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The regional mechanical properties of brain tissue are not only key in the context of brain
injury and its vulnerability towards mechanical loads, but also affect the behavior and
functionality of brain cells. Due to the extremely soft nature of brain tissue, its mechanical
characterization is challenging. The response to loading depends on length and time
scales and is characterized by nonlinearity, compression-tension asymmetry, conditioning,
and stress relaxation. In addition, the regional heterogeneity–both in mechanics and
microstructure–complicates the comprehensive understanding of local tissue
properties and its relation to the underlying microstructure. Here, we combine large-
strain biomechanical tests with enzyme-linked immunosorbent assays (ELISA) and
develop an extended type of constitutive artificial neural networks (CANNs) that can
account for viscoelastic effects. We show that our viscoelastic constitutive artificial neural
network is able to describe the tissue response in different brain regions and quantify the
relevance of different cellular and extracellular components for time-independent
(nonlinearity, compression-tension-asymmetry) and time-dependent (hysteresis,
conditioning, stress relaxation) tissue mechanics, respectively. Our results suggest that
the content of the extracellular matrix protein fibronectin is highly relevant for both the
quasi-elastic behavior and viscoelastic effects of brain tissue. While the quasi-elastic
response seems to be largely controlled by extracellular matrix proteins from the basement
membrane, cellular components have a higher relevance for the viscoelastic response. Our
findings advance our understanding of microstructure - mechanics relations in human
brain tissue and are valuable to further advance predictivematerial models for finite element
simulations or to design biomaterials for tissue engineering and 3D printing applications.
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1 INTRODUCTION

The human brain is a fascinating organ, which has been studied
intensively by researchers from various fields but still remains
incompletely understood. Recent studies have highlighted the
important role of mechanical properties and forces for certain
processes during brain development (Budday et al., 2015b; Koser
et al., 2016; Thompson et al., 2019; injury Meaney et al., 2014;
Hemphill et al., 2015; Keating and Cullen, 2021), and disease
(Murphy et al., 2016; Barnes et al., 2017; Gerischer et al., 2018;
Park et al., 2018). Mechanical instabilities seem to underlie
cortical folding during brain development (Budday et al.,
2015b; Garcia et al., 2018), and brain cells react to their
mechanical environment by converting mechanical stimuli
into neural signals through mechanotransduction, which again
triggers cellular or extracellular reactions (Moshayedi et al., 2010,
2014; Tyler, 2012; Franze et al., 2013; Blumenthal et al., 2014;
Humphrey et al., 2014; Irianto et al., 2016; Koser et al., 2016;
Urbanski et al., 2016; Barriga et al., 2018). Consequently, the
human brain continuously changes its microstructure,
mechanical properties, and shape during its lifetime (Budday
and Kuhl, 2020), which makes it one of the most complex organs
in the human body. For many pathological conditions, such as
degenerative diseases, microstructural changes have been
investigated by neuropathologists (Alafuzoff, 2018). However,
the link between changes in microstructural components, the
corresponding tissue mechanics, and the effect induced through
the mechanosensing of cells remains to be clarified (Begonia et al.,
2010). Better understanding whether and how microstructural
components contribute to the macroscopic mechanical behavior
of brain tissue is key to gain further insights into the mechanisms
underlying mechanics-related injury and disease. In addition,
computational models based on nonlinear continuum mechanics
can be a valuable tool to predictively understand the processes in
the human brain (Goriely et al., 2015; Budday et al., 2020a).
Eventually, they could even be used to assist diagnosis and
treatment of neurological disorders or the detailed planning of
surgical procedures (Weickenmeier et al., 2017a; Zarzor et al.,
2021). In this respect, understanding the link between
microstructure and mechanics of brain tissue can help to
develop more realistic material models that capture local
variations in tissue properties (Budday et al., 2020b; Reiter
et al., 2021).

One challenge when modeling the behavior of brain tissue is
the exceptional heterogeneity in mechanical properties resulting
from regional differences in the microstructure due to local
functional demands. While we can clearly distinguish two
tissue types on the macroscopic scale, gray and white matter
(see Figure 1), the microstructure will locally vary
significantly–even within those regions. Previous research on
the microstructural composition of brain tissue has largely
focused on the brain’s cellular components with an emphasis
on neurons. However, also support cells called neuroglia as well as
the extracellular matrix highly contribute to normal and
abnormal brain functioning (Lau et al., 2013). In general, the
neuroglia can be divided into macroglia and microglia. The
macroglia originate from the neural tube, i.e., are of
ectodermal origin, the microglia originate from the mesoderm.
The most important types of macroglia are astrocytes with
mechanical and metabolic tasks such as maintaining the
blood-brain barrier, oligodendrocytes, which support
transduction through myelin sheath formation, and ependymal
cells, which line the inner cerebrospinal fluid spaces (the latter,
however, do not play a role for the investigations made in this
work). The microglial cells are the macrophages of the central
nervous system. All the glial cells mentioned (except ependym)
have numerous cell processes. Unlike nerve cells, glial cells can
proliferate. They support neurons and contribute to tissue
homeostasis, and thereby influence the mechanical properties
of the tissue. The majority of brain tumors originate from glial
cells, which further highlights their importance for pathological
processes. Furthermore, extracellular matrix components, such as
proteoglycans, hyaluronic acid, and non-fibrillar collagens
surround the cells, as illustrated in Figure 2 (Novak and Kaye,
2000; Lau et al., 2013; Budday et al., 2020b). They embody
approximately 40% of the brain’s volume during development
(Rauch, 2004) and 20% during adulthood (Bellail et al., 2004;
Rauch, 2004; Oohashi et al., 2015) and might thus also play an
important role in brain tissue mechanics.

An important challenge associated with the aim to define the
relations between mechanics and microstructure is to reliably and
consistently quantify these features. In terms of mechanics, the
exceptionally complex mechanical response–characterized by
nonlinearity, compression-tension-asymmetry, conditioning
effects, and stress relaxation–makes it impossible to describe
the mechanical properties through a single stiffness value. The

FIGURE 1 | Human brain tissue samples. (A) Locations where (C) specimens were harvested from (B) complete brains. Circles marking the location of specimen
extraction were enlarged for better visibility.
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measured modulus highly depends on the loading mode, strain
regime, strain rate, drainage conditions, and length scale
(Chatelin et al., 2010; Budday et al., 2020a). Therefore, to
account for nonlinear and time-dependent effects, it is
important to, on the one hand, perform large-strain
biomechanical tests combining cyclic and stress relaxation
experiments, and, on the other hand, analyze the
corresponding experimental data based on the theory of
nonlinear continuum mechanics (Miller and Chinzei, 1997;
Bilston et al., 2001; Miller and Chinzei, 2002; Prevost et al.,
2011; Rashid et al., 2012; Budday et al., 2017a, 2020a).

In terms of microstructure, previously used techniques to
investigate tissue components include histological and
immunohistochemical stains or western blots (Yang and
Mahmood, 2012; Alafuzoff, 2018), which can provide
information about the presence, morphology, local
distribution, or molecular weight of certain tissue components.
In neuropathology, they are frequently used to distinguish the
diseased from the healthy state. Yet, these methods only show a
small section of the tissue and fail to provide trustworthy
quantitative values on the amount of specific molecules
(Taylor and Levenson, 2006; Yang and Mahmood, 2012;
Dabbs, 2014). An alternative enabling a more reliable
quantitative assessment is another immunological method
called enzyme-linked immunosorbent assay (ELISA). It is an
extremely sensitive colorimetric method to quantify biological
molecules by using antibody-antigen complexes (Gan and Patel,
2013). As ELISA is an accurate, cost-effective, and quick
technique, it has become a widely used method for the
qualitative or quantitative analysis of molecules in versatile

fields. Still, it has to the best of the authors’ knowledge not
been used in the context of microstructure - mechanics relations
in brain tissue yet.

Previous studies relating microstructure and mechanics of
brain tissue have indicated that tissue stiffness increases with
myelination during development in white matter (Weickenmeier
et al., 2016; Weickenmeier et al., 2017b), negatively correlates
with the fractional anisotropy (a structural parameter from
magnetic resonance imaging and diffusion tensor imaging)
(Budday et al., 2017a), and negatively correlates with the
density of cell nuclei (Antonovaite et al., 2018; Budday et al.,
2020b). However, these studies were based on the evaluation of
imaging data which quantify the tissue composition much less
accurately than ELISAs. In addition, they evaluated only the
correlation between composition and individual mechanical
parameters, such as the shear modulus, nonlinearity, or stress
relaxation, but did not consider the entire loading history.

While first studies have successfully incorporated distinct
microstructural parameters into analytic constitutive laws for
brain tissue (Budday et al., 2020b: Reiter et al., 2021), data-driven
approaches such as machine learning bear the potential to open
up a much more comprehensive view. First attempts to use
machine learning for relating tissue microstructure to
macroscopic mechanical properties used simple end-to-end
model architectures (Liang et al., 2017). To overcome the large
amount of data required by such approaches, (Linka et al., 2021)
recently introduced constitutive artificial neural networks
(CANNs) as a novel machine learning architecture that
incorporates substantial prior knowledge from materials
theory. Thereby, it can learn to describe and in fact also

FIGURE 2 | Schematic illustration of the cellular and extracellular components of human brain tissue (components greyed out are not further considered in the
present work). White matter contains oligodendrocytes, which wrap myelin sheath around axons, as well as fibrous astrocytes and microglia. Gray matter contains
mainly neurons, protoplasmic astrocytes, and microglia. The extracellular matrix has three principal compartments: the basement membrane (BM), which lines cerebral
microvessels and the pial surface, the neural interstitial matrix (NIM), which is diffusely distributed in the brain’s interstitial space, and perineuronal nets (PNN), which
surround inhibitory interneurons in certain areas of gray matter. In different compositions, these compartments contain proteoglycans, hyaluronic acid, link proteins,
glycoproteins (e.g., tenascin, laminin, fibronectin), and non-fibrillar collagens type IV and VI (Lau et al., 2013). This is a schematic figure for identification purposes only with
no claim of being complete or true to scale. Reprinted from Budday et al. (2020b) with permission from Elsevier.
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predict the nonlinear behavior of soft biological tissue from
information about its microstructure and composition based
on a much smaller amount of training data than previous
methods.

In this paper, we generalize the concept of CANNs to
viscoelasticity and apply it to experimental data from human
brain tissue. These data include results from large-strain
mechanical tests and compositional analysis using ELISAs.
Using relevance propagation, a concept of explainable artificial
intelligence (Samek et al., 2021), we identify the importance of the
different tissue constituents for the mechanical response of
human brain tissue, where quasi-elastic and viscous effects
show distinct regional trends.

2 MATERIALS AND METHODS

2.1 Human Brain Tissue
We obtained five whole human brains including the cerebrum,
cerebellum, and brainstem (see Figure 1B) from one female and
four male body donors who had given their written consent to
donate their body to research. The body donors were aged
between 62 and 92 years and none of them had suffered from
any neurological disease known to affect the microstructure of the
brain (see Table 1). We note that for subjects 3 and 5, we could
not find metastases in the brain. The brains 1-3 and 5 were
immersed in cerebrospinal fluid surrogate (CSFS) during
transport. Brain 4 was kept in phosphate buffered saline
solution (PBS). We received the brains between 9 and 24 h
post mortem and directly cut them into 1 cm thick coronal
slices. After that, we kept the slices refrigerated at 4 °C in
CSFS or PBS until mechanical testing. We completed the
mechanical experiments within 72 h post mortem. The study
was approved by the Ethics Committee of Friedrich-Alexander
University Erlangen-Nürnberg, Germany, with the approval
number 405_18 B.

2.1.1 Specimen Preparation
The samples for the ELISAs of brain 3–5 were extracted
directly after cutting the brains into slices to minimize the
post mortem degradation of proteins before the samples were
frozen and stored at −20°C. Figure 1A shows the anatomical
brain regions that we included in our study. For brains 1 and
2, we extracted the ELISA samples simultaneously with the
respective mechanical sample. Therefore, the ELISA samples
of those two brains were frozen at different post
mortem times.

The specimens for the mechanical characterization were
extracted directly next to the locations of the ELISA specimens
and were prepared right before testing. We used a biopsy punch
to extract cylindrical samples of 8 mm diameter, as shown in
Figure 1C. We punched the specimens out of the coronal slices
while they were immersed in CSFS so that the cylindrical
specimens could slide out of the biopsy punch without
adhering to it. Like this, we could ensure that our samples
only experienced small deformations before they were probed
mechanically. If the small cylinders had a height of more than
6 mm, we carefully shortened them with a surgical scalpel. The
specimen height ranged between 3.5 and 6 mm. For most regions,
it was possible to extract homogeneous specimens of this size. The
only exception were the deep cerebellar nuclei: The
corresponding samples contained a certain amount of
cerebellar white matter, which might affect the results.

We included a total number of n � 86 samples for mechanical
experiments and n � 78 samples for the ELISAs, as, for eight of the
ELISA samples, we were able to extract two corresponding
mechanical specimens. Table 2 summarizes the samples
extracted from each brain region.

2.1.2 Mechanical Testing
We used a Discovery HR-3 rheometer from TA instruments
(New Castle, Delaware, United States) to measure the tissue
response under compression and tension (see Figure 3B).
After calibration, we fixed the specimens to the upper and
lower specimen holder using sandpaper and superglue. We
waited 30–60 s to let the glue dry before immersing the
specimen in PBS to keep it hydrated during the experiment.
We conducted all tests at 37°C. We first applied three cycles of
compression and tension with a loading velocity of 40 μm/s and
minimum andmaximum stretches of λ � [H +Δz]/H � 0.85 and λ
� 1.15, where H denotes the initial specimen height and Δz the
displacement in the direction of loading. Subsequently, we
performed a compression relaxation test at λ � 0.85 with a
loading velocity of 100 μm/s and a holding period of 300 s,
and a tension relaxation test at λ � 1.15, with the same
loading velocity and holding period. We recorded the
corresponding force fz and determined the nominal stress as
Pexp � fz/A, where A is the cross-sectional area of the specimen in
the undeformed configuration.

2.1.3 ELISA
We used commercially available enzyme-linked immunosorbent
assay kits (ELISAs from Cloud-Clone and Cusabio, Wuhan,
China) to quantify the amount of GFAP, MBP, Iba1, Col I,
Col IV, CS, LAM, FN, HA, Col VI, and LUM (see Table 3) in
samples of protein extracts from human brain tissue (see
Figure 3B). We isolated protein out of the brain samples
using 300 μl Triton buffer containing 0.2% protease and 0.2%
phosphatase inhibitors. The brain solutions were incubated on ice
for 30 min. After centrifuging at 13,000 rpm and 4°C for 5 min,
we diluted the solutions to 1 ml with Triton buffer to ensure that
we could perform all ELISAs. Subsequently, we decanted the
supernatant and measured the protein concentration with a
Bradford assay. The analysis was performed using a microplate

TABLE 1 | Human brains.

Brain Sex Age Cause of death

1 Male 92 dotage
2 Female 62 liver and kidney failure
3 Male 68 metastasizing bronchial carcinoma
4 Male 75 cardiac insufficiency
5 Male 75 metastasizing bronchial carcinoma
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spectrophotometer (ELISA-reader) at a wavelength of 450 and
405 nm for measuring the absorbance. The received optical
density results for the standard dilutions were then utilized to
create standard curves using the software MARS Data Analysis
from BMG Labtech and the 4- or 5-parameter best fit. By
comparing with the standard series and the determined values
for antigen concentration (protein concentration), we calculated
the content of the protein in ng/total protein in mg in each
sample.

2.2 Viscoelastic Constitutive Artificial
Neural Network
Constitutive artificial neural networks (CANNs) have recently
been introduced as a novel machine learning architecture and

shown to be a powerful tool for using machine learning for
mechanical constitutive modeling (Linka et al., 2021). To
empower them to deal with brain tissue, we use herein an
extension that combines a standard CANN for the quasi-
elastic response to loading (i.e., on very short time scales) with
an additional, parallel deep neural network computing so-called
Prony parameters accounting for the time-dependent stress
relaxation observed in viscoelastic materials. In the following,
we discuss the technical details of this architecture under the
assumption that brain tissue can be modeled as a quasi-linear
viscoelastic incompressible isotropic material.

2.2.1 Constitutive Artificial Neural Networks
To reduce the amount of training data required to learn the
mechanical constitutive behavior of materials, CANNs exploit the

TABLE 2 | Samples for mechanical testing and ELISA.

Anatomical region Number
of mechanical samples

Number
of ELISA samples

Cortex C 15 15
Thalamus TH 4 4
Basal ganglia BG 14 14
Amygdala AMY 3 3
Corona radiata CR 19 19
Corpus callosum CC 10 5
Brainstem BS 15 12
Cerebellar white matter cWM 5 5
Deep cerebellar nuclei cNC 1 1

FIGURE 3 | 11 ELISA parameters (11 E) and strain data from mechanical tests (in the form of invariants I1, I2,. . . ) form the input of an extended type of constitutive
artificial neural network. Machine learning adjusts its stress output to the one measured experimentally. Thereby, the neural network learns to describe the mechanical
behavior of brain tissue and to predict it from the ELISA parameters. The extended CANN consists of a standard CANN block and a parallel deep neural network
computing the Prony parameters of the viscoelastic constitutive behavior. Note that the stress response P is computed by a recursive update in time t. The hidden
neurons in the network are illustrated as blank circles, while the associated network weights are depicted as black arrows.
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role of symmetries in materials theory. For the simple special case
of incompressible isotropic materials, on which we focus herein,
this means that CANNs capture the constitutive behavior of
materials via a deep neural network mapping the first (I1) and
second (I2) principal invariants

I1 � tr(C), I2 � 1
2

(trC)2 − trC2[ ], (1)

of the right Cauchy-Green deformation tensor C � FTF on the
strain energy

Ψ(C) � Ψ I1, I2( ). (2)

Here, F denotes the deformation gradient. The first and second
Piola-Kirchhoff stress tensors P0 and S0 can be obtained in this
setting simply by symbol-to-symbol automatic differentiation of
the output Ψ of the neural network. We note that the first Piola-
Kirchhoff stress tensor P0 corresponds to the nominal stress
recorded during the experiments described in section 2.1.2. An
important feature of CANNs is that their input is formed not only
by invariants of the deformation state but also by any kind of
additional quantities potentially carrying information about the
constitutive behavior of the material of interest. In our case, these
additional quantities are the 11 parameters measured in our
experiments by ELISAs (see Figure 3 and section 2.1.3). This
architecture enables CANNs to learn not only how to resemble
stress-strain curves of brain tissue but also to predict such curves
from ELISAs, as discussed in more detail in Linka et al. (2021).

2.2.2 History Dependence
The response to loading of viscoleastic materials is in general
governed not only by the current loading but also by the
loading history. Skipping herein the complex theory of
general nonlinear viscoelastic materials, we adopt the theory
of quasi-linear viscoelasticity as introduced by Y. C. Fung in
particular for biological tissues (Fung, 2013). This theory
allows stress to depend nonlinearly both on strain and time.
However, it assumes that the role of strain and time can be
separated by a multiplicative split. While this limits the
generality of the theory, it has been found that many
biological materials of interest can be modeled at least in
very good approximation as quasi-linear viscoelastic

materials. Within this setting, the history-dependent stress
can be expressed by the convolution integral

P � ∫t

0
g(t − s) zP0

zs
ds, (3)

where P0 denotes the quasi-elastic stress response (i.e., on very
short time scales) of a material under a Heaviside strain as
approximated by a CANN, and g is a kernel function
characterizing stress relaxation over time t. In this work, we
assume a Prony-type kernel function (Taylor et al., 2009)

g(t) � g0 +∑p
i�1

gi exp − t
τi

[ ] (4)

with scalar weighting coefficients gi with a partition of unity
property

g0 +∑p
i�1

gi � 1 (5)

and relaxation time constants τi. The set of Prony parameters is
denoted herein by

v � g0, g1, τ1, g2, τ2, . . . ,{ }. (6)

The stress response P can be split into a long-term elastic and a
transient viscoelastic contribution as

P � g0 P0 +∑p
i�1

∫t

0
gi exp − t

τi
[ ] dP0

ds
ds

︸�����������︷︷�����������︸
hi

(7)

with the i-th history integral hi(t). Following Goh et al. (2004),
this formula can be used to evaluate the current stress P over time
t efficiently in a time-discrete setting with time points tn by the
pair of recursive formulae

P tn+1( ) � g0P0 tn+1( ) +∑p
i�1

hi tn+1( ),

hi tn+1( ) � exp −Δt/τi( ) hi tn( ) + gi
1−exp −Δt/τi( )

Δt/τi
P0 tn+1( ) − P0 tn( )[ ]. (8)

TABLE 3 | Proteins investigated by ELISA.

Investigated protein Manufacturer Cat. nr ELISA type Detection range
[ng/ml]

Glial fibrillary acidic protein GFAP Cloud-Clone SEA068Hu sandwich 0.156–10
Ionized calcium-binding adapter molecule 1 Iba1 Cloud-Clone SEC288Hu sandwich 0.0312–2
Myelin basic protein MBP Cloud-Clone SEA539Hu sandwich 0.156–10
Hyaluronic acid HA Cusabio CSB-E04805h sandwich 0.156–10
Chondroitin sulfate CS Cloud-Clone CEA723Ge competitive 0.03906–10
Lumican LUM Cloud-Clone SEB496Hu sandwich 0.312–20
Collagen I Col I Cloud-Clone SEA571Hu sandwich 0.156–10
Collagen IV Col IV Cloud-Clone SEA180Hu sandwich 7.8–500
Collagen VI Col VI Cloud-Clone SED123Hu sandwich 0.78–50
Fibronectin FN Cloud-Clone SEA037Hu sandwich 1.56–100
Laminin LA Cloud-Clone SEA082Hu sandwich 7.8–500
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Altogether, the extended type of CANN used herein computes the
quasi-elastic stress response P0 of the materials and its Prony
parameters by two separate, parallel deep neural networks.
Subsequently, it computes the time-dependent current stress
using Eq. (8), as illustrated in Figure 3. Note that the
dependence of the stress response on the 11 ELISA values is
learned by the viscoelastic CANN. In agreement with previous
studies (Prange and Margulies, 2002; Budday et al., 2015a;
Budday et al., 2017b), we used p � 2 Prony terms in our
machine learning architecture.

2.2.3 Model Training and Hyperparameter Tuning
To train our viscoelastic CANNs, we used Adam optimization
Kinga and Adam, (2015) for minimizing the mean-squared-error
(MSE) loss function

MSE � ∑
i

|Pi
zz − Pi

exp|2. (9)

Here, Pi
zz is the stress component in loading direction as

computed by our viscoelastic CANN and Pi
exp is the

corresponding experimentally observed value. The index i
loops through all experimentally collected stretch-stress tuples
included in the training process. Our whole framework was
implemented using Keras with TensorFlow backend (Chollet,
2015; Abadi et al., 2020). We used Glorot weight initialization
(Glorot and Bengio, 2010) at the beginning of the training and
fixed the learning rate at 0.001 during the training of different
layers. Training was performed with 250 data pairs in each
iteration (also referred to as batch size), which was chosen
corresponding to the amount of cyclic stress-stretch data
points of a single tissue specimen. Before starting the actual
training, we performed a hyperparameter tuning for the network
topology, dropout rate, L2-regularization and the activation
functions using a Bayesian optimization with a Gaussian
process model (Mockus, 1994; Chollet, 2015). This tuning was
performed on cyclic loading data of one representative tissue
specimen. It led to a CANN architecture with three hidden layers
with (32, 32, 48) computational units (neurons) with hyperbolic
tangent activation functions, an elu activation function (Clevert
et al., 2015) for the output, and a dropout layer after the first
hidden layer with a rate of 0.5. For the network computing the
Prony parameters, hyperparameter tuning resulted in a single
hidden layer with 12 computational units and a sigmoid
activation function.

Leave-one-out cross validation (LOO-CV) was used to train
the model on the full range of available cyclic loading data. Here,
the number of evaluation folds is equal to the number of samples
in the data set (N � 86). Accordingly, each model was first trained
based on N − 1 data sets, and then the trained model was applied
to the single left out validation sample to evaluate the ability of the
trained neural network to generalize (predict). In this way, each
individual sample was used for one particular model training as
validation sample. Each model instance was trained for 4,000
epochs, and the epoch with the best validation set accuracy was
chosen for evaluation purposes to prevent overfitting that might
occur after too many epochs. More details on training and

validation are provided in the supplementary materials Model
Training and Validation.

For validation of our trained machine-learning model, we
computed for the validation sample the coefficient of
determination

R2 � 1 − Sres/Stot( ), with Sres � ∑
i

Pi
exp − Pi

11( )2,
Stot � ∑

i

Pexpi − P
̄

exp( )
2

, (10)

where P
̄
exp is the mean of the experimental data points.

2.2.4 Layer-wise Relevance Propagation
A primary goal of this work is the evaluation of the impact of
the different compositional parameters measured by the
ELISAs on the mechanical properties. To this end, we use
the concept of layer-wise relevance propagation. It is a
method from the research area of explainable artificial
intelligence and particularly suitable for deep neural
networks, which map some input through a series of
layers to an output layer. The lth layer consists of
computational units (neurons) passing the values xli to the
next layer, where i is the index of the neuron within layer l.
The propagation of values from layer l − 1 to layer l can in
general be described by

zlij � wl
ijx

l−1
i , zlj � ∑

i

zlij + blj, xlj � nlj z
l
j( ). (11)

Here wl
ij is the weight connecting the neuron i in layer l − 1 with

neuron j in layer l; zlj is the input neuron j in layer l receives from
all neurons of the previous layer plus the bias blj of this neuron; x

l
j

is the output this neuron passes to the neurons on the subsequent
layer after application of its in general nonlinear activation
function nlj.

Within this general setting, layer-wise relevance propagation
aims at tracing back a given output to individual components of
the input layer of the deep neural network. To this end, it starts at
the output layer. Then it recursively computes the relevance score
Rl−1
i of all neurons i in layer l − 1 from known relevance scores Rl

j
of the neurons j in layer l, see also Figure 4. In this procedure, the
relevance Rl

j is propagated backwards from layer l to layer l − 1 by
dividing it into relevance contributions Rl−1, l

i←j for each neuron i in
layer l − 1, observing the conservation property

∑
i

Rl−1, l
i←j � Rl

j. (12)

The relevance of neuron i in layer l − 1 is then generally
computed as

Rl−1
i � ∑

j

Rl−1, l
i←j . (13)

The key of such relevance propagation schemes is the formula by
which the relevance contributions Rl−1, l

i←j propagated from layer l
back to layer l − 1 are computed. Herein, we follow Bach et al.
(2015) and define
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Rl−1, l
i←j � Rl

j α
zl+ij
zl+j

+ β
zl−ij
zl−j

[ ] (14)

where the superscripts − and + denote the negative and positive
parts of zlij and blj. For example, if zlj ≥ 0, then zl+j � zlj and zl−j � 0.
By contrast, if zlj < 0, then zl+j � 0 and zl−j � zlj α and β are
coefficients partitioning unity and weighting the positive and
negative parts.

In our relevance analysis we included only the training
samples of training folds where R2 ≥ 0.7 was reached for the
validation sample to guarantee a high model accuracy and, thus, a
high reliability of the relevance analysis itself. Our machine
learning architecture consists of a standard CANN block and
an additional deep neural network block for the computation of
the Prony parameters. We performed our relevance analysis
separately for both blocks. In both cases, we quantified the
relevance of the 11 ELISA values. For the entire relevance
analysis we used α � 2 and β � −1 in (14).

FIGURE 5 | Total protein content (upper left) and protein mass fractions of 11 species (glial fibrillary acidic protein (GFAP), microglia- and macrophage-specific
protein Iba1 (Iba1), myelin basic protein (MBP), hyaluronic acid (HA), chondroitin sulfate (CS), lumican (LUM), collagen I (Col I), collagen IV (Col IV), collagen VI (Col VI),
fibronectin (FN), and laminin (LA)) evaluated by ELISAs in 9 different brain regions (cortex (C), thalamus (TH), basal ganglia (BG), amygdala (AMY), cerebral white matter
(CR), corpus callosum (CC), brainstem (BS), cerebellar white matter (cWM), and deep cerebellar nuclei (cNC)).

FIGURE 4 | Illustration of layer-wise (backwards) relevance propagation
in a CANN. In a trained neural network, recursive application of this scheme
from the output layer to the input layer can quantify the relevance of the
individual input parameters such as the ELISA values for the output.
Neurons are illustrated as empty circles, weights as black arrows.
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3 RESULTS

3.1 Regional Microstructural Components
Quantified Through ELISA
Figure 5 summarizes the total protein content (per millimeter
solution) and the results of the ELISAs reported in nanogram
per microgram total protein for the different brain regions
specified in Figure 1A. The total protein content quantifies
the amount of proteins per milliliter solution. It ranges from
1 to 11.5 mg/ml solution. We note that these absolute values
do not necessarily refer to how much proteins are present in
different brain regions as they represent the protein content
per milliliter solution but not the protein content per
milligram tissue.

The ELISA results vary significantly for the different
microstructural components introduced in Figure 2, and range

from extremely small values on the order of 10–5 ng/mg total
protein for chondroitin sulfate to values of up to 60 ng/mg total
protein for collagen IV and fibronectin. Interestingly, the content
of cellular proteins (GFAP, MBP, Iba1) is rather small compared
to specific extracellular proteins (FN, Col IV).

The glial fibrillary acidic protein (GFAP) values
quantifying the amount of the hallmark intermediate
filament protein in astrocytes lie in the range of
0.1–1.1 ng/mg total protein. The GFAP concentration is
highest in the corpus callosum, thalamus and cerebellar
white matter, while it is lowest in the amygdala and deep
cerebellar nuclei. The amount of GFAP in the brainstem is
relatively low compared to all other white matter regions. The
values for the microglia- and macrophage-specific protein
Iba1 range from 0.04 to 0.35 ng/mg total protein. The amount
of Iba1 is generally higher in white matter than in gray matter

FIGURE 6 |CANNs extended by the ability to account for viscoleastic effects and can learn to resemble the stress-strain curves provided as training data (A,B) and
to predict the stress response also for loading scenarios not included in the training data such as the relaxation experiments shown in (C–F). The first column (A,C,E)
corresponds to mechanical data of one representative sample from the basal ganglia, while the second column (B,D,F) corresponds to a sample from the cerebellar
white matter brain region.
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regions. The brainstem shows a lower content than other
white matter regions, while the corpus callosum has the
highest content of Iba1. The myelin basic protein (MBP)
concentration lies in the range of 0.02–0.54 ng/mg total
protein. It is highest in the amygdala and lowest in the
brainstem. Most regions, including both gray and white
matter, show a value of approximately 0.2 ng/mg total
protein.

The hyaluronic acid (HA) content ranges from 0.13 to 0.71 ng/
mg total protein. In the cerebrum, gray matter regions (TH, C,
BG, AMY) have a higher amount of HA than white matter
regions (BS, CR, CC). In the cerebellum, we observe the
opposite trend with a higher HA value for the cerebellar white
matter than the deep cerebellar nuclei. The amount of the
proteoglycan chondroitin sulfate is at least two orders of
magnitude lower than for all other proteins. Despite the
exception of the thalamus with a relatively low value, gray
matter regions have a higher content of chondroitin sulfate
than white matter regions. The concentration of the
proteoglycan lumican ranging from 0.002 to 0.032 ng/mg total
protein is higher than for chondroitin sulfate but still low.
Collagen I was the only fibrillar collagen we analyzed in the
current work. Its content varies between 0 and 0.015 ng/mg total
protein with highest values in the cerebellar white matter and
lowest in the corpus callosum. Our results show that the most
abundant collagen type in brain tissue is the non-fibrillar collagen
IV with concentrations ranging from 0 to 62 ng/mg total protein.
The collagen IV concentrations are higher in deep gray matter,
the brainstem and the cerebellum than in the cortex, corona
radiata, and corpus callosum. Collagen VI, another non-fibrillar
collagen type, shows concentrations ranging from 0 to 4.3 ng/mg
total protein. The collagen VI content is consistently higher in
white than in gray matter regions. The fibronectin content ranges
from 1 to 58 ng/mg total protein, similar to collagen IV. It also
shows a similar regional distribution as collagen IV with lowest
values for the cortex, corona radiata, and corpus callosum. The
concentration of laminin lies between 0 and 2.7 ng/mg total
protein.

3.2 Performance of Viscoelastic CANNs
In the training process, the neural networks employed in our
study learned to resemble the stress-stretch curves provided as
training data. Representative examples are depicted in Figures
6A, B. Moreover, the trained networks were able to predict the
stress response of relaxation experiments not included in the
training data, as shown in Figures 6C–F. Once trained for each
fold in the LOO-CV scheme, the neural networks could
reproduce the stress-stretch curves of the training data with a
median coefficient of determination R2 � 0.94 (standard deviation
0.24) and predict such curves for the validation samples with R2 �
0.90 (standard deviation of ±0.51), see Figure 7.

3.3 Relevance Analysis Revealing the Link
Between Mechanics and Microstructure
Figure 8 illustrates the relevance (quantified through the
backward pass in the viscoelastic CANN) of different

microstructural components (quantified through ELISAs) for
the quasi-elastic (Figure 8A) and viscoelastic (Figure 8B)
contributions of the complex mechanical response of brain
tissue. Fibronectin has the highest relevance for both the
quasi-elastic response and viscoelastic effects. Concerning the
quasi-elastic response, fibronectin is–with a certain
distance–followed by Iba1 associated with microglia, the
extracellular matrix proteins laminin and hyaluronic acid, as
well as MBP associated with myelination of nerve fibers. Our
results further suggest that collagen IV and GFAP slightly affect
the quasi-elastic tissue response, while the influence of collagen
VI, collagen I, lumican, and chondroitin sulfate seems to be
negligible.

Concerning viscoelastic effects, interestingly all cellular
components, quantified through GFAP (astrocytes), MBP
(myelin, oligodendrocytes), and Iba1 (microglia), have the
highest relevance after fibronectin. In addition, the
extracellular matrix components collagen VI and hyaluronic
acid seem to affect the viscoelastic behavior of brain tissue.
We note that we find the lowest relevance for collagen IV,
which is actually the protein with the highest amount per total
protein, as illustrated in Figure 5. But, it appears to be irrelevant
for the viscoelastic response of the tissue.

3.3.1 Regional Trends for the Quasi-Elastic Stress
Response
Figure 9 displays the relevance of the different ELISA values for
the quasi-elastic stress response in each brain region. The cortex
and thalamus show a similar sequence. In the basal ganglia,
laminin has a higher relevance than in all other gray matter
regions, but the general trends are the same. In general, the
relevance of Iba1 is higher for white matter than for gray matter
regions. Furthermore, in all white matter regions (CR, CC, cWM)
with the exception of the brainstem, GFAP shows a higher
relevance than in gray matter regions. We observe that
laminin has a relatively high relevance of approximately 1.2 in

FIGURE 7 |Our trained viscoelastic CANNs could reproduce the stress-
strain curves in the training data with a median coefficient of determination
R2�0.94 and predict such curves for the validation samples with a median
R2�0.90 in a LOO-CV scheme.
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the corona radiata and cerebellar white matter. The relevance of
hyaluronic acid lies on the order of 1 for the cerebral gray matter
regions and cerebellar white matter, and around 0.5 for cerebral
white matter regions and deep cerebellar nuclei. Interestingly, the
only region, where fibronectin does not have the highest
relevance, is the corpus callosum; here, Iba1 seems to control
the quasi-elastic tissue response.

3.3.2 Regional Trends for Viscoelastic Effects
Figure 10 displays the relevance of the different ELISA values for
the viscoelastic behavior in each brain region. The regional trends
are more diverse than for the quasi-elastic stress response in
Figure 9. In different orders, MBP, hyaluronic acid, GFAP, Iba1,
and fibronectin are most relevant for viscoelastic effects in gray
matter regions. In cerebral white matter regions (CR, CC, BS),
especially GFAP and Iba1 appear to play an important role. In
addition, MBP, hyaluronic acid, and collagen VI show a certain
relevance.

4 DISCUSSION

In this study, we have combined mechanical large-strain
compression and tension experiments (cyclic loading and
stress relaxation) with microstructural investigations using

enzyme-linked immunosorbent assays (ELISA) and an
extended type of constitutive artificial neural network (CANN)
that can account for viscoelastic effects to identify the link
between the microstructural composition and complex
mechanical response of human brain tissue.

4.1 Insights Into the Regional
Microstructural Composition of Brain
Tissue
To quantify the tissue composition in different regions of the
human brain (see Figure 1), we have used ELISAs for selected
cellular (GFAP - astrocytes, Iba1 - microglia, MBP -
oligodendrocytes/myelin sheaths) and extracellular (hyaluronic
acid, chondroitin sulfate, lumican, collagen I/IV/VI, fibronectin,
laminin) proteins. The amount of cellular proteins was relatively
low compared to certain extracellular components, which can be
attributed to the fact that the investigated proteins only represent
part of the cell. For instance, the myelin basic protein (MBP)
represents 25–30% of all myelin proteins (Deber and Reynolds,
1991), and quantifies only part of the oligodendrocytes and
myelin sheaths. We found MBP to be present in both gray
and white matter regions. Interestingly, the MBP
concentration was lowest in the brainstem. The microglia- and
macrophage-specific protein Iba1 was more abundant in white

FIGURE 8 |Relevance of the ELISA values for the (A) quasi-elastic stress response on very short time scales (governed byΨ) and (B) viscoelastic effects (governed
by the Prony series parameters collected in the set v).
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matter than gray matter regions. This agrees well with a previous
study reporting slightly higher densities of microglia in white
matter tissue of different mammals (Dos Santos et al., 2020).
Similar to Iba1, the astrocyte-specific protein GFAP was highest
in the corpus callosum and the cerebellar white matter and lowest
in the amygdala and cerebellar nuclei. The brainstem showed a
significantly lower concentration of GFAP than all other white
matter regions but was in the same range as the analyzed gray
matter regions. This may be related to the fact that our brainstem
samples included various small gray matter regions, such as the
red nucleus and the substantia nigra in the midbrain, the pontine
nuclei in the pons, and the medullary reticular formation and
inferior olive in the medulla.

Overall, the most abundant proteins were fibronectin and
collagen IV–both extracellular matrix components. Fibronectin is
produced by endothelial cells, pericytes, and macrophages, and is
predominant in perineural nets (Wang et al., 2011), as
schematically illustrated in Figure 2. The high content of
collagen IV agrees with findings in the literature reporting that
collagen IV takes up about 50% of the basement membrane (Kim
et al., 2018). Interestingly, the variation in the fibronectin and
collagen IV content between different brain regions was relatively
low, both having the lowest concentrations for tissue from the
corpus callosum. Collagen VI was more abundant in white matter
than gray matter regions with the highest content in the cerebellar
white matter, closely followed by corona radiata and corpus
callosum. For tissue from the cerebrum, hyaluronic acid (HA)

showed the opposite trend with higher concentrations in gray
matter than in white matter regions. This may be attributed to the
fact that HA is an important component of perineuronal nets (see
also Figure 2) that help regulate neuronal activity. In white
matter, HA is more diffusely distributed around astrocytes and
oligodendrocytes (Sherman et al., 2015).

The proteoglycan chondroitin sulfate appeared to be more
abundant in the amygdala and the cerebellar nuclei than in all
other brain regions–although its content was generally extremely
low. In the amygdala, chondroitin sulfate is an important
component of perineural nets (Pantazopoulos et al., 2008), and
abnormalities in the chondroitin sulfate content are related to
disorders like schizophrenia (Pantazopoulos et al., 2015). Similar
to the proteoglycans, the concentration of fibrillar collagen I is
particularly low in all brain regions, which is related to the
ultrasoft mechanical response of brain tissue (Barnes et al., 2017).

4.2 Link Between Microstructural
Composition and Macromechanical
Properties
To quantify the mechanical properties of human brain tissue, we
have introduced an extended type of CANN that incorporates
substantial prior knowledge from materials theory and
viscoelastic effects. It was able to learn the complex
mechanical response of human brain tissue with a high
accuracy over a large range of stress-stretch states. Moreover,

FIGURE 9 | Relevance of the ELISA (see Table 3) values for quasi-elastic stress response (determined by Ψ) different brain regions (see Table 2).
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it learned to predict the mechanical behavior of brain tissue from
the 11 constituent concentrations measured through ELISAs. A
layer-wise relevance propagation analysis allowed us to quantify
the importance of the 11 individual constituent concentrations
for the complex mechanical response.

The results of this analysis suggest that the content of
fibronectin is by far the most relevant of the examined
features for both the quasi-elastic stress response to loading
and viscoelastic effects. This may be attributed to the fact that
fibronectin forms fibrillar networks, which provide mechanical
support. Interestingly, in a recent study on somite formation
during embryogenesis, the fibronectin matrix was specifically
perturbed to tune tissue mechanics (de Almeida et al., 2019).
It has further been shown that the amount of fibronectin
decreases in the aging brain (Syková et al., 1998; Wang et al.,
2011), which may thus crucially contribute to the observed
softening of brain tissue with age (Sack et al., 2009). Our
results further indicate that the elastic tissue response is
especially controlled by extracellular matrix proteins that are
part of the basement membrane (Eriksdotter-Nilsson et al., 1986;
Abhijit and Yao, 2019), i.e., fibronectin, laminin and collagen IV.
Therefore, we suppose that the degree of vascularization plays an
important role for brain stiffness, not least because we expect a
higher stiffness for blood vessels compared to the brain
parenchyma. It has been shown that both fibronectin and
laminin are upregulated after traumatic brain injury (George
and Geller, 2018). In addition, increased collagen IV and

fibronectin signals were observed during ischemia (Michalski
et al., 2020). This motivates the hypothesis that, in the future,
altered mechanical properties could serve as a potential
biomarker for such disorders. In addition to basement
membrane proteins, hyaluronic acid (HA) appears to be
relevant for the quasi-elastic tissue response. This agrees well
with the general notion that HA plays the main structural role in
the formation of the brain extracellular matrix (Bignami et al.,
1993). Interestingly, HA appeared to be even more relevant for
the elastic than for the viscoelastic response of brain tissue, which
is surprising considering its hydrophilic nature.

The most relevant cellular protein for the quasi-elastic
response is Iba1, which is specific to microglia and
macrophages. Interestingly, microglia have been shown to
preferably migrate towards stiffer regions (Bollmann et al.,
2015). This could explain why the presence of microglia
correlates with local mechanical tissue properties. The
additional relevance of the cellular protein MBP also agrees
well with previous findings showing that brain tissue stiffness
correlates with myelin content (Weickenmeier et al., 2016;
Weickenmeier et al. 2017b).

Viscoelastic effects seem to depend in particular on all cellular
proteins, GFAP, MBP and Iba1, even though the absolute
quantities of these proteins were rather low in all samples.
This observation also agrees with our previous findings (Reiter
et al., 2021), where we could show that the network of
intercellular connections behaves viscoelastically. Interestingly,

FIGURE 10 | Relevance of the ELISA (see Table 3) values for the Prony series parameters in different brain regions (see Table 2).
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GFAP showed a higher relevance for the viscoelastic than for the
quasi-elastic response of the tissue, which further supports the
importance of the cellular network for brain viscoelasticity. In
addition to fibronectin and cellular proteins, collagen VI showed
a certain relevance, which we attribute to its ability to interact
with fibrils and cells suggesting that it takes part in the viscoelastic
network.

Despite the relatively high content of collagen IV in brain
tissue, it is only moderately relevant for the quasi-elastic response
and has the lowest relevance of all investigated proteins for the
viscoelastic response. This demonstrates the effectiveness of the
chosen approach using the backward pass through the
viscoelastic CANN to evaluate the relevance of different
microstructural components for complex brain tissue
mechanics. The proteoglycans lumican and chondroitin sulfate
and the fibrillar collagen I generally have only a very low influence
on the mechanical properties of the tissue. They also exhibit the
lowest concentrations.

4.3 Regional Differences in the Relevance of
Constituents for Tissue Mechanics
When comparing the relation between composition and mechanical
response of the tissue in different brain regions, we observe that
relevances for the quasi-elastic tissue response are relatively
insensitive towards the brain region. The only region that
deviates from the highest relevance of fibronectin is the corpus
callosum. Here, Iba1 seems to largely control the quasi-elastic tissue
response. This might be related to the regional heterogeneity of
microglia in the brain, where a different gene expression pattern was
observed for the corpus callosum than for all other brain regions
(Tan et al., 2020). Interestingly, GFAP is especially relevant in the
corona radiata and corpus callosum–for the viscoelastic relaxation
additionally in the brainstem–indicating that reactive astrocytes may
significantly contribute to the mechanical response in these regions.
Laminin was only relevant for the quasi-elastic response of the
corona radiata, cerebellar white matter, basal ganglia, amygdala, and
brainstem. In these regions, it was also most abundant. While
fibronectin had a high relevance for the quasi-elastic response in
all regions, it was also relevant for viscoelastic effects in gray matter
regions. In general, we found that the regional trends were much
more diverse for viscoelastic effects than for the quasi-elastic
response. For instance, MBP was identified as most relevant in
the cortex, fibronectin in the thalamus and cerebellar nuclei, HA in
basal ganglia and amygdala, GFAP in cerebral white matter and the
brainstem, and Iba1 in cerebellar white matter.

4.4 Implications for
Microstructure-informed Constitutive
Modeling
Independent of the brain region, fibronectin, HA, MBP, and Iba1
have a notable relevance for the quasi-elastic tissue response.
Therefore, these constituents should be considered when
developing refined microstructure-based material models for
brain tissue in the future. We note, however, that ELISAs can

only be performed post mortem or when tissue is surgically
resected. Consequently, one may consider other techniques,
potentially also in vivo imaging, to quantify the distribution
of the constituents relevant for brain mechanics. Despite the
relatively high content of collagen IV, our results indicate that
its relevance for tissue mechanics is negligible. This could be
attributed to the fact that collagen IV is a non-fibrillar collagen
type. Also, fibrillar collagen I, which has previously been
incorporated in material models for arteries (Gasser et al.,
2006) or cartilage (Linka and Itskov, 2016), plays a negligible
role for brain tissue mechanics as its concentration is very low.

With regard to viscoelastic effects, the most relevant
constituents of the tissue seem to be Iba1, HA, MBP, and
GFAP. As the relevance of the different proteins varied
notably between different brain regions, it may be necessary to
introduce region-specific constitutive models. According to our
results, it might even be expedient to introduce different regional
classifications for the quasi-elastic and viscoelastic contributions.

4.5 Limitations
As the samples for the ELISA analyses were extracted between 12 and
72 (brains 1 and 2) or 12 and 26 (brains 3–5) hours postmortem, some
of the investigated proteins could already have degraded (Fountoulakis
et al., 2001) and themechanical response of the tissue could differ from
the in vivo situation.When comparing the samples taken from the five
human brains investigated here, which all reached our lab after
different post mortem times, we did not detect noticeable
differences in the protein content or mechanical response.
Therefore, we anticipate that at least the comparison of the
different brains and brain regions is reasonable. Here we focused
on the relevance of different components on tissue mechanics and the
comparison of different brain regions rather than only on determining
the content of the individual proteins in the human brain.

4.6 Future Directions
In the future, we will further evaluate the predictive capabilities of
the extended CANN framework. Potentially, it could be used to
predict disease- or injury-related changes in tissue properties
based on ELISA results performed on tissue extracted during a
biopsy. In addition, it will be interesting to use a similar approach
to predict the complex mechanical response of human brain
tissue based on in vivo imaging data. In terms of the relation
between microstructure and mechanics in the human brain, the
next step is to not only consider the total amount of
microstructral components, but also their morphology and
three-dimensional arrangement. Concerning cellular
components, it may be more reliable to quantify the number
of nuclei instead of the concentration of GFAP and Iba1, which
only represent part of the cell. In addition, we will consider the
contribution of neurons and their connectivity.

5 CONCLUSION

In this study, we have followed a new paradigm by combining
large-strain mechanical testing, enzyme-linked immunosorbent
assays (ELISA), continuum mechanics theory and machine
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learning techniques to reveal the relation between human brain
tissue composition and its mechanical properties. We
introduced a viscoelastic constitutive artificial neural network
model and were able to capture the mechanical response of the
tissue during cyclic compression - tension experiments, and to
predict the response during stress relaxation in compression
and tension. By including the specimen-specific ELISA results
into the network to model the mechanical response, and
subsequently evaluating the backward pass through the
viscoelastic CANN, we were able to reveal the relevance of
the local tissue composition on the corresponding nonlinear
and viscoelastic mechanical response. We have assessed the
individual contribution of several cellular (GFAP, Iba1, MBP)
and extracellular (hyaluronic acid, chondroitin sulfate, lumican,
collagen I/IV/VI, fibronectin, laminin) proteins and evaluated
region-dependent trends. Our results suggest that the
extracellular matrix protein fibronectin has the highest
overall relevance for both the elastic and viscous behavior of
human brain tissue. While the quasi-elastic response seems to
be largely controlled by extracellular matrix proteins from the
basement membrane, cellular components have a higher
importance for the viscoelastic effects. The tissue
components relevant for the quasi-elastic response
(fibronectin, hyaluronic acid, MBP, Iba1) are relatively
insensitive towards the brain region. In contrast, regional
trends for viscoelastic effects are more diverse. GFAP has a
high relevance for white matter regions in the cerebrum and
brainstem, and hyaluronic acid for most gray matter regions.
Our results can have important implications for the
development of microstructure-informed constitutive models
to predict the regional behavior of brain tissue in finite element
simulations. The latter promise to become a useful tool in
assisting diagnosis and treatment of diseases or preventing
injury. In addition, the relation between human brain tissue
composition and mechanical properties facilitates the design of
biomaterials for neural tissue engineering and 3D printing
applications, where the investigated extracellular components
could be valuable to enhance the biocompatibility and
properties of matrix materials.
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