separately to the left dorsolateral prefrontal cortex (L-DLPFC) of twenty healthy subjects.

There was a minimal interval of one week between sham and real A-tDCS sessions. For the

letters based stimulus experiment, 2-back test recall accuracy was measured for a set of

English letters (A-L) which were presented individually in a randomised order where each

was separated by a blank interval. A similar 2-back protocol was used for the shapes based

stimuli experiment where instead of letters, a set of 12 geometric shapes were used. The

working memory accuracy scores measured appeared to be significantly affected by mem-

ory stimulus type used and by the application of A-tDCS (repeated measures ANOVA

p<0.05). A large effect size (d = 0.98) and statistical significance between sham and real A-

tDCS WM scores (p = 0.01) was found when shapes were used as a visual testing stimulus,

while low (d = 0.38) effect size and insignificant difference (p = 0.15) was found when letters

were used. This results are important as they show that recollection different stimuli used in

working memory can be affected differently by A-tDCS application. This highlights the

importance of considering using multiple methods of WM testing when assessing the effec-

tiveness of A-tDCS.

Introduction

Working memory (WM) refers to the temporary storage and manipulation of information

necessary for complex tasks such as language, executive function and long-term memory

[1, 2].
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WM dysfunction is observed in many neurological and psychiatric conditions such as

stroke, trauma, schizophrenia, Alzheimer’s, Parkinson’s as well as in major depression [3–5]

and ageing [6, 7]. Mnemonic encoding and extensive practice exercises may moderately

improve WM in schizophrenia [8, 9], likewise antipsychotics might also improve cognitive

functioning in schizophrenia [10, 11]. Sadly, the results of the above methods so far have been

inconsistent [12]. As inconsistency in results might result from small variances in testing

methodology and technique, it might also be important to look to the testing methods for WM

as a potential source of previous inconsistency. It is crucial to further investigate this area, as

any intervention showing capacity to improve WM would be of great interest to each of the

geriatric, neurologic and psychiatric communities.

Neuroimaging studies demonstrated [13, 14] dorsolateral prefrontal cortex (DLPFC: Brod-

mann areas 9 and 46) involvement during WM tasks. Disrupting DLPFC activity using tran-

scranial magnetic stimulation (TMS) leads to deterioration of WM performance [14–16],

supporting a role for the DLPFC in WM.

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation tech-

nique considered capable of modulating spontaneous cortical activity. It uses low-intensity

direct currents induced through a pair of rubber electrodes (covered by sponges) placed on the

skin of the scalp [17]. The delivered currents are considered to induce polarity dependent

changes in the cerebral cortex. A natural inducer of polarity dependent change, long-term

potentiation (LTP) is an acknowledged model of the neural plasticity hypothesised to underlie

learning and memory. Floel and Cohen [18] suggested that non-invasive cortical stimulation,

in combination with memory training, might induce LTP.

Although, tDCS appears to have induced significant change in a few cognitive studies,

inconsistencies still exist [19–21]. A growing body of literature [19, 21–23] suggests the impor-

tance that individual differences may have in moderating any influence that tDCS may have

on cognitive functions [24].

Generally, anodal tDCS (A-tDCS) has been shown to have a positive effect on WM whereas

cathodal tDCS (C-tDCS) has been shown to have no or negative effects. A number of human

tDCS studies using anodal stimulation have reported enhancement in motor activity [25, 26],

visio-motor activity [27], language learning [28], picture naming [29] as well as enhancement

of WM [30, 31]. A 10-minute period of A-tDCS (1mA) applied to the left DLPFC (L-DLPFC)

has been reported to enhance the performance of verbal WM tasks, when compared to a sham

stimulation [2].

Regarding the range of current used, this generally varies from 1mA to 2mA [2, 19, 31, 32].

It would appear, at least in relation to WM in older adults [21], that there may be no statisitical

difference between the effects of 1mA and 2mA. It has been suggested that any enhancement

of excitability is dependent on stimulation duration as opposed to the strength (stimulation

durtaion in turn drives the duration after effects) [33, 34]. However, longer durations might

also cause redness on the scalp [35] and effect the double blinding capability. Although this a

generalisation, we recognise that there may be exceptions where either higher or lower cur-

rents, or C-tDCS can be shown to have a positive effect on WM. In this study the choice was to

be consistent with the majority of findings reported and use 1.5mA A-tDCS for 15mins.

A commonly used measure of WM performance is the n-back test, which has been shown

to activate the DLPFC and posterior parietal cortex [36–41]. Funahashi et al. [42] studied the

importance of DLPFC in the processing of stimuli and what happens to this activity during the

retention period. Each half of the prefrontal cortex appears to be functionally specific, with

right hemisphere (R) being involved in particular spatial WM tasks while left hemisphere

appears vital for non-spatial WM tasks such as verbal WM tasks [42]. TMS [43] and lesion

[44] studies confirmed the importance of L-DLPFC. These studies have shown that focal
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damage and temporary disruption of L-DLPFC, but not R-DLPFC, related to impairment in

WM task performance.

The n-back test is an active as it updates the WM continuously [45], and it has been used in

prior tDCS studies [2, 30, 46]. Various forms of stimuli can be used in the n-back test: the most

common are letters, shapes or numbers. It is usual for tDCS studies of WM to employ only

one the form of a challenge; for example, a protocol might only use letters. tDCS has been used

on other modalities as part of WM testing using the n-back protocol, these have included ver-

bal tongue twisters [47] and shapes [41]. Single WM test protocols using a letter based n-back
protocol with tDCS have shown that tDCS stimulation can increase performance in both

healthy and neurologically compromised (Parkinsons disease) individuals [1, 31, 48]. Further-

more, a one week “wash-out” period is considered appropriate between sessions, in cross-over

controlled trials of A-tDCS, to ensure little residual effect [20, 30].

To the author’s knowledge, only one previous study has used multiple WM stimuli in the

same experiment [19]. This study used both visual (shapes) and verbal (English letters A-J) sti-

muli, reporting an improvement in WM accuracy across both modalities in their population

of educated adults. Although Berryhill and Jones [19] used both visual and verbal stimuli in

their research, their study was aimed at observing the effects of A-tDCS on individuals of dif-

ferent education levels, and not to differentiate the effect of the stimulus on either of the forms

of WM.

As mentioned above, different studies have used different stimulus to gauge the effect of

tDCS on WM. However, none of them considered the effect of stimuli. The objective of our

study is to investigate the effect of A-tDCS application on participants’ performance on 2-back
WM tasks using two variations of memory stimuli, one involving recall of letters and the other

involving recall of geometric shapes. We hypothesise that the real A-tDCS application group

will have improved WM performance when compared to the sham group. Given recalling

shapes and letters use different cognitive pathways and that recalling shapes is a relatively

novel task in comparison to letters (used commonly in reading tasks), it is likely that recalling

performance of random shapes has more potential for improvement than recalling familiar let-

ters. We therefore also hypothesise the WM score improvement with shapes after A-tDCS will

be more significant than with letters.

Material and methods

Participant selection

Twenty male subjects (aged 30±8 years) met the inclusion criteria which included not having

diagnosed mental or physical health issues. All the participants were right handed. The partici-

pants gave a signed informed consent to participate. Although the study had been advertised

without gender bias, only male subjects volunteered.

Subjects were recruited from the University of South Wales’ student population comparable

to that of Berryhill and Jones study [19]. Those who showed interest were given an information

sheet about the experiment and further screened for a history of either neurological ailments

or, taking of medication targeting or expected to affect their central nervous system. Subjects

were requested to abstain from sugared, caffeinated or alcoholic drinks before the stimulation

sessions. Before signing their informed consent, subjects were shown the equipment to be

used and told exactly what would be expected of them. The study was approved through the

ethical review process of the Faculty of Computing Engineering and Science at the University

of South Wales.
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Anodal-tDCS (A-tDCS) application protocol

A double-blinded, randomised, cross-over sham-controlled protocol was used for this study.

Subjects underwent two experimental tDCS sessions: one with sham A-tDCS (referred to as

sham) and the other using real A-tDCS (referred to as tDCS).

The anodal electrode was placed over L-DLPFC and the cathode was placed on the right

supra-orbital area (SO) corresponding to F3-Fp2, as per the 10–20 international system for

EEG electrode placement. This montage is consistent with that used in previous research stud-

ies to investigate the effect of tDCS on WM [1, 2, 30].

The tDCS device (DC stimulator plus; neuroConn GmbH) delivered a low-intensity cur-

rent to the brain using rubber electrodes (covered in sponge pads) of size, 5x7cm soaked in

(0.9% NaCl) solution. The DC stimulator plus device has a “study mode” which is designed

explicitly for the double-blind studies. NeuroConn provides two conditions of codes (sham

and tDCS) that can be set to select which option is delivered.

The order of sham and tDCS presentation to each participant was based on a random gen-

eration (Microsoft Excel) of which code to use, resulting in 11 subjects receiving sham and 9

subjects receiving tDCS in their first session). An independent investigator gave two condi-

tions of codes (determining the type of stimulation) to the researcher conducting the experi-

ment who was unaware of which code was active tDCS. The researcher then entered the codes

into the tDCS unit for each experiment, which was then performed. The second session was

conducted using a complementary code so that each participant underwent one sham and one

tDCS session without either the participant or the researcher knowing which one was which.

The two sessions (sham and tDCS) were separated by at least one week.

Both the sham and tDCS sessions consisted of 15 minutes of stimulation [20, 49]. The sham

session consisted of current ramping up to 1.5mA over a 8s period, followed by a 5s fade out

and 870s without any significant stimulation (just impedance control). The tDCS stimulation

consisted of current ramping up to 1.5mA over an eight second period, followed by continu-

ous stimulation at 1.5mA. During the experiment, the impedance was always maintained less

than the threshold value (12KOhm for 1.5mA) as per the recommendation of the manufactur-

ers of the tDCS device. No adverse effects or complaints were received from subjects. During

the stimulation, subjects were reading books, using mobile phone or resting. Offline stimula-

tion was used in this study.

Working memory measurement protocol

WM tests (shapes or letters) were applied separately, with the choice of which test was pre-

sented first being determined by random number generation. A single sham or tDCS session

included two WM test runs (one “letters” and one “shapes”). For the duration of the experi-

ment, subjects sat in an armless office chair, facing a computer monitor placed approximately

at 0.7m in front of them at eye level (180˚) with their right index finger on the right arrow of

the keyboard. Before the start of the experiment, the subjects were briefed on how the 2-back

test for WM would be conducted and were given the opportunity to rehearse both the letters

and shapes paradigms.

In the letters WM test, subjects were shown English letters (A-L) one at a time (each appear-

ing for 2s) presented in a randomised order. A blank screen was presented for 1.5s between let-

ters. The subjects were instructed to press the right arrow key on the keyboard if they recalled

that the current letter was identical to the one seen two steps back, or doing nothing if they

were considered not to be identical. The subjects were instructed to press the button anytime

between presentations of a cue to end of 1.5s blank screen. In the case of the shapes 2-back test

(slant s, oval, rectangle, mirrored tick mark, equilateral triangle, right angled triangle,
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rhombus, pentagon, 4-sided star, 6-sided star, thunderbolt, inverted jig-saw), the procedure

was the same as for the letters protocol, with shapes being presented instead of letters. Each

subject was given a chance on the first day to rehearse (both alphabets and shapes test) only

once before taking part in the actual test. The sequence of cues in practice test are different to

the actual test.

In each session (sham or tDCS), subjects were presented with a total of two runs shapes and

two runs letters separately, and each run consisting of 50 cues. Each cue displayed for 2s, and

an inter-cue interval (inter-stimulus interval) of 1.5s. This adds up to 50�2+49�1.5 = 173.5s

(~3mins). After first run subjects were given a recover time of 15s followed by second run.

Total time for a block: 3min+3min+15s = 6min 15s.

The numbers of 2-back matched pairs (targets) presented in session-1 and session-2 were

35 and 37 respectively. This slight disparity in number of targets was due to the selection being

based on random number generation via Excel (Microsoft). The experimental procedure has

been summarised in Fig 1. Prior to starting this experiment, the team ran a pilot study, to

determine whether the subjects could perform the test by pressing a button when they recog-

nised the appropriate symbol, in a similar manner to 0-back testing, without demand on mem-

ory. We did not formally test the sustained attention element, however as each test period for a

single stimulus type was circa 3 minutes, attrition was not considered an important factor [50].

Furthermore, n-back with varied n values (1, 2 and 3) was trialled to ascertain the optimal n
for the purposes of the experiment. For n = 1 accuracy was close to 100%, whereas n = 3 was

difficult for most subjects with accuracy close to 0%. 2-back was found to provide the greatest

range of accuracy results within and between subjects and was therefore selected for the main

experiment.

Statistical analysis

The working memory test answers were compared to actual correct answers to calculate true

positives, true negatives, false positives, and, false negatives across stimulation and stimuli.

Fig 1. The experimental protocol showing the sequence of the 2-back test using letters (L) and shapes (S).

https://doi.org/10.1371/journal.pone.0222688.g001
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Accuracy which is calculated using (1) was used to determine the effect of stimulation and sti-

muli effects on WM and summarised in Fig 2.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
ð1Þ

TP: True Positives, TN: True Negatives, FP: False Positives, FN: False Negatives.

Due to the nature of the study (cross-over sham-controlled trial design) a repeated mea-

sures ANOVA was used to quantify the combined effect of stimuli (stimuli: letters: 81.1±12.6,

shapes: 74.7±12.5) and stimulation (stimulation: real: 80.5±12.2, sham: 74.2±12.5). To further

understand the relationship, effect size and paired sample t-test were calculated. The relative

degree of change (effect size) between sham and tDCS conditions across shapes and letters

memory stimuli types was determined using Cohen’s d-test.

Fig 2. Transition plots of accuracies for 20 subjects across sham and tDCS conditions in (a) shapes and (c) letters. Violin plots (including box and

scatter plots) across sham and tDCS conditions in (b) shapes (d) letters. NS-Non Significant (p = 0.152).

https://doi.org/10.1371/journal.pone.0222688.g002
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Results

Effect of tDCS intervention on 2-back test accuracy

Eighty percent of the subjects exhibited an increase in their WM accuracy on the shapes n-
back test post A-tDCS (Fig 2(A) and 2(B)), compared to only 60% when using the letters-stim-

ulus. This change is evident from both transition (Fig 2(C)) and violin plots (Fig 2(D)) plots.

After the application of A-tDCS the left tail persists (Fig 2(D)) and this is opposite for the

shapes accuracies (Fig 2(B)).

A significant change in n-back test accuracy between tDCS and Sham [F(1,76) = 5.09,

p = 0.02, partial-ƞ2 = 0.063] as well as par-significant change across memory stimuli types

[F(1,76) = 3.41, p = 0.06, partial-ƞ2 = 0.043] and insignificant interaction between stimuli and

stimulation [F(1,76) = 0.276, p = 0.7, partial-ƞ2 = 0.002] was found. These results indicate the

significant effect of tDCS stimulation on working memory accuracy irrespective of the type of

stimuli used. This also indicates a par-significant difference in outcome between the stimuli,

regardless of the type of stimulation used.

The above results were recomputed after removing the outlier subject from letters and

shapes groups and the results seems to be unchanged.

Stimulation (sham and real): F(1,76) = 3.91, p = 0.05, partial ƞ2 = 0.05.

Stimuli (letters and alphabets): F(1,76) = 5.17, p = 0.02, partial ƞ2 = 0.06.

Interaction effect: F(1,76) = 0.068, p = 0.8, partial ƞ2 = 0.001.

Two-tail paired t-test between sham and tDCS across shapes: 0.02 (Cohen’s d = 0.56).

Two-tail paired t-test between sham and tDCS across letters: 0.15 (Cohen’s d = 0.36).

Cohen’s d-test produced d-values (between sham and tDCS groups) of 0.98 and 0.38 for

shapes and letters respectively indicating high and low effect sizes. A paired sample t-test

between sham and tDCS in shapes stimulus resulted to be significant (t[19, 2.82], p = 0.011)

whereas in letters stimulus resulted to insignificant (t[19, 1.48], p = 0.15).

Discussion

The experiment outlined in this study investigated the effect of electrical stimulation on work-

ing memory, revealing large (WM scores for the recall of shapes: sham and tDCS) to medium

(WM scores for the recall of letters: sham and tDCS) Cohen’s d-values, indicating small (62%)

to large (84%) overlapping [51] of the two distributions, respectively. This test also revealed

that 84% of the A-tDCS condition is above the mean of sham condition when shapes stimulus

is employed compared to 62% when letters are employed. In addition, it indicates that the

effects of A-tDCS may be seen more easily when using the shapes version of the visually

applied n-back test compared with the letters version and may help explain some of the incon-

sistency across the literature.

Our study is consistent with other work in this area [1, 2, 30], which reported significant

improvements in WM performance post A-tDCS stimulation. This is consistent with promo-

tion of long-term potentiation (LTP), where a short period of strong synaptic activation leads

to a lasting increase in excitatory postsynaptic potentials. The difference in the effect sizes

between letters and shapes might be due to variations in the spatial structures used for each of

the stimulus.

A recent meta-analysis of motor and cognitive tDCS studies highlighted the difficulty in

predicting the outcome of tDCS on behaviour [52]. One possible explanation might be due to

the difficulty in detecting the change in WM performance when there is no deficit in the per-

formance previously. The data presented in Fig 2 appears to support this statement. A further
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issue with the letter task could be the lack of capacity for it show large changes. The average

WM accuracy when the letter stimulus was used, or for that matter individual accuracies in

sham stimulation, were at a high level already (Fig 2(C) and 2(D)). A possible reason for this

observation could be that the WM task with letters stimuli may have been too easy for these

participants.

Subjective confirmation of the above suggestion follows from asking subjects which of the

two memory stimuli they felt harder to recall. Most of the subjects indicated it was the shapes

rather than the letters. When asked why it was difficult to recall shapes, most of them answered

that they could speak or shout letters in their minds loudly, but they could not do this with

shapes. This observation has support from Smith et al. [39], who showed that visual WM can

depend on the verbal encoding of visual stimuli. This could be limited capacity for the letters

to show improvement, alternatively perceived ease might make the subject concentrate less

and thus perform more poorly. A second possible explanation might be that cognitive pro-

cesses such as encoding, maintenance, selection and decision making are the critical functions

of DLPFC [1] and it might be that one of these functions is not working in tandem with the

others while letters are being used as a stimulus. Alternatively, subjects might have found it dif-

ficult to encode the shapes when compared to letters in sham stimulation and application of

A-tDCS helped circumvent the problem of critical functions and encoding. In this phenome-

non, combining the repeated A-tDCS sessions with cognitive training appears to enhance WM

[53, 54].

The aforementioned explanation may help to understand the learning rate for both shapes

and letters in both the sessions. Daily usage (familiarity with) of English letters might have

helped the subjects to learn quickly and significantly improve their accuracy in the second ses-

sion regardless of A-tDCS. Whereas, the relative unfamiliarity with the shapes may have

resulted in an increased difficulty to learn and remember them.

One potentially limiting aspect of the study was the absence of female subjects. The selec-

tion of a male only cohort, albeit due to chance, could also be considered a strength; reducing

associated variables. It may be possible to extrapolate the general findings into the female pop-

ulation; however, introducing females into the study cohort might also have introduced a

number of additional variables associated with the menstrual cycle, with its accompanying

cyclical change in steroid hormones which are known to affect mood, concentration and other

aspects of brain activity [55]. A another possible minor factor was that a small number of sub-

jects returned for the second session at a different time of the day compared to their first ses-

sion which may have affected their alertness during the WM tests and hence not allowed for

controlling for variability within a day. Finally, it is important to point out that the study did

not look at “reaction time” and its’ interaction with accuracy and whether a ceiling effect [56]

could have been affected by tDCS application.

Conclusion

This paper has presented results showing the effect of A-tDCS on working memory to be

dependent on memory stimuli used. Although a significant A-tDCS effect was found using the

shapes-based WM stimuli, no such change was found for the letter-based test. This finding

may have relevance in understanding the apparent selective effect of tDCS and its interaction

with varied modes of brain activity. To better understand these findings, the functional con-

nectivity of the working memory needs to be studied to determine the optimal use for A-

tDCS. Response time was not considered in this study, but would be an interesting factor to

consider in future comparative studies.

PLOS ONE Effect of tDCS on working memory

PLOS ONE | https://doi.org/10.1371/journal.pone.0222688 July 24, 2020 8 / 12

https://doi.org/10.1371/journal.pone.0222688


Supporting information

S1 Data. WM data.

(XLSX)

Author Contributions

Conceptualization: Sriharsha Ramaraju.

Data curation: Sriharsha Ramaraju.

Formal analysis: Sriharsha Ramaraju.

Investigation: Sriharsha Ramaraju.

Software: Sriharsha Ramaraju.

Supervision: Mohammed A. Roula, Peter W. McCarthy.

Visualization: Sriharsha Ramaraju.

Writing – review & editing: Mohammed A. Roula, Peter W. McCarthy.

References
1. Ohn SH, Park C-I, Yoo W-K, Ko M-H, Choi KP, Kim G-M, et al. Time-dependent effect of transcranial

direct current stimulation on the enhancement of working memory. Neuroreport. 2008; 19(1):43–7.

https://doi.org/10.1097/WNR.0b013e3282f2adfd PMID: 18281890

2. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct cur-

rent stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005; 166(1):23–30.

https://doi.org/10.1007/s00221-005-2334-6 PMID: 15999258

3. Goldman-Rakic PS. Working memory dysfunction in schizophrenia. The Journal of neuropsychiatry

and clinical neurosciences. 1994.

4. Morris RG. Working memory in Alzheimer-type dementia. Neuropsychology. 1994; 8(4):544.

5. Winograd-Gurvich C, Fitzgerald P, Georgiou-Karistianis N, Bradshaw J, White O. Negative symptoms:

A review of schizophrenia, melancholic depression and Parkinson’s disease. Brain Res Bull. 2006; 70

(4):312–21.

6. Klencklen G, Banta Lavenex P, Brandner C, Lavenex P. Working memory decline in normal aging: Is it

really worse in space than in color? Learn Motiv. 2017; 57:48–60.

7. Salthouse TA, Babcock RL. Decomposing adult age differences in working memory. Dev Psychol.

1991; 27(5):763.

8. Wykes T, Reeder C, Corner J, Williams C, Everitt B. The effects of neurocognitive remediation on exec-

utive processing in patients with schizophrenia. Schizophr Bull. 1999; 25(2):291. https://doi.org/10.

1093/oxfordjournals.schbul.a033379 PMID: 10416732

9. Wykes T, Reeder C, Landau S, Everitt B, Knapp M, Patel A, et al. Cognitive remediation therapy in

schizophrenia. The British journal of psychiatry. 2007; 190(5):421–7.

10. Lindenmayer J-P, Khan A, Iskander A, Abad MT, Parker B. A randomized controlled trial of olanzapine

versus haloperidol in the treatment of primary negative symptoms and neurocognitive deficits in schizo-

phrenia. The Journal of clinical psychiatry. 2007; 68(3):368–79. https://doi.org/10.4088/jcp.v68n0303

PMID: 17388705

11. Riedel M, Spellmann I, Strassnig M, Douhet A, Dehning S, Opgen-Rhein M, et al. Effects of risperidone

and quetiapine on cognition in patients with schizophrenia and predominantly negative symptoms. Eur

Arch Psychiatry Clin Neurosci. 2007; 257(6):360–70. https://doi.org/10.1007/s00406-007-0739-x

PMID: 17629731

12. Harvey PD, Keefe RS. Studies of cognitive change in patients with schizophrenia following novel anti-

psychotic treatment. Am J Psychiatry. 2001; 158(2):176–84. https://doi.org/10.1176/appi.ajp.158.2.176

PMID: 11156796

13. d’Esposito M, Aguirre G, Zarahn E, Ballard D, Shin R, Lease J. Functional MRI studies of spatial and

nonspatial working memory. Cognitive Brain Research. 1998; 7(1):1–13. https://doi.org/10.1016/s0926-

6410(98)00004-4 PMID: 9714705

PLOS ONE Effect of tDCS on working memory

PLOS ONE | https://doi.org/10.1371/journal.pone.0222688 July 24, 2020 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222688.s001
https://doi.org/10.1097/WNR.0b013e3282f2adfd
http://www.ncbi.nlm.nih.gov/pubmed/18281890
https://doi.org/10.1007/s00221-005-2334-6
http://www.ncbi.nlm.nih.gov/pubmed/15999258
https://doi.org/10.1093/oxfordjournals.schbul.a033379
https://doi.org/10.1093/oxfordjournals.schbul.a033379
http://www.ncbi.nlm.nih.gov/pubmed/10416732
https://doi.org/10.4088/jcp.v68n0303
http://www.ncbi.nlm.nih.gov/pubmed/17388705
https://doi.org/10.1007/s00406-007-0739-x
http://www.ncbi.nlm.nih.gov/pubmed/17629731
https://doi.org/10.1176/appi.ajp.158.2.176
http://www.ncbi.nlm.nih.gov/pubmed/11156796
https://doi.org/10.1016/s0926-6410(98)00004-4
https://doi.org/10.1016/s0926-6410(98)00004-4
http://www.ncbi.nlm.nih.gov/pubmed/9714705
https://doi.org/10.1371/journal.pone.0222688
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23. Jones KT, Gözenman F, Berryhill ME. The strategy and motivational influences on the beneficial effect

of neurostimulation: a tDCS and fNIRS study. Neuroimage. 2015; 105:238–47. https://doi.org/10.1016/

j.neuroimage.2014.11.012 PMID: 25462798

24. Slaby I, Holmes A, Moran JM, Eddy MD, Mahoney CR, Taylor HA, et al. Direct current stimulation of the

left temporoparietal junction modulates dynamic humor appreciation. Neuroreport. 2015; 26(16):988–

93. https://doi.org/10.1097/WNR.0000000000000456 PMID: 26351965

25. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, et al. Facilitation of implicit

motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human.

J Cogn Neurosci. 2003; 15(4):619–26. https://doi.org/10.1162/089892903321662994 PMID: 12803972

26. Nitsche M, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial

direct current stimulation. The Journal of Physiology. 2000; 527(3):633–9.

27. Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W. Facilitation of visuo-motor learning

by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J

Neurosci. 2004; 19(10):2888–92. https://doi.org/10.1111/j.1460-9568.2004.03367.x PMID: 15147322
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