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Purpose: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-
CFP)23Jrs/J) transgenic mouse line.
Methods: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies
to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel
ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD67), GABA plasma membrane transporter-1
(GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells.
Results: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell
layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes
ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL).
CFP-containing somata in the GCL ranged from 6 to 20 μm in diameter, and they had a density of 2636±347 cells/mm2

at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion
cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD67, GAT-1, and
ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells.
Conclusions: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous
estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion
cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies
requiring the identification of ganglion cells.

The use of transgenic mouse technology to drive the
expression of reporter molecules in neurons is rapidly
becoming an important tool for visualizing neuronal
populations and their neural circuitry. For example, in the
retina, transgenic approaches have been successfully
employed for labeling specific neuronal populations by
expressing reporter molecules such as β-galactosidase (β-gal),
human placental alkaline phosphatase (PALP), or green
fluorescent protein (GFP) and related fluorescent markers,
such as cyan fluorescent protein (CFP), under the control of
specific promoters that drive their expression in
photoreceptors, horizontal, bipolar, amacrine, and ganglion
cell types [1-6]. However, expression of the reporter molecule
in retinal neurons must be carefully characterized and, in some
cases, integrated with data from previous studies using
cellular labeling techniques, such as Golgi and reduced silver
staining, immunohistochemistry, and intracellular labeling
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[2,7-11], before the experimental utilization of these
transgenic animals.

Classically, neuronal subclasses in the retina have been
identified and categorized based on their position within the
retinal matrix, morphology, physiology, and neurochemistry.
The retina consists of five basic neuronal cell types:
photoreceptor, horizontal, bipolar, amacrine, and ganglion
cells. These cells occupy three distinct cell layers; the outer
nuclear layer (ONL), inner nuclear layer (INL), and ganglion
cell layer (GCL). Together, these neurons form local circuits
that are segregated in two synaptic layers: the outer plexiform
layer (OPL) and inner plexiform layer (IPL) [12,13].
Amacrine and displaced amacrine cells, the most diverse
group of interneurons in the retina, comprise 20–30
morphologically and neurochemically distinct subclasses
[14]. A few, such as the cholinergic starburst amacrine cells,
have been functionally characterized [15]. About 10–12
distinct ganglion cell types occupy the GCL of the mammalian
retina [16-21], and they are characterized primarily based on
morphological and physiologic criteria [22,23].

In the mammalian retina, about half of the cells in the
GCL are ganglion cells, while the other half are displaced
amacrine cells [24-27]. Previous studies that required the

Molecular Vision 2008; 14:1559-1574 <http://www.molvis.org/molvis/v14/a186>
Received 23 January 2008 | Accepted 8 August 2008 | Published 25 August 2008

© 2008 Molecular Vision

1559

mailto:iona.d.raymond@ucla.edu
http://www.molvis.org/molvis/v14/a186


differentiation of ganglion cells from other cells in the GCL
have used immunohistochemistry with neurochemical
markers [28-30] [31-35] or retrograde cell labeling [36,37]. A
transgenic mouse line expressing an endogenous fluorescent
reporter in ganglion cells would eliminate the need for
surgery, which is required for retrograde ganglion cell
labeling, as well as remove uncertainties inherent with
retrograde transport or antibody labeling. This method would
provide a reliable approach for in vivo and in vitro
visualization of ganglion cells that can be positively identified
for imaging and electrophysiological studies in live retinal cell
cultures, slices, and explants.

This study describes in detail the pattern of CFP retinal
expression in a thy1-CFP (#23) transgenic mouse line
developed by Feng and colleagues [5], in which a genetically
modified mouse thy1 promoter drives the expression of the
CFP gene in neurons [5,38]. The Thy1 gene codes for an
immunoglobulin superfamily protein that is expressed by
neurons, including ganglion cells, and some non-neuronal cell
types [39,40]. In the thy1-CFP mouse line, retinal CFP
expression remains stable among individuals of the colony. It
is mainly localized to ganglion cells and a subset of amacrine
cells, the cholinergic amacrine and displaced amacrine cells,
which can be easily distinguished based on their small size
and weak CFP expression. Immunohistochemical studies with
antibodies directed to neurofilament light (NF-L), neuronal
nuclei (NeuN), calretinin (CR), and Brn3a, which
immunolabel ganglion cells, confirm that the majority of CFP-
containing cells are, in fact, ganglion cells. These findings
underscore the value of the thy1-CFP transgenic mouse line
for studies requiring the efficient identification of ganglion
cells for in vivo and in vitro studies.

METHODS
Animal procedures: Adult Thy1-CFP C57BL/6J transgenic
mice, from line B6.Cg-Tg(Thy1-CFP)23Jrs/J [5], were
purchased from the Jackson Laboratory (Bar Harbor, ME).
Mice were housed and bred in the Animal Care Facility at the
David Geffen School of Medicine at the University of
California, Los Angeles (Los Angeles, CA), 12 h light-dark
cycle, with chow and water ad libitum. All animal guidelines
of the National Institutes of Health, the Association for
Research in Vision and Ophthalmology, and the University of
California, Los Angeles were followed concerning animal
welfare. Mice used for tissue collection for
immunohistochemistry and PCR were euthanized by
isofluorane (Novaplus, Lake Forest, IL) inhalation anesthesia
and decapitated. 500 μl to 1 ml of 100% isofluorane was
allowed to vaporize in an enclosed chamber and several
animals were sacrificed.
Thy1-CFP PCR: Thy1-CFP mice were genotyped to confirm
the inclusion of the CFP reporter transgene under the control
of the thy1 promoter. Mouse tail DNA was prepared by
digesting 2–3 mm of mouse tail overnight at 55 °C with 20

μl of proteinase K (10 mg/ml) in 180 μl tail digestion buffer:
50 mM Tris-HCl, pH 8.0, 1 mM MgCl2, 1% Tween-20.
Genotypes were determined by PCR using the following
primers: Thy1F1 (TCT GAG TGG CAA AGG ACC TTA
GG) from thy1 sequence and ECFPR1 (CCG TCG CCG ATG
GGG GTG TT) for thy1-CFP mice. PCR reactions were
performed in 25 μl total volume containing 50 mM Tris-HCl
(pH 9.2), 16 mM ammonium sulfate, 3.5 mM MgCl2, 0.1%
Tween-20, 0.2 mM dNTP, 2.5 U KlentaqLA (Clonetech,
Mountain View, CA), and 1 μl mouse tail DNA. The PCR
reaction was started at 94 °C for 1.5 min, and then continued
for 35 cycles as follows: 94 °C for 30 s,, 60 °C for 60 s, and
72 °C for 60 s, with a final amplification step of 72 °C for 10
min. Approximately one-third of the PCR reaction was
separated by electrophoresis in 1.5% agarose, stained with
1.25 μg/ml ethidium bromide in 1X Tris-Acetate-EDTA
buffer (TAE) and photographed. The animals were scored as
CFP positive if the predicted 173 bp PCR DNA product was
obtained.
Tissue preparation: After mice were euthanized, their eyes
were removed and dissected. For transverse sections, the eye
cups containing retinas were fixed in 4% paraformaldehyde
in 0.1 M phosphate buffer (PB), pH 7.4, for 15 to 60 min at
room temperature and then transferred to 30% sucrose
overnight at 4 °C. The eyecups with the retina were frozen in
ornithine carbamyl transferase (OCT; Reichert-Jung,
Bensheim, Germany), sectioned perpendicularly to the vitreal
surface at 10–12 μm with a cryostat, and retinal sections were
collected onto gelatin-coated slides and stored at −20 °C until
antibody staining. For wholemount preparations, retinas were
removed from the eyecup after 1 min in 4%
paraformaldehyde, dissected, and flattened between two
slides with spacers on both ends and fixed for an additional
15 to 30 min. Isolated retinas were transferred to 0.1 M PB
and stored at 4 °C until antibody staining.
Immunohistochemistry: Retinal sections were rinsed in 0.1 M
PB for 30 min, then incubated in a humidified chamber for
12–16 h at 4 °C in the primary antibody solution. Primary
antibody solution routinely contained 1%–5% normal goat
serum, 1% bovine serum albumin, and 0.5% Triton X-100 in
0.1 M PB, pH 7.4. Retinal sections were washed and incubated
in secondary antibodies conjugated with 1:1000 Alexa 568 or
Alexa 633 (Molecular Probes, Eugene, OR) for 1–2 h at room
temperature in 0.1 M PB containing 0.5% Triton X-100.
Sections were washed for 30 min with 0.1 M PB, air-dried,
and mounted using the ProLong Antifade Kit (Molecular
Probes). Retinal wholemounts were incubated in 1% sodium
borohydride (in deionized water) for 1 h at room temperature,
rinsed and incubated in primary antibody solution as
described for retinal sections, for 5–7 days at 4 °C. Retinal
wholemounts were washed and incubated in secondary
antibody solution, as described for retinal sections, for 1–2
days at 4 °C. Wholemounts were rinsed again, mounted
ganglion cell side up onto glass slides, air dried, then
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coverslipped using the ProLong Antifade Kit or Vectashield
Mounting Medium (Vector Laboratories, Burlingame, CA)
containing the fluorescent nuclear dye 4’,6-diamidino-2-
phenylindole (DAPI).
Antibodies: Primary antibodies that immunolabel amacrine
and displaced amacrine cells and ganglion cells were
included: mouse monoclonal antibodies against syntaxin-1
(HPC-1; Sigma, St Louis, MO), L-glutamate
decarboxylase67 (GAD67; Millipore, Temecula, CA), neuronal
nuclei (NeuN; Millipore), the POU-domain protein, Brn3a
(clone 5A3.2; Millipore), calretinin (CR; Millipore), and
glycine transporter −1 (GlyT-1; Millipore), rabbit polyclonal
antibodies against the GABA plasma membrane transporter-1
(GAT-1; Millipore), and neurofilament light (NF-L;
Millipore), and goat polyclonal antibodies to choline
acetyltransferase (ChAT; Millipore). Immunolabeling with
these primary antibodies was visualized using fluorochrome-
conjugated secondary antibodies Alexa 568 and Alexa 633
conjugated goat-antirabbit IgG, donkey antigoat IgG, goat
antimouse IgG (Molecular Probes). Controls, including
cognate peptide adsorption studies, were performed to
evaluate specificity of the primary antibodies and binding of
the secondary antisera to the appropriate antigen-antibody
complex. These preparations were evaluated using both
conventional and confocal microscopy.
Light and confocal microscopy: Retinal sections and
wholemounts were examined and analyzed with a Zeiss LSM
510 Meta confocal microscope (Zeiss, Oberkochen,
Germany) equipped with argon, helium, and neon lasers,
using a Plan-Neofluar 40x 1.3 n.a. or a Plan-Neofluar 63x1.25
n.a. objective, or an Axiocam digital camera (Carl Zeiss, Inc.,
Thornwood, NY) mounted onto a Zeiss Axioplan Two
fluorescence microscope (Carl Zeiss, Inc.). Digital images
were acquired at a magnification zoom of 1X to 2.5X, and a
resolution of 1024×1024 or 2048×2048. Most confocal
images were acquired at an optical thickness between 0.5 μm
and 1.0 μm and ~1.0 Airy Unit. For projections, typically 3–
8 optical sections were acquired with an average total
thickness of 3–8 μm and compressed for viewing. Digital
confocal images were saved as Zeiss .LSM files, and final
publication quality images were exported in the .TIFF format
at 300 dpi using Zeiss LSM 510 Meta software version 3.2
(Zeiss Ltd., Thornwood, NY). Images were adjusted for
contrast and brightness, labeled, and formatted using Adobe
Photoshop 7.0.1 (Adobe Systems, Inc., San Jose, CA) and
saved at 300 dpi at their final magnification.
Quantitative analysis: Average somal diameters and densities
of CFP-expressing cells were determined from stacked
images of confocal optical sections of the GCL or the INL
taken from retinal wholemounts. Images were acquired every
500 μm from the optic nerve head along the dorsoventral and
nasotemporal axes, and 200×200 μm fields were analyzed in
their entirety. Somal size was obtained by averaging the

maximum and minimum diameters of CFP fluorescent cells
measured using Zeiss LSM 510 software (Zeiss Ltd.). We did
not attempt to correct for the negligible shrinkage of the tissue
from the mounting process. The number of NF-L, NeuN, CR,
Brn3a, HPC-1, GAT-1, GAD67, and ChAT immunoreactive
cell bodies containing CFP fluorescence were determined
from similar digital images taken 1.5 mm from the optic nerve
head in the nasal retina along the nasotemporal axis.

RESULTS
In the thy1-CFP (#23) mouse line, CFP expression is driven
by the mouse thy1.2 promoter sequence, genetically modified
for neuronal expression [5]. This line was developed by the
Sanes and Lichtman groups [5], and it was provided to the
Jackson Laboratory for distribution. CFP expression is in
neurons distributed to different regions of the neuroaxis,
including cortex, cerebellum, and spinal cord, in a mouse
perfused transcardically with 4% paraformaldehyde and the
brain processed by standard techniques [36]. Feng et al.
reported CFP expression along the neural axis, excluding the
retina [5].

Cyan fluorescent protein expression in the thy1-CFP
mouse retina: CFP expression was limited exclusively to the
inner retina, and it was primarily localized to numerous cell
bodies in the GCL and their dendrites in the IPL. CFP
fluorescence in these cells ranged in intensity from weak to
very strong. In addition, there were weakly fluorescent small
somata in the INL and GCL (Figure 1A). The processes of
CFP fluorescent cells ramified extensively in all laminae of
the IPL (Figure 1A), and fluorescent axonal labeling was
evident in the nerve fiber layer, optic nerve head, and optic
nerve (Figure 1B). CFP expression was not observed in the
outer retina, including the outer plexiform and nuclear layers
(OPL; ONL).

CFP-containing cell bodies were distributed across the
entire retina (Figure 1C), and no regional differences in their
distribution were observed in either wholemount preparations
or vertical sections that included peripheral and central retina.
The majority of CFP-expressing cells occupied the GCL
(Figure 1D). These cells varied in size and in the intensity of
CFP fluorescence. In addition, small somata weakly
expressing CFP were in the proximal INL, near the IPL
(Figure 1F) in all retinal regions. CFP-positive processes
ramified densely throughout all laminae of the IPL (Figure
1E), with the densest plexus of fibers in laminae 2 and 4 of
the IPL. CFP-containing processes had numerous varicosities
in all laminae of the IPL. Due to the high density of fluorescent
cells, especially in the GCL, however, it was difficult to
determine with certainty which processes originated from
individual somas.

The density of CFP-expressing cells in the GCL was
determined, from five retinal wholemounts, along the
nasotemporal and dorsoventral axes bisecting the optic nerve
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Figure 1. Cyan fluorescent protein expression in the retinas of thy1-CFP transgenic mice in confocal images of transverse sections (A,B) and
wholemounts (C-F). A: Most cyan fluorescent protein (CFP) expression is localized to brightly fluorescent cell bodies in the ganglion cell
layer (GCL), processes that form a dense plexus in all laminae of the inner plexiform layer (IPL) and axons in the nerve fiber layer (NFL).
Small, weakly CFP fluorescent cells are in the proximal inner nuclear layer (INL) and the GCL. The scale bar represents 35 µm. B: CFP
expression is prominent in ganglion cell axons in the NFL, optic nerve head (ONH), and optic nerve (ON). Scale bar equals 60 µm. C: Low-
magnification composite image of a wholemount shows CFP expression in all retinal regions. Scale bar equals 550 μm. D: CFP expression
is localized to brightly and weakly fluorescent cell bodies of various sizes in the GCL. Image is taken in midperipheral nasal retina, 1.5 mm
from the optic nerve head. E: A plexus of CFP-containing processes occupies the IPL. Figure E shows the same region as in D. F: Weak CFP
expression is evident in small cell bodies in the proximal INL. Panel F shows the same region as in D. Scale bar for D-F equals 35 μm. In
A and B, outer plexiform layer is abbreviated OPL.
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head (Figure 2D-E). Areas of 200 200 μm2 were sampled at
500 μm intervals from the optic nerve head, and all CFP-
labeled cells were included regardless of fluorescence
intensity and size. The cell density in the GCL ranged from
1827±280 to 3589±470 cells/mm2 along the dorsoventral axis
from central to peripheral retina. Along the nasotemporal axis
from central to peripheral retina, the cell density ranged from
2478±356 to 3243±281 cells/mm2. To determine what
percentage of total cells in the GCL is CFP-positive, we
compared the number of cells labeled with the fluorescent
nuclear dye, DAPI, with the number of CFP-expressing cells
in confocal images (Figure 2A-C). DAPI-labeled glia and
endothelial cells were excluded from the counts based on the
distinct morphology of their nuclei. Counts of the number of
DAPI- and CFP-expressing somata in the GCL, 1.5 mm nasal
from the optic nerve head, showed that virtually all (99.7%)
of the CFP-expressing cells contained DAPI, as expected.
Conversely, about half (51.2%) of the DAPI labeled cells
expressed CFP in the GCL. On average, 51.9±3.1% of all
neurons in the GCL contained CFP at all retinal eccentricities.

The average somal diameter of CFP-expressing cells was
measured in the GCL and INL in the midperipheral nasal
retina at 1.5 mm from the optic nerve head (Figure 3). In the

GCL, somal diameter averaged 11.30±2.05 µm (n=250), and
somal diameters ranged from 6.12 to 19.74 µm. All CFP-
expressing cells were included in this measurement,
regardless of the level of CFP fluorescence intensity. In the
INL, somal diameter averaged 7.91±0.48 µm (n=50), and
somal diameters ranged from 6.32 to 10.25 µm. All CFP-
expressing cells in the INL were characterized by a small
somal diameter and weak CFP fluorescence. A comparison of
cell density and somal diameters obtained from each of the
five retinal wholemounts in the GCL and INL indicated that
there was no significant variability in the number, density, or
size of CFP immunoreactive cells from animal to animal (data
not shown).

Cyan fluorescent protein expression in ganglion cells:
Extensive CFP expression in the GCL, nerve fiber layer, optic
nerve head, and optic nerve indicated that the majority of
fluorescent marker protein in the thy1-CFP mouse retina was
localized in ganglion cells. Therefore, previously
characterized and commonly used neurochemical markers for
ganglion cells, including NF-L, NeuN, Brn3a, and CR, were
used to confirm the CFP-containing cells in the GCL in
ganglion cells.

Figure 2. Comparison of cyan fluorescent protein expression in the ganglion cell layer with DAPI-labeled retinal neurons. A: Image of a retinal
wholemount through the midperipheral ganglion cell layer (GCL) showing that cyan fluorescent protein (CFP) expression is localized to
numerous cell bodies. B: Image illustrates the same region as in A, showing DAPI fluorescence in all cell nuclei in the GCL. C: A merged
image of A and B shows colocalization of CFP expression and DAPI nuclear labeling in about half of the neuronal nuclei in the GCL. Scale
bar for A-C represents 50 μm. Graphs showing the average densities of CFP- and DAPI-labeled cells in the GCL along the dorsoventral (D)
and nasotemporal (E) axes of five retinal wholemounts from five different thy1-CFP transgenic mice. Error bars are SEM.
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NF-L is an intermediate filament protein that is
prominently expressed in mature neurons. In the mammalian
retina NF-L antibodies immunolabel close to 90% of all
ganglion cells [28-30]. In transverse sections of the thy1-CFP
mouse retina, NF-L immunoreactivity was characterized by
prominent immunostaining that was restricted primarily to the
inner retina; weak NF-L immunoreactivity was observed in
ganglion cell bodies, and immunostaining was characterized
by a reticular appearance. In addition, NF-L immunoreactivity
was localized to dendrites in all laminae of the IPL and to
individual axons that formed thick bundles in the fiber layer
that became increasingly frequent in central retina (Figure
4B,E). This pattern of NF-L expression was similar to that
described in earlier studies [28-30].

CFP expression colocalized with NF-L immunoreactivity
in ganglion cell bodies in the GCL (Figure 4C,F) and dendrites
in the IPL. In addition, there were some CFP-containing
processes that did not contain NF-L immunoreactivity. In
wholemounts, NF-L immunoreactivity in the GCL was found
in numerous somata that varied in size from small to very
large, and in the optic fiber layer immunolabeled fiber bundles
(Figure 4H) converged in a radial pattern at the optic nerve
head (Figure 4L). Colocalization of CFP and NF-L
immunoreactivities was determined from confocal images of
the GCL from five retinal wholemounts (Table 1). About 60%

Figure 3. Graphs showing the percent cell frequency of average
somal diameters of cyan fluorescent protein-expressing cells in the
ganglion cell layer (A) and inner nuclear layer (B). A: The somal
diameter in the ganglion cell layer (GCL) averaged 11.30±2.05 µm
(n=250). B: The somal diameter in the inner nuclear layer (INL)
averaged 7.91±0.48 µm (n=50).

of the CFP-expressing cells were NF-L immunoreactive,
while 70% of NF-L immunoreactive cell bodies in the GCL
also contained CFP. Finally, colocalization of CFP expression
and NF-L immunoreactivity was evident in ganglion cell
axons in the nerve fiber layer, optic nerve head, and optic
nerve (Figure 4J-L).

Numerous investigations, including neurodegenerative
studies, have identified retinal ganglion cells using a
monoclonal antibody to NeuN, a neuronal specific nuclear
protein of unknown function [31-35]. NeuN labeling has been
suggested as a particularly useful reagent for quantifying the
loss of retinal ganglion cells, since NeuN immunostaining is
mainly restricted to the cell soma and is easily identifiable
[35]. NeuN immunoreactivity was localized to numerous cells
in the proximal INL and GCL of varied size and intensity of
immunostaining (Figure 5B,E). NeuN immunoreactivity was
absent from photoreceptors and bipolar cells, and from any
processes in the IPL and OPL or the nerve fiber layer. The
expression of NeuN is similar to that previously reported in
the mammalian retina [31-35].

CFP expression colocalized with NeuN
immunoreactivity in numerous somata in the GCL (Figure 5).
In addition, there were NeuN immunoreactive cells that did
not contain CFP (Figure 5D-F). Colocalization of CFP and
NeuN immunoreactivities was determined from confocal
images of the GCL from five retinal wholemounts (Table 1).
About 95% of the CFP-expressing cells were NeuN
immunoreactive, while 57.8% of the NeuN immunoreactive
cell bodies in the GCL contained CFP.

The colocalization of CFP expression with other well
established retinal ganglion cell markers, including CR and
Brn3a [41-45], was also evaluated (Table 1). CR, a 29 kD
calcium-binding protein closely related to calbindin, was
extensively expressed in numerous somata in the GCL and
INL, as previously described [41-43]. CR immunoreactive
somata varied in size, with mainly small somata in the INL
and small, medium, and large somata in the GCL. In the GCL,
CFP expression colocalized with CR immunoreactivity in
90.4% of the CFP cells, while 62.2% of the CR
immunostained cells contained CFP. In the INL, 91.0% of the
CFP cells contained CR immunoreactivity and 23.8% of the
CR immunolabeled cells expressed CFP.

Antibodies to Brn3a, a POU domain transcription factor,
have also been extensively used in studies to label ganglion
cells [44,46]. Brn3a immunoreactive nuclei were numerous in
the GCL (data not shown). CFP colocalized with Brn3a
immunoreactivity in 61.5% of the CFP cells in the GCL, while
95.3% of the Brn3a immunoreactive cells contained CFP
(Table 1).

Cyan fluorescent protein expression in amacrine cells:
CFP expression in small somata in the proximal INL and GCL
indicated that some retinal CFP expression in the thy1-CFP
transgenic mouse line was localized to amacrine and displaced
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Figure 4. CFP-containing ganglion cells express NF-L immunoreactivity in their soma, dendrites and axons in the fiber layer, optic nerve head
and optic nerve. A: Transverse section of peripheral retina shows cyan fluorescent protein (CFP) expression in numerous cell bodies in the
ganglion cell layer (GCL). B: Same section as in A shows neurofilament light (NF-L) immunoreactivity in ganglion cell somata in the GCL
and dendrites in the inner plexiform layer (IPL). C: A merged image of A and B demonstrates colocalization of CFP expression and NF-L
immunoreactivity in many cell bodies in the GCL and dendrites in the IPL. The scale bar for A-C is 40 μm. D: A higher magnification image
of transverse retina shows CFP fluorescence in ganglion cells, including large ganglion cell somata (arrows). E: NF-L immunoreactivity is
evident in numerous cell bodies in the GCL including the large ganglion cell somata (arrows). F: A merged image of D and E demonstrates
colocalization of CFP expression and NF-L immunoreactivity in most cell bodies in the GCL and dendrites in the IPL. The scale bar for D-
F is 25 μm. G: CFP is localized to brightly and weakly fluorescent cell bodies of various sizes in the GCL. Image is from a retinal wholemount
located 1.5 mm from the optic nerve head in midperipheral nasal retina. H: NF-L immunoreactivity is evident in ganglion cell somata in the
same region as G. I: A merged image of G and H shows colocalization of CFP expression and NF-L immunoreactivity in ganglion cell bodies.
The scale bar for G-I is 30 μm. J: CFP fluorescence is evident in ganglion cell axons in the fiber layer, optic nerve head and optic nerve, in
this low magnification image of a transverse section through the optic nerve head. K: The same section as in J, shows NF-L immunoreactivity
in ganglion cell axons. L: A merged image of J and K shows colocalization of CFP and NF-L immunoreactivity in most ganglion cell axons
in the fiber layer, optic nerve head and optic nerve. Note: there is not complete overlap of CFP and NF-L in ganglion cell axons, as some NF-
L labeled cells do not express CFP. The scale bar for J–L is 140 μm. In C and F inner nuclear layer is abbreviated INL, and outer plexiform
layer is abbreviated OPL.
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amacrine cells. Therefore, we used well established
neurochemical markers to test if the small CFP-containing
somata were amacrine and displaced amacrine cells.

Initially, the general amacrine and displaced amacrine
cell marker HPC-1 (syntaxin 1a) was used to evaluate the
extent of CFP expression in amacrine cells. In the thy1-CFP
mouse retina, HPC-1 immunofluorescence labeled the inner
retina robustly; it was localized primarily to a dense plexus of
processes throughout all laminae of the IPL, and it faintly
immunostained the cytoplasm of amacrine and displaced
amacrine cell somata in the proximal INL and GCL,
respectively (Figure 6B,E) [47-49]. The HPC-1
immunostaining pattern was similar to earlier reports of
HPC-1 immunoreactivity in the mouse retina [47-49].

HPC-1 immunoreactivity colocalized with all of the small
and weakly CFP-fluorescent cells in the proximal INL. Many
of the small and weakly CFP-fluorescent cells in the GCL also
contained HPC-1 immunoreactivity (Figure 6F). These cells
were characterized by a round shape and, in most cases, these
cells could be readily distinguished from the larger and
brighter CFP-fluorescent ganglion cells. The majority of
HPC-1 immunoreactive amacrine and displaced amacrine cell
bodies, however, did not contain CFP, indicating that most
CFP expression is mainly localized to ganglion cells. Cell
counts from wholemount preparations of the thy1-CFP mouse
retina revealed that 8.8% of the HPC-1 immunoreactive
amacrine cell somata in the GCL contained CFP, while 9.6%
of the total CFP-expressing cells in the GCL were HPC-1
immunoreactive displaced amacrine cells (Table 1).

CFP-expressing amacrine and displaced amacrine cells
were further classified using neurochemical markers that
distinguish among the different amacrine cell classes [50]. In
the mammalian retina about half of the amacrine cell
population is GABAergic, while the other half is glycinergic
[50]. Therefore, the next set of experiments evaluated the
expression of neurochemical markers for GABAergic and
glycinergic amacrine and displaced amacrine cells.

The expression of GAD67 and GAT-1 were evaluated in
the thy1-CFP mouse retina. GAD67 and GAT-1
immunoreactivities were localized in numerous amacrine and
displaced amacrine cells, with somata in the INL and GCL,
respectively, and in densely distributed immunoreactive
processes and puncta in all laminae of the IPL (Figure 7)
[37,51-56]. Cell counts in the GCL showed that 12.4% and
9.2% of the CFP-containing cells in the GCL expressed
GAD67 and GAT-1 immunoreactivity, respectively (Table 1).
Conversely, 26.2% of the GAD67 immunoreactive cells and
17.1% of the GAT-1 immunoreactive cells in the GCL
contained CFP (Table 1). GlyT-1 immunoreactivity, a
neurochemical marker for glycinergic amacrine and displaced
amacrine cells, did not colocalize with CFP-expressing cells
in the GCL or INL (data not shown).

Finally, CFP-expressing amacrine and displaced
amacrine cells were further classified using antibodies against
the neurochemical marker ChAT, which immunolabel the
cholinergic amacrine cell population [57]. These studies were
based on the observed mirror-image symmetry of the small,
weakly CFP-expressing cell bodies in the INL and GCL and
the CFP-containing processes in laminae 2 and 4, which are

TABLE 1. SUMMARY OF COLOCALIZATION OF CYAN FLUORESCENT PROTEIN-EXPRESSING CELLS IN THE GCL WITH GANGLION AND
AMACRINE CELL MARKERS.

Marker
Labeled
   cells

  CFP
positive

cells

    Total
colocalized

cells

 Percent
CFP cells

immunolabeled

     Percent
immunolabeled
cells with CFP

DAPI (GCL) 1243 638 636 0.997 0.512
NF-L (GCL) 710 821 506 0.616 0.713
NeuN (GCL) 1291 782 746 0.954 0.578

CR (GCL) 1013 697 630 0.904 0.622
CR (INL) 1193 312 284 0.91 0.238

Brn3a (GCL) 537 832 512 0.615 0.953
HPC-1 (GCL) 612 563 54 0.096 0.088
GAD67 (GCL) 587 1239 154 0.124 0.262
GAT-1 (GCL) 509 946 87 0.092 0.171
ChAT (GCL) 255 1251 255 0.204 1
ChAT (INL) 318 358 311 0.867 0.978

The colocalization of cyan florescent protein (CFP)-expressing cells with ganglion and amacrine cell markers was determined
in the ganglion cell layer (GCL), and the inner nuclear layer (INL). Neurofilament light (NF-L), neuronal nuclei (NeuN),
calretinin (CR), and a POU-domain protein (Brn3a) were used to immunolabel ganglion cells. Syntaxin 1a (HPC-1), glutamate
decarboxylase 67 (GAD67), GABA plasma membrane transporter-1 (GAT-1), choline acetyltransferase (ChAT), and in some
cases CR, were used to label amacrine and displaced amacrine cells. DAPI (4',6-diamidino-2-phenylindole) was used to label
all retinal nuclei.
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indicative of the cholinergic amacrine cell population
[57-63]. ChAT immunoreactivity was localized to amacrine
and displaced amacrine cell bodies distributed in the INL and
GCL, and their processes that narrowly stratified in laminae
2 and 4 of the IPL (Figure 8). Weak CFP expression was
visualized in most ChAT immunoreactive somata in the INL
and GCL, and in ChAT immunoreactive processes in the IPL
(Figure 8C,F). Cell counts showed that 86.7% of the CFP-

containing amacrine cells in the INL and 20.4% of CFP-
containing cells in the GCL express ChAT immunoreactivity,
respectively (Table 1). Conversely, all ChAT amacrine and
displaced amacrine cells contained CFP. These data indicate
that most CFP expression in amacrine cells is localized to the
cholinergic amacrine cell population.

Figure 5. CFP-containing ganglion cells express NeuN immunoreactivity, a marker commonly used to identify retinal ganglion cells. A:
Transverse section of peripheral retina shows cyan fluorescent protein (CFP) expression in numerous cell bodies in the ganglion cell layer
(GCL). B: Neuronal nuclei (NeuN) immunoreactivity is localized in ganglion cell somata in the GCL (and weak immunoreactivity is in cell
bodies in the inner nuclear layer; INL). C: A merged image of A and B shows colocalization of CFP expression and NeuN immunoreactivity
in most cell bodies in the GCL. The scale bar for A–C is 45 μm. D: A higher magnification image shows CFP fluorescence in large ganglion
cells (arrows) in the GCL. E: The same section as in D shows NeuN immunoreactivity in numerous ganglion cell somata in the GCL (arrows).
The small, weakly NeuN-immunoreactive cells are displaced amacrine cells (stars). F: A merged image of D and E shows colocalization of
CFP and NeuN immunoreactivity in ganglion cells (arrows) and a lack of colocalization of CFP and NeuN immunoreactivity in displaced
amacrine cells (stars). The scale bar for D-F is 25 μm. G: CFP is localized to brightly and weakly fluorescent cell bodies of various sizes in
the GCL. The image is from a retinal wholemount located 1.5 mm from the optic nerve head in midperipheral nasal retina. H: The same region
as in G shows NeuN immunoreactivity in numerous cell somata in the GCL, including ganglion cells and displaced amacrine cells. I: The
merged image of G and H shows colocalization of CFP and NeuN immunoreactivity in numerous ganglion cell somata in the GCL. The scale
bar for G-I is 45 μm. In C and F inner plexiform layer is abbreviated IPL, and outer plexiform layer is abbreviated outer plexiform layer
(OPL).
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DISCUSSION
The retinal ganglion cell layer contains two major types of
functionally distinct neurons: ganglion cells and displaced
amacrine cells. These cells are often difficult to distinguish
using morphological and histological techniques, especially
in the mouse retina where many ganglion cells are small and
measure about 10–12 μm in diameter [20,27]. An endogenous
fluorescent marker that is expressed in all or the majority of
ganglion cells would greatly simplify the task of

distinguishing between the two cell types in studies that
require the reliable identification of ganglion cells in vivo or
in vitro. This study showed that CFP expression in the retina
of the thy1-CFP transgenic mouse line (#23) developed by
Feng et al. [5] is localized to the majority of ganglion cells,
including their dendrites in the IPL and axons that form the
optic nerve. Weak CFP expression was also expressed in the
GCL and INL in cholinergic amacrine and displaced amacrine
cells.

Figure 6. Small, weak CFP fluorescent somata in the INL and GCL contain HPC-1 immunoreactivity, a marker of amacrine and displaced
amacrine cells. A: A transverse section of peripheral retina shows cyan fluorescent protein (CFP) expression in numerous somata in the
ganglion cell layer (GCL) and weak CFP-expressing somata in the proximal inner nuclear layer (INL). B: Same section as in A shows syntaxin
1a (HPC-1) immunoreactivity in amacrine and displaced amacrine cell somata in the INL and GCL, respectively. HPC-1 immunostaining is
very strong in the inner plexiform layer (IPL) and the weaker HPC-1 immunoreactive somata in the GCL tend to be obscured in transverse
sections. C: A merged image of A and B shows colocalization of CFP and HPC-1 immunoreactivity in small, weakly CFP-expressing cell
bodies in the INL and GCL. The scale bar for A-C is 40 μm. D: A higher magnification image of transverse retina shows CFP fluorescence
in ganglion cells in the GCL and in smaller, weakly CFP fluorescent cells in the INL and GCL (arrows). E: The same section as in D shows
HPC-1 immunoreactivity in numerous amacrine and displaced amacrine cell somata in the INL and GCL (arrows). F: A merged image of
D and E shows colocalization of CFP expression and HPC-1 immunoreactivity in amacrine and displaced amacrine cells (arrows) in the INL,
and GCL. The scale bar for D–F is 25 μm. G: CFP is localized to brightly and weakly fluorescent cell bodies of various sizes in the GCL.
Image is from a retinal wholemount located 1.5 mm from the optic nerve head in midperipheral nasal retina. H: Same region as in G shows
HPC-1 immunoreactivity in numerous cell somata in the GCL. I: A merged image of G and H shows the colocalization of CFP and HPC-1
immunoreactivity in displaced amacrine cell bodies in the GCL (arrows). The scale bar for G-I is 30 μm. In C and F outer plexiform layer is
abbreviated outer plexiform layer (OPL).
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Figure 7. CFP expression colocalizes with GAD67 or GAT-1 immunoreactivity in the inner retina. A: A transverse section of peripheral retina
shows cyan fluorescent protein (CFP) in numerous cell bodies in the ganglion cell layer (GCL), and weakly CFP-expressing cell bodies in
the proximal inner nuclear layer (INL). B: The same region as in A shows L-glutamate decarboxylase 67 (GAD67) immunoreactivity in
amacrine and displaced amacrine cell somata in the INL and GCL, respectively. C: The merged image of A and B shows colocalization of
CFP expression and GAD67 immunoreactivity in small, weakly CFP-expressing cell bodies in the INL and GCL. The scale bar for A–C is 45
μm. D: A higher magnification image of transverse retina shows CFP in ganglion cell somata in the GCL and in smaller, weakly CFP fluorescent
somata in the GCL and INL (arrows). E: GAD67 immunoreactivity is in numerous amacrine and displaced amacrine cell somata in the INL
and GCL (arrows). F: The merged image of D and E shows colocalization of CFP expression and GAD67 immunoreactivity in amacrine and
displaced amacrine cells (arrows) in the INL and GCL. The scale bar for D-F is 25 μm. G: CFP is localized to brightly and weakly fluorescent
cell bodies of various sizes in the GCL. Image is from a retinal wholemount located 1.5 mm from the optic nerve head in midperipheral nasal
retina. H: The same region as in G shows GABA plasma membrane transporter-1 (GAT-1) immunoreactivity near or at the plasma membrane
of displaced amacrine cell somata in the GCL. I: Merged image of G and H shows colocalization of CFP expression and GAT-1
immunoreactivity in displaced amacrine cell somata in the GCL (arrows). Most GAT-1 immunoreactive somata lack CFP. J: CFP is localized
to weakly fluorescent cell bodies in the INL. Image is from a retinal wholemount located 1.5 mm from the optic nerve head in midperipheral
nasal retina. K: Same region as in J shows GAT-1 immunoreactivity in amacrine cell somata in the INL. L: Merged image of J and K shows
colocalization of CFP expression and GAT-1 immunoreactivity in amacrine cell bodies in the INL. The scale bar for G-L is 45 μm. In C and
F inner plexiform layer is abbreviated inner plexiform layer (IPL).
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Figure 8. CFP expression colocalizes with ChAT immunoreactivity, a marker of cholinergic amacrine and displaced amacrine cells in the
inner retina. A: A transverse section of peripheral retina shows cyan fluorescent protein (CFP) in numerous cell bodies in the ganglion cell
layer (GCL), and weakly-CFP-expressing cell bodies in the proximal inner nuclear layer (INL). B: Choline acetyltransferase (ChAT)
immunoreactivity is in amacrine and displaced amacrine cell somata in the INL and GCL, respectively. C: A merged image of A and B shows
the colocalization of CFP and ChAT immunoreactivity in small, weakly CFP-expressing cell bodies in the INL and GCL. The scale bar for
A-C is 45 μm. D: A higher magnification image of transverse retina shows CFP in ganglion cells in the GCL and in smaller, weakly CFP
fluorescent cells in the INL and GCL (arrows). E: Same section as in D shows ChAT immunoreactivity in numerous amacrine and displaced
amacrine cell somata in the INL and GCL (arrows). F: A merged image of D and E shows the colocalization of CFP expression and ChAT
immunoreactivity in amacrine and displaced amacrine cells (arrows) in the INL and GCL. The scale bar for D-F is 25 μm. G: CFP is localized
to brightly and weakly fluorescent cell bodies of various sizes in the GCL. Image is from a retinal wholemount located 1.5 mm from the optic
nerve head in midperipheral nasal retina. H: ChAT immunoreactivity is in displaced amacrine cell somata in the GCL. I: A merged image of
G and H shows colocalization of CFP expression and ChAT immunoreactivity in displaced amacrine cell bodies in the GCL. J: CFP is
localized to weakly fluorescent cell bodies in the INL. Image is from a retinal wholemount located 1.5 mm from the optic nerve head in
midperipheral nasal retina. K: The same region as in J shows ChAT immunoreactivity in amacrine cell somata in the INL. L: A merged image
of J and K shows the colocalization of CFP and ChAT immunoreactivity in amacrine cell bodies in the INL (arrows). There are also a few
small CFP somata that do not contain ChAT immunoreactivity in the INL (stars). The scale bar for G-L is 45 μm.
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Cyan fluorescent protein expression in the ganglion cell
layer: CFP expression in the retina of the thy1-CFP transgenic
mouse line is localized to numerous somata in the GCL,
processes throughout the IPL, and axons in the nerve fiber
layer, optic nerve head, and optic nerve. CFP-expressing cells
in the GCL range in size from 6.12 to 19.74 μm in diameter
and 1827±280 cells/mm2 to 3589±470 cells/mm2 in density,
with an average cell density of 2914±312 cells/mm2, and
49,829±5,335 cells per retina (including the CFP-containing
displaced amacrine cells–discussed in the section to follow).
About 52% of the cells in the GCL express CFP, based on cell
counts of CFP and DAPI labeling of the GCL in retinal whole
mounts. Therefore, given that about 20% of CFP expression
in the GCL is in displaced amacrine cells, about 80% of the
CFP expressing cells in the GCL, or 40%–45% of the total
neurons in the GCL of the thy1-CFP transgenic mouse line are
ganglion cells. These data are in agreement with a study that
extrapolated the number of ganglion cells in the GCL to be
40,000–44,000, by counting the number of axons in the optic
nerve [24], and concluded that 41% of the neurons in the GCL
are ganglion cells. Another study [64] reported an average of
54,600 ganglion cells per retina in the C57BL/6J retina, which
is a higher value for the number of ganglion cells than what
we have estimated. The overall variability in the total number
of ganglion cells between the different C57BL/6J lines could
be due to several factors including, but not limited to, genetic
variability between inbred mouse strains, sampling methods,
and tissue processing.

Neurochemical characterization of cyan fluorescent
protein expression in ganglion cells: Initial efforts to
characterize CFP expression in the thy1-CFP mouse retina
focused on colocalization studies with several neurochemical
markers that have been localized to ganglion cells in prior
studies. Experiments using antibodies to NF-L, a neuronal
cytoskeletal component that is expressed in most retinal
ganglion cells, but not amacrine cells [28-30], showed that
61.6% of the CFP cells expressed NF-L immunoreactivity.
This was less than expected, given that in the hamster retina
88% of all retinal ganglion cells express NF-L
immunoreactivity [29]. Perhaps this difference is due to the
following factors: interspecies variations in neurofilament
expression, which have been reported [28-30]; variations in
immunostaining techniques with NF-L antibody [30]; or the
localization of NF-L immunoreactivity primarily in axons and
dendrites, but not in somata, which results in difficulties in
visualizing labeled somata and undercounts of the number of
NF-L immunolabeled ganglion cells.

Colocalization experiments with antibodies to the DNA-
binding protein NeuN, which primarily label nuclei, resulted
in better somatic labeling than that observed using NF-L
antibodies. Most (95.4%) CFP cells in the GCL contained
NeuN immunoreactivity. Since 71.3% of NeuN
immunoreactive cells contained CFP, we expect that the
remaining (approximately 30%) NeuN immunoreactive cells

in the GCL that are CFP negative are displaced amacrine cells.
This is in agreement with earlier studies indicating the
expression of NeuN immunoreactivity by both ganglion and
amacrine cells (Figure 6; [35]).

Similarly, CR antibodies labeled 90.4% of the CFP cells
in the GCL, and conversely only 62.2% of the CR
immunoreactive neurons in the GCL contained CFP. These
findings suggest that many of the CR immunoreactive neurons
in the GCL are displaced amacrine cells. CR expression by
amacrine cells has been shown in several species including
mouse [41-43].

Brn-3a is a POU domain regulatory transcription factor
expressed in many retinal ganglion cells in mouse, rabbit, and
monkey retinas [44,45]. In the GCL, there is significant
overlap between the number of CFP-containing and Brn-3a
immunoreactive cells; 95.3% of the Brn-3a immunoreactive
cells express CFP. Conversely, 61.5% of all CFP-labeled cells
in the GCL contain Brn-3a immunoreactivity. This is in
general agreement with a study that reported Brn-3a
immunoreactivity in approximately 35% of all GCL neurons
[44].

Neurochemical characterization of cyan fluorescent
protein expression in amacrine cells: Small somata
characterized by weak CFP expression were in the proximal
INL and GCL. These CFP-containing somata in the INL were
initially identified as amacrine cells based on their
appearance, size, and distribution to the proximal INL. The
small and round CFP-expressing somata in the GCL were also
suggestive of their identity as displaced amacrine cells.
Colocalization experiments with the general amacrine cell
marker HPC-1 [47-49] confirmed the presence of CFP in
amacrine and displaced amacrine cells in the INL and GCL,
respectively. In the GCL, 8.8% of HPC-1 immunoreactive
displaced amacrine cells contain CFP and 9.6% of the total
CFP-expressing cells in the GCL are HPC-1 immunoreactive
displaced amacrine cells. Most (90.4%) small HPC-1
immunoreactive somata did not contain CFP, and they
account for about half of the somata in the GCL.

Amacrine cells can be further subdivided into two broad
groups based on their primary fast neurotransmitter; about
half of these cells were GABAergic and the rest were
glycinergic. In our study, all CFP-containing amacrine cells
in the INL were GABAergic based on their expression of the
GABA synthetic enzyme GAD67 or the high affinity plasma
membrane GABA transporter, GAT-1 [37,51-55,65]. In the
INL, most of the CFP somata contain GAD67 (99.4%) and
GAT-1 (98.9%) immunoreactivity, respectively. In the GCL,
12.4% of the CFP-expressing cells were GAD67

immunoreactive and 9.2% were GAT-1 immunoreactive.
These cells were small and intermixed with those with
medium and large somata, which are ganglion cells. There
were also numerous small GAD67 (73.8% ) and GAT-1
(82.9%) immunoreactive somata that did not contain CFP.
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These cells are likely to be displaced amacrine cells based on
their appearance, size, and neurochemistry. These
observations, together with the experiments showing
numerous small HPC-1 immunoreactive somata in the GCL
that do not contain CFP, suggest that CFP is only expressed
in a subgroup of displaced amacrine cells.

Cholinergic amacrine cells in both the INL and GCL
expressed CFP, although at lower levels than ganglion cells.
CFP expression by cholinergic amacrine and displaced
amacrine cells was demonstrated using an antibody to ChAT,
which robustly immunostains cholinergic amacrine cells
[57]. All ChAT-immunoreactive amacrine cell somata in the
INL and GCL contained CFP. Furthermore, cholinergic
amacrine cells contain CR immunoreactivity [66], and the
experiments using CR antibodies immunostained small and
weak CFP-expressing amacrine and displaced amacrine cells,
and processes in lamina 2 and 4 of the IPL, indicating weak
expression of CFP in cholinergic amacrine cells.

Together, these findings show that CFP is expressed in a
subset of GABAergic amacrine cells, the cholinergic
amacrine cells, which contain GAD67 [51,67]. GABA-
containing amacrine cells are characterized by wide-field
morphology [67] and on this basis the CFP-containing
amacrine cells in this mouse line are wide-field amacrine cells.

Ectopic transgene expression in transgenic mouse lines:
Transgenic mice with reporter genes in retinal neurons are
important tools for defining retinal morphology and circuitry.
The expression of the reporter gene can be targeted using cell-
type specific promoter sequences, such as the promoter
sequence of the thy1 gene that was used in thy1-CFP mice to
target CFP expression to ganglion cells in the retina. However,
often expression differs from, or extends beyond, the expected
cellular distribution of the gene, as in the case of CFP
expression in the cholinergic amacrine cell population in the
thy1-CFP mouse line. Similarly, other thy1 transgenic mouse
lines developed by Feng et al. [5] express GFP and its variants
in several other cell types, including amacrine, displaced
amacrine, and bipolar cells. Alternatively, expression of the
transgene may be entirely ectopic, as in a recently developed
CD44 transgenic line with multiple labeled amacrine and
ganglion cells, but not Müller cells as expected [68]. Another
example is the ectopic GFP expression in the somatostatin
receptor 2 (sstr2)-EGFP BAC mouse line (unpublished
observations). In this line, GFP is expressed in several
amacrine cell types, but not in photoreceptor, horizontal, or
bipolar cells, as expected from immunohistochemical and
electrophysiological findings [69,70]. However, since
transgene expression is usually stable and reproducible in
these animal lines, careful characterization of transgene
expression in retinal neuronal populations will undoubtedly
yield useful tools for future studies.

In conclusion, the present study reports the extensive
expression of CFP in most ganglion cells and their processes

in the thy1-CFP transgenic mouse line [5]. Cholinergic
amacrine and displaced amacrine cells also express CFP, but
do so at lower levels. The thy1-CFP transgenic mouse line will
be of value for studies requiring the rapid and reliable
identification of the ganglion cell population, including
studies of ganglion cell retinopathy.
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