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Abstract

Studies of neuronal oscillations have contributed substantial insight into the mechanisms of

visual, auditory, and somatosensory perception. However, progress in such research in the

human olfactory system has lagged behind. As a result, the electrophysiological properties

of the human olfactory system are poorly understood, and, in particular, whether stimulus-

driven high-frequency oscillations play a role in odor processing is unknown. Here, we used

direct intracranial recordings from human piriform cortex during an odor identification task to

show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical

response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex.

We further show that these rhythms have distinct relationships with perceptual behavior.

Odor-elicited gamma oscillations occur only during trials in which the odor is accurately per-

ceived, and features of gamma oscillations predict odor identification accuracy, suggesting

that they are critical for odor identity perception in humans. We also found that the amplitude

of high-frequency oscillations is organized by the phase of low-frequency signals shortly fol-

lowing sniff onset, only when odor is present. Our findings reinforce previous work on theta

oscillations, suggest that gamma oscillations in human piriform cortex are important for per-

ception of odor identity, and constitute a robust identification of the characteristic

electrophysiological response to smell in the human brain. Future work will determine

whether the distinct oscillations we identified reflect distinct perceptual features of odor

stimuli.

Introduction

Oscillations are ubiquitous across mammalian brain networks [1–11], and studies on their

spectrotemporal dynamics have contributed important insight into the mechanisms underly-

ing visual, auditory, and somatosensory perception [11–16]. Some of the earliest recordings of

brain oscillations occurred in the olfactory system of hedgehogs [17], leading to decades of
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highly productive animal research on oscillations in the mammalian olfactory system with sig-

nificant work in rabbit and cat piriform [18–22] and more recently mainly focusing on the

rodent olfactory bulb [6,9,23–43]. However, 80 years later, we still lack understanding of the

spectral and temporal dynamics of these oscillations in olfactory processing in the human

brain, particularly in higher frequency ranges including beta and gamma.

Gamma oscillations, which comprise the synchronized rhythmic patterns of spiking and

synaptic inhibition, have been established as an important mechanism in sensory cortical pro-

cessing in the mammalian brain [44,45]. In the visual cortex, gamma oscillations are locally

generated and reflect low-level stimulus attributes [46], including grating size, contrast, spatial

structure, and color [47–50], and are thought to support visual perception by synchronizing

the processing and transfer of information within and across areas of visual cortex [51–53].

Similarly, in the auditory cortex, locally generated gamma oscillations may provide a mecha-

nism to integrate neurons according to the similarity of their receptive fields [54] and are

involved in pitch perception and sound discrimination [55,56].

In the olfactory system, odor-driven increases in beta and gamma oscillations have not

been consistently identified in direct recordings from human piriform (olfactory) cortex,

which has been found to exhibit low-frequency oscillations in response to odor [57]. However,

in mammals and insects, the cellular and network processes underlying gamma oscillations in

the olfactory bulb and cortex have been studied extensively [19,32,42,58–63], and more recent

work has begun to provide insight on their functional role as well [24,25,28,29,32,33,39,64],

suggesting involvement in the organization of sensory information to enable fine odor dis-

crimination and identification [33,65–69]. In addition to gamma oscillations, beta and theta

oscillations have been extensively studied in the mammalian olfactory system and are involved

in olfactory learning and respiratory tracking, respectively

[18,25,28,30,32,40,41,43,64,65,70,71]. Thus, theta, beta, and gamma oscillations constitute 3

key rhythms that have functional significance for olfactory processing in mammals [9]. How-

ever, against this background of extensive animal work, the electrophysiological underpin-

nings of the human olfactory system are vastly understudied. Only a few intracranial studies

have directly measured odor-induced oscillations in the human brain: in the amygdala [72–

76] and piriform cortex [57]. Human piriform recordings suggest an important role for low-

frequency (< 8 Hz) oscillations in olfactory processing [57]; theta oscillations were consistently

found in piriform cortex within 200 ms of sniff onset during an odor detection task, and their

features could be used to decode odor identity. However, the full spectral characteristics of

early and later emerging odor responses in human olfactory cortex remain unknown. Further-

more, the functional role of high-frequency oscillations in human piriform cortex is virtually

unexplored.

In this study, we used stereotactic intracranial electroencephalography (iEEG) to test 3

main hypotheses about neural responses in human piriform cortex during an olfactory identi-

fication task. First, based on the fundamental role of gamma oscillations in human sensory

perception and the established rhythms in the rodent olfactory system, we hypothesized that

odors would induce theta, beta, and gamma oscillations in human piriform cortex. Second,

based on the fact that olfactory oscillations are modulated by sniffing [39,58,62,63,77–79],

which is inextricably linked to odor onset times, we hypothesized that the timing of responses

relative to sniff onset would vary across the different frequency bands. Third, based on estab-

lished links between gamma/beta oscillations and sensory coding [24,25,27,28,30,40,43,64],

and the fact that activity in rodent piriform cortex can be used to decode odor identity [80–

82], we hypothesized that human piriform beta and gamma oscillations would emerge only

during trials where odors were accurately identified and that features of their oscillatory

rhythms would predict odor identification accuracy.
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Our results show that odors elicit a stereotyped oscillatory response in human piriform cor-

tex that is consistent in timing and frequency composition across participants: Immediately

following odor onset, early theta increases are quickly followed by gamma and beta increases.

The phase of early low-frequency responses drives the amplitude of high-frequency rhythms

only when odor is present. Finally, the distinct oscillatory rhythms we identified were differen-

tially related to behavioral performance, suggesting that these rhythms could potentially give

rise to noninterfering representations of different features of odor stimuli [81,82], though

future work is needed to test this hypothesis.

Results

To examine odor-driven oscillations in human olfactory cortex, we recorded local field poten-

tials (LFPs) from 7 participants who took part in an odor identification task. Each participant’s

clinical electrode coverage included piriform cortex (Fig 1A). The olfactory task was per-

formed during clinical recording of ongoing electrophysiological activity, at sampling rates

ranging between 500 to 2,000 Hz, using a 256-channel clinical EEG acquisition system (Nihon

Kohden). Each trial began with an auditory cue signaling that odor would be presented and

providing the potential identity of the odor (rose or mint). After a jittered delay (3 to 7 s), odor

was presented to the participant, while sniff onset was precisely measured via a pressure sensor

at the nose (Salter Labs). On each trial, participants identified the odor by indicating whether

or not it matched the identity prompt (Fig 1B). To isolate effects driven by odor from those

Fig 1. Electrode contact locations and experimental design. (A) The location of the piriform cortex electrode contact

(red dot) is shown on each participant’s (P1–P7) brain image. L, left hemisphere. (B) Schematic illustration of the

olfactory task, showing odor and no-odor conditions drawn on an illustrative breathing signal (black line). The light

blue area indicates experimental trials (starting from cue delivery to the end of the breathing cycle in which odor was

delivered), and the pink area indicates between trials. The black boxes indicate the analysis time windows for odor and

no-odor trials. The darker blue area indicates odor delivery.

https://doi.org/10.1371/journal.pbio.3001509.g001
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driven by inhalation, which also impacts oscillations in human piriform cortex [78,83–85], we

analyzed and directly compared LFPs during inhalations that contained odor and those that

did not, resulting in 2 experimental conditions: odor and no-odor (Fig 1B, areas shaded in

pink and blue).

Odor elicits oscillations in theta, beta, and gamma frequency bands in

human piriform cortex

To test the hypothesis that odor elicits LFP oscillations in the theta, beta, and gamma fre-

quency bands in human piriform cortex, we first conducted a time-frequency analysis combin-

ing data from all trials and participants. We computed spectrograms aligned to sniff onset, for

odor and no-odor conditions separately. In the odor condition, we found statistically signifi-

cant increases in theta, beta, and gamma frequency bands (Fig 2A, left panel) (theta peak: 4.72

Hz, max z score = 14.07; beta peak: 18.98 Hz, max z score = 8.11; gamma peak: 84.94 Hz, max

z score = 4.88). In the no-odor condition, we found smaller but significant increases in theta

only (Fig 2A, middle panel; peak: 4.02 Hz, max z score = 3.44). To quantify the difference

between odor and no-odor conditions, we conducted a direct statistical comparison by per-

muting condition labels to generate a map of z-normalized amplitude differences (Fig 2A,

right panel). We found that theta, beta, and gamma amplitudes were significantly higher in the

odor compared to the no-odor condition (permutation test; P< 0.05, false discovery rate

(FDR) corrected).

To confirm our findings at the individual level, we next computed sniff-aligned spectro-

grams, in each participant separately (Fig 2B and 2C). To quantify responses in each partici-

pant, we used standard human EEG frequency band definitions (theta: 4 to 8 Hz; beta: 13 to 30

Hz; gamma:> 30 Hz) and looked for responses occurring within these standard frequency

ranges in each participant. We computed a direct statistical comparison between the 2 condi-

tions across participants, which showed that amplitudes in these 3 frequency bands were sig-

nificantly stronger across participants during the odor compared to the no-odor condition

(Fig 2B) (two-tailed paired t test; theta: T6 = 3.19, P = 0.0187; beta: T6 = 4.17, P = 0.0059;

gamma: T6 = 2.98, P = 0.0245). Notably, in every single participant, theta, beta, and gamma

amplitudes were larger during the odor compared to the no-odor condition (Fig 2B; each dot

is the result from 1 participant, and lines connect same-participant results between condi-

tions). Though there was some variation across individuals in the frequency of responses,

these effects were evident in the individual spectrograms of most participants (Fig 2C; black

outlines indicate statistical significance via permutation test; P< 0.05, FDR corrected) and in

the minimally processed signals shown next to each individual spectrogram (Fig 2C, right). In

each participant, theta, beta, and gamma responses were maximal inside piriform cortex, with

significantly reduced responses outside of piriform on the same depth wire (two-tailed paired t
test; theta: P = 0.0045, T6 = 4.42; beta: P = 0.014, T6 = 3.44; gamma: P = 0.0070, T6 = 4.02) (S1

Text, S3A Fig). To further visualize the spatial distribution of responses in each frequency

band, we created heat maps of responses across all implanted electrodes in all participants,

projected onto an axial slice through piriform cortex (S3B Fig). This allowed visualization of

response magnitudes in the anterior–posterior direction, with the superior–inferior axis flat-

tened. A hot spot of increased activity can be seen corresponding to piriform cortex (S3B Fig,

pink boxed areas; axial slice contains piriform cortex).

To address the possibility that the responses we observed were due to the steep slopes of

sensory-evoked potentials, we conducted an analysis to separate the spectrograms into odor-

evoked and odor-induced effects [86–88]. In this analysis, the odor-evoked spectrogram

includes only the phase-locked power, which contributes to the sensory-evoked potential,
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whereas the odor-induced spectrogram includes only the nonphase-locked power, which is

oscillatory and is not related to the event-related potentials [89,90] (see Methods). Results of

this analysis showed that odor-induced oscillations were not eliminated when the phase-

locked components of the signal were removed (S1 Fig) and thus were not due to the steep

slope of sensory-evoked potentials.

In rodents, odor has been shown to elicit responses in multiple gamma subbands [9,64,91].

To examine gamma effects more closely and to look for multiple gamma subbands in humans,

we recomputed individual spectrograms using a linear, as opposed to log, frequency scale. We

found that most participants showed odor-induced oscillations right around or just below 30

Hz. Most participants also showed a higher frequency broadband response, around 90 to 150

Hz (S2 Fig).

Together, these results suggest that odor consistently induces distinct theta, beta, and

gamma oscillations in human piriform cortex.

The time course of olfactory cortical oscillations varies across frequency

bands

The spectrograms in Fig 2 showed apparent variable time courses of oscillations relative to

sniff onset across frequency bands (Fig 2A and 2B). Theta appeared to emerge and dissipate

soonest, with beta and gamma emerging later and persisting longer. To quantify these differ-

ences, we conducted a series of analyses to characterize the timing of responses across fre-

quency bands. These included a percent change analysis to examine oscillatory increases over

time, a bootstrapping analysis to minimize potential impact of noisy trials, a cluster-based

analysis to quantify the exact timing and magnitude of continuously significant increases in

oscillatory amplitude, and a circular distribution analysis to examine oscillatory peaks over

respiratory phase.

In our first analysis, we calculated the percent change in amplitude for each frequency band

at each time point, for each condition (Fig 3A). This allowed us to determine the timing of the

emergence of significant differences between odor and no-odor conditions (two-tailed paired t
test; P< 0.05, FDR corrected). This analysis showed distinct temporal dynamics of odor

responses for each frequency (Fig 3A, black lines above each panel). Theta oscillations were

the earliest to emerge and dissipate, beginning 126 ms prior to sniff onset and ending 516 ms

after sniff onset. Gamma oscillations emerged next, 116 ms after sniff onset, intermittently per-

sisted through exhalation, and dissipated 3,678 ms after sniff onset. Beta oscillations emerged

last, 144 ms after sniff onset, and persisted longest, ending 3,786 ms after sniff onset.

In a second analysis, designed to minimize the contribution of noisy trials and to statisti-

cally evaluate the time courses, we tested whether differences in temporal dynamics of

responses across frequency bands were stable across resampled sets of trials. We conducted a

bootstrapping analysis to create separate profiles of the timing of emergence of responses for

Fig 2. Odor induces theta, beta, and gamma oscillations in human piriform cortex. (A) Results from combined analysis showing z-normalized

amplitude spectrograms for no-odor and odor conditions (left and middle panels), and the difference between the 2 conditions (right panel). Average

respiratory signal is shown on each panel (overlaid red line). Dashed line represents inhale onset. For odor and no-odor spectrograms, the black contour

lines indicate statistical significance of permutation tests against pre-cue baseline (P< 0.05, FDR corrected). For the difference spectrogram, the black

contour lines indicate statistical significance of permutation of condition labels (P< 0.05, FDR corrected). The far-right panel shows average z scores from

0–4 s postsniff across frequencies for odor and no-odor trials. (B) Individual theta, beta, and gamma summed magnitudes over 0–2 s postsniff. Each dot

represents data from a single participant, and lines connect data within the same participant. Asterisk indicates statistical significance (two-tailed paired t
test; P< 0.05). (C) Z-normalized amplitude spectrograms for each participant for no-odor (left) and odor (middle) conditions, with the average respiratory

signal shown on each panel (overlaid red line). Dashed lines represent inhale onset. Black contour lines indicate statistical significance of permutation tests

against pre-cue baseline (P< 0.05, FDR corrected). Raw broadband and beta (13–30 Hz) time series of a representative trial is shown on the right. The

source data for panels (A–C) are available in S1 Data. FDR, false discovery rate.

https://doi.org/10.1371/journal.pbio.3001509.g002
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each frequency band. We created a z-normalized time series of resampled mean values for

each frequency band, represented as a colormap (Fig 3B; y-axis is each bootstrap repetition).

We found stable time courses across repetitions, indicated by stripes of increased amplitude at

particular times for each frequency band. To quantify the timing of amplitude increases, we

performed a cluster-based statistical analysis; for each frequency band, we generated a t-statis-

tic at each time point for all z-normalized odor trials, and then conducted a permutation-

based analysis to correct for cluster size. We found clusters that corresponded well with the

spectrograms shown in Fig 2, with the percent change analysis and with the bootstrap analysis

(Fig 3C). We found 1 significant cluster for the theta band extending 266 ms presniff to 810 ms

postsniff (permutation test; P< 0.0001), one for the beta band extending from 238 ms to 3,524

ms postsniff(P< 0.0001), and 4 separate clusters for the gamma band (326 ms to 452 ms post-

sniff, P = 0.0346; 764 ms to 892 ms postsniff, P = 0.0145; 1,374 ms to 1,642 ms postsniff,

P< 0.0001; 1,902 ms to 2,016 ms postsniff, P = 0.0451). We subsequently conducted the same

bootstrapping analysis at the single-participant level and plotted the average time point of each

participant’s bootstrapped peak distribution on top of the significant clusters in Fig 3C (see

overlayed dots, each representing the peak value for a single participant, with lines connecting

each participant’s values across frequencies). Although single-participant data were more vari-

able, beta and gamma peaks occurred later than theta peaks for almost all participants. These

results suggest that the unique time courses of odor responses across frequencies were unlikely

to be caused by noise, spikes, and other artifacts.

Fig 3. Odor-induced theta, beta, and gamma oscillations have different time courses relative to sniff onset. (A) Percent-amplitude-change time

series for odor (blue line) and no-odor (red line) conditions for each frequency band. Shaded areas indicate 1 standard error from the mean across all

trials. Thick black lines above indicate statistically significant differences between conditions (two-tailed paired t test; P< 0.05, FDR corrected). (B)

Bootstrap colormap of z-normalized amplitude for each frequency band, with results from each repetition stacked along the y-axis. Vertical stripes of

consistent color indicate consistent amplitudes across subsampled sets of trials. (C) Colored shaded areas represent clusters of statistical significance of

the trial-by-trial baseline-corrected amplitude time series, for each frequency band (P< 0.05, cluster-based correction). Upper boundaries of the shaded

areas represent the t statistic from the one-sample t test of baseline-corrected amplitude at each time point against 0. Scales for t statistics are shown to

the left of each cluster. Overlaid darker dots indicate the average timing of the bootstrapped distribution of peak amplitude occurrence for each

frequency band, for each participant. Each dot represents data from 1 participant. Dots from the same participant are connected by black lines. On the

right, cluster masses in relation to the permuted null distribution for each frequency band are shown, with actual values represented by the vertical red

line. (D) Respiratory phase angle distributions corresponding to bootstrapped peak amplitudes for each frequency band. Scale of the polar histogram

represents the probability density function of the distribution. Darker lines overlaid on the distribution indicate the mean vector of the phase

distribution. Angle and radius represent averaged phase angle and PLV value respectively. The source data for panels (A–D) are available in S2 Data.

FDR, false discovery rate; PLV, phase locking value.

https://doi.org/10.1371/journal.pbio.3001509.g003
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In a third analysis, designed to account for individual respiratory differences in the time

domain, we examined the circular distributions of oscillatory peaks over the respiratory phase.

On each repetition of a bootstrapping analysis, the peak amplitude and corresponding phase

angle were calculated from the average LFP and respiratory time series. We found that theta

peaks narrowly aggregated at early stages of inhale (mean phase angle = −0.67 rad, phase lock-

ing value (PLV) = 0.99, Rayleigh’s z = 998.05, P< 0.0001) (Fig 3D, left), consistent with previ-

ous findings in humans [57]. By contrast, beta peaks consistently aggregated at the exhale

trough (mean phase angle = 2.98 rad, PLV = 0.80, Rayleigh’s z = 647.78, P< 0.0001) (Fig 3D,

middle). Gamma peaks were more broadly distributed, with most centered around inhale peak

or the transition between inhale and exhale (mean phase angle = 0.57 rad, PLV = 0.63, Ray-

leigh’s z = 401.69, P< 0.0001) (Fig 3D, right). Combined, these findings suggest that following

presentation of odor, theta oscillations increase earlier than beta and gamma oscillations and

that while theta and gamma oscillations are maximal during inhalation, beta oscillations peak

during exhale.

Gamma and beta oscillations are required for accurate odor identification

Piriform cortex has been postulated to be a major driver of gamma oscillations in the brains of

rodents [18,92] and cats [19–22,93]. Furthermore, numerous rodent studies suggest that beta

and gamma oscillations relate to odor learning and discrimination, through both local odor

coding [25,27,32,33,64,94] and recruitment of larger-scale networks [27–29,40,43,64]. We

therefore hypothesized that beta and gamma oscillations in human piriform cortex would cor-

relate more strongly with task performance than theta. We conducted 3 separate analyses to

explore the relationship between odor-driven LFP oscillations and odor identification accu-

racy. These included a time-frequency analysis to look for gross differences between correct

and incorrect trials, a correlation analysis to look for a relationship between accuracy and

oscillations across trials, and a machine learning analysis to determine whether amplitudes of

different frequency responses could predict accuracy.

First, in a combined time-frequency analysis, we computed odor-onset aligned spectro-

grams during correct and incorrect trials separately, in order to look for differences across fre-

quency bands. We found that during trials in which the participant correctly identified the

odor, there were statistically significant increases in theta, beta, and gamma band amplitudes

(Fig 4A, left panel; P< 0.05, FDR corrected). By contrast, during trials in which the participant

failed to identify the odor, statistically significant increases were found only in the theta band,

with no such increases in the beta or gamma bands (Fig 4A, right panel; P< 0.05, FDR cor-

rected; Fig 4B, upper panels and lower left panel show the distribution of single-trial theta,

beta, and gamma values for correct and incorrect trials). Since most participants performed

above chance on the task, there were a larger number of correct trials than incorrect trials (252

versus 71). To account for this difference, we conducted a resampling analysis with 200 repeti-

tions in which correct and incorrect trials were resampled with replacement to include the

same number of trials on each repetition, and we computed the distribution of the differences

in amplitude (correct–incorrect) within each frequency band (Fig 4B, lower left panel). We

found statistically significantly larger responses during correct trials compared to incorrect tri-

als for beta and gamma bands only, with no significant differences in the theta band. (One-

sample t test against 0 for the difference between correct and incorrect trials; theta: T199 = 1.21,

P = 0.2247; beta: T199 = 35.55, P< 0.0001; gamma: T199 = 42.61, P< 0.0001. Paired sample t
tests for differences between frequency bands; theta versus beta: T199 = −41.02, P< 0.0001;

beta versus gamma: T199 = 17.36, P< 0.0001; gamma versus theta: T199 = 37.10, P< 0.0001).

This combined resampling analysis was designed to account for differences in numbers of
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correct and incorrect trials, which had the advantages of ensuring a balanced comparison

across conditions and a robust number of incorrect trials. However, the contribution of indi-

vidual participants to the observed effects was unclear. To account for this, we quantified

theta, beta, and gamma responses for correct and incorrect trials separately, in each partici-

pant. Since some participants had no, or just a few, incorrect trials, we limited this analysis to

include participants with more than 3 trials of each condition (resulting N = 5). Though num-

bers of incorrect trials were relatively low for some participants, results of this analysis con-

firmed the combined findings: Responses in all 3 frequencies were significantly above zero for

Fig 4. Beta and gamma oscillations predict odor identification accuracy. (A) Z-normalized spectrograms for correct (left) and incorrect (right) trials

separately. Averaged respiratory signals are overlayed on each spectrogram (red lines). Dashed lines represent sniff onset. Black contours indicate

statistical significance of permutation test against pre-cue baseline (P< 0.05, FDR corrected). (B) Amplitudes within each frequency band, for correct

and incorrect trials separately. The upper panels show the distribution of z score amplitude values for each trial for the theta, beta, and gamma bands,

for correct (blue) and incorrect (red) trials. The lower left panel shows box plots for the bootstrapped distributions of the difference between correct and

incorrect trials. Boxes represent the 25th to 75th percentile of each distribution, the central marker indicates median, and whiskers extend to the

extremes of the data excluding outliers. Colored dots represent raw difference values for each distribution. The lower right panels show individual

participants’ mean response amplitudes in the theta, beta, and gamma bands, for correct and incorrect trials separately. Each dot represents data from a

single participant, bars indicate the mean across participants, and error bars are standard error across participants. Stars indicate statistical significance

(two-tailed one-sample t test; P< 0.05). See Fig 2B for the color code of single participant dots. (C) Bar plots of bootstrapped Pearson’s correlation

coefficients computed between oscillatory amplitudes and task accuracy for each frequency band, over the inhale and exhale time periods separately.

Error bars indicate 95% confidence interval of the mean. Dashed line indicates FDR threshold for significant r value. Dots represent single correlation

coefficient calculated from each bootstrap. (D) Scatter plots show bootstrapped percent change relative to baseline for correct and incorrect trials,

during inhale and exhale time periods for each frequency band. Each dot is the average result from 1 bootstrap repetition. (E) ROC curves of linear

binary SVM classifier applied to each of the scatter plots in panel C. Black dots represent optimized classifier; AUC is indicated for each ROC curve. The

source data for panels (A–E) are available in S3 Data. AUC, area under the curve; FDR, false discovery rate; ROC, receiver operating characteristic;

SVM, support vector machine.

https://doi.org/10.1371/journal.pbio.3001509.g004
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correct trials (two-tailed one-sample t test; theta: T4 = 4.12, P = 0.014; beta: T4 = 2.87,

P = 0.045; gamma: T4 = 4.71, P = 0.0092), whereas only responses in theta band were signifi-

cantly above zero for incorrect trials (two-tailed one-sample t test; theta:T4 = 7.28, P = 0.0019;

beta: T4 = 1.77, P = 0.15; gamma:T4 = 1.41, P = 0.23) (Fig 4B, lower right panels). These find-

ings were also apparent in individual participant spectrograms (S4B Fig).

Second, we looked for a relationship between task performance and responses in each fre-

quency band on a trial-by-trial basis. To account for differences within frequency bands over

time, we conducted this analysis during the inhale and exhale periods separately. Trials were

resampled to generate a distribution of correlation coefficients representing the relationship

between response amplitudes and behavioral accuracy for each frequency band across the

resampled trial sets. Significant correlations between accuracy and amplitude were evident in

the beta and gamma bands during both inhale and exhale (50 bootstraps, t test against 0, FDR-

corrected threshold for significant correlation coefficient; beta during inhale: T49 = 31.25,

P< 0.0001; beta during exhale: T49 = 17.64, P< 0.0001; gamma during inhale: T49 = 23.70,

P< 0.0001; gamma during exhale: T49 = 28.25, P< 0.0001), but no such correlation was found

in the theta band (theta during inhale: T49 = −2.04, P = 0.97; theta during exhale: T49 = −12.90,

P = 1). In line with this, a direct statistical comparison across frequency bands showed that cor-

relations were significantly stronger between behavioral accuracy and amplitude for beta and

gamma bands compared to theta band during both inhale and exhale time periods (Fig 4C)

(two-way repeated measures ANOVA; main effect of time window: F1, 49 = 111.08, P< 0.0001;

main effect of frequency band: F2, 98 = 547.98, P< 0.0001. Paired sample t test across fre-

quency bands during inhale for theta versus beta: T49 = −29.37, P< 0.0001; for beta versus

gamma: T49 = 3.11, P = 0.0031; for gamma versus theta: T49 = 24.95, P< 0.0001. Paired sample

t test across frequency bands during exhale for theta versus beta: T49 = −26.51, P< 0.0001; for

beta versus gamma: T49 = −11.13, P< 0.0001; for gamma versus theta: T49 = 33.95, P
<0.0001); also see S4A Fig.

Finally, we used machine learning to perform a classification analysis on inhale and exhale

amplitudes for each frequency band, to determine whether these features could predict task

accuracy. To this end, we applied a binary linear support vector machine (SVM) classifier to

the bootstrapped data, plotted the receiver operative characteristic (ROC) curves, and calcu-

lated the area under the curve (AUC), which was used together with optimized classifier accu-

racy as the predictor of data separability. We found that beta and gamma amplitudes were

highly successful at separating the trials by accuracy, while theta amplitudes were less so (Fig

4D). Specifically, gamma accuracy was maximal at 91.5%, beta accuracy was also high at 91%,

whereas theta accuracy was lower at 66.5%. This same procedure was applied to shuffled data,

which resulted in chance performance (accuracy = 52%), validating our methods. These find-

ings correspond well with the results from the 2 previous analyses and, taken together, suggest

that beta and gamma band amplitudes are more strongly correlated with task performance

than theta amplitudes.

Odor-elicited high-frequency oscillations are not driven by attention

Because the odor condition occurred during experimental trials and the no-odor condition

occurred between experimental trials, responses during the odor condition could potentially

have been impacted by attentional states that were not present during the no-odor condition.

Previous human and animal work suggests that olfactory cortical responses are modulated by

attention [95,96], particularly in lower frequency LFPs [97,98]. To control for potential effects

of attention on our findings, we analyzed odorless sniffs taken in attended states during experi-

mental trials. Each trial began with a cue, followed by a delay (3 to 7 s) prior to presentation of
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odor. Therefore, during many trials, sniffs of clean air occurred between the cue and odor (Fig

5A). These sniffs occurred during attended states, but did not contain odor, thus providing a

means to isolate the effects of attention from the effects of odor. Because a sniff did not always

occur between the cue and the odor, the number of trials in the attended odorless condition

was lower than the odor condition. Therefore, we resampled odor trials to match the number

across conditions. We computed spectrograms aligned to attended odorless sniffs and com-

pared them to those aligned to odor sniffs (Fig 5B, left and middle). We found that attended

odorless sniffs induced oscillations in low frequencies (below 8 Hz) only (P< 0.05, FDR cor-

rected) and found no stable higher frequency oscillations (> 8 Hz). We then computed the z-

normalized difference across conditions (Fig 5B, right) and found significant differences

between attended odor trials and attended no-odor trials in the theta, beta, and gamma bands,

such that oscillations in all three frequency bands were increased when odor was present, even

after removing the effects of attention (Fig 5B, right; P< 0.05, FDR corrected). Since theta

oscillations were still detected in the attended no-odor condition, these findings suggest that

the increases in beta and gamma bands were independent of attention, whereas theta band

increases reflected, at least to some degree, attentional states.

Low-frequency phase modulates high-frequency amplitude during inhale

when odor is present

Previous work suggests that odor-induced theta oscillations predict odor identities, even dur-

ing a detection task that does not require participants to identify odors [57]. Here, we found

Fig 5. High-frequency odor-elicited oscillations are not driven by attention. (A) Schematic illustration of attended

and unattended conditions. Attended no-odor trials were defined as breaths taken during experimental trials, between

the cue and the odor. No odor was present, but the participant was in an attended state. Blue area indicates the time of

experimental trials, and pink areas indicates the time between trials. Black boxes indicate the analysis time windows for

the different conditions. (B) Z-normalized spectrograms of attended odor and attended no-odor trials, and the

difference between the two. Average respiratory signals are overlayed for each condition (red lines). Dashed line

represents inhalation onset. Black contours indicate statistical significance (permutation tests as described elsewhere;

P< 0.05, FDR corrected). The source data for panel (B) are available in S4 Data. FDR, false discovery rate.

https://doi.org/10.1371/journal.pbio.3001509.g005
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that theta rhythms in our data appeared to have a relationship with beta responses, which

appeared to oscillate at around 5 Hz during inhale. Specifically, the overall magnitude of beta

oscillations increased and decreased rhythmically with a frequency in the theta range, particu-

larly in the first 1.5 to 2 s of the response (Fig 6A, gray box). Based on this observation, we

hypothesized that theta oscillations might organize later-emerging higher frequency oscilla-

tions through phase modulation. To estimate modulation of higher frequency amplitude by

theta phase, we calculated the modulation index (MI) [99] using theta phase as the modulating

signal and a range of high frequencies (13 to 150 Hz) as the amplitude signals, for both odor

and no-odor conditions (Fig 6B). We found that in the 1 s time window following sniff onset,

Fig 6. Theta phase modulates higher frequency amplitudes during inhale, when odor is present. (A) Apparent

rhythmic beta amplitude modulations at the theta frequency. With effects of attention subtracted out, the average z

score of the amplitude of the odor responses over time is displayed for beta (green) and theta (blue) frequency bands.

The overall magnitude of beta oscillations increased and decreased rhythmically with a frequency in the theta range,

particularly in the first 1.5 to 2 s of the response (gray box). (B) Phase-amplitude coupling between theta phase and

higher frequency amplitudes. Z-normalized MI of theta phase and higher frequency amplitudes (13 to 150 Hz), during

0–1 s postsniff for all trials in the odor and no-odor conditions. Dashed line indicates FDR threshold for significant MI

(P< 0.05, FDR corrected). The source data for panels (A) and (B) are available in S4 Data. FDR, false discovery rate;

MI, modulation index.

https://doi.org/10.1371/journal.pbio.3001509.g006
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theta phase significantly modulated beta and gamma oscillations during the odor condition

(P< 0.05, FDR corrected for MI in all frequency bands; peak MI at 16.16 Hz, mean z score

across all frequencies = 7.52) but not during the no-odor condition (mean z score across all

frequencies = 2.02).

Our phase-amplitude coupling analyses was performed during a window in which a sen-

sory-evoked potential could have occurred, and, therefore, the derived phase-amplitude cou-

pling could have been driven by the evoked potential having a steep slope. To control for this

possibility, we conducted a permutation analysis [100] in which we shuffled the trial-by-trial

relationship between theta phase and higher frequency amplitude to test whether the modula-

tion effect was due to the exact trial-by-trial relationship or rather induced by a steep slope

during each trial. We normalized the observed MI to the trial order–shuffled null distribution

and still found significant effects for the odor condition but not the no-odor condition (S5

Fig). This finding suggests that higher frequency oscillations were modulated by theta phase

during the early period of sniffing, when theta amplitudes were significantly increased.

Theta, beta, and gamma oscillations are present across a range of olfactory

tasks

Studies in rodents suggest that different olfactory tasks may elicit distinct neural oscillatory sig-

natures [24,91]. Whether this is the case in the human olfactory system is unknown. It is there-

fore possible that the oscillations we observed in the theta, beta, and gamma ranges were due

to the nature of the olfactory task (identity matching to a cue, as opposed to detection or pure

identification). To explore this possibility, we present data from 2 additional participants who

performed 3 different olfactory tasks, including a detection task, an edibility assessment task,

and an odor naming task. This allowed us to determine if the nature of the task was the main

driver of the effects we observed, rather than the odors. None of the tasks involved matching

to a previous cue. For each task, trials began with a countdown to a cued sniff. Participants

self-initiated odor delivery using a manual handheld olfactometer that allowed for precise,

sniff-controlled timing of odor delivery. Following odor presentation, during the detection

task, participants indicated whether or not they detected an odor via button press. During the

edibility assessment task, participants indicated whether or not the odor was edible via button

press. During the naming task, participants indicated whether or not they could name the

smell via button press, and then they spoke the name, if possible. All 3 of these tasks resulted in

highly similar oscillatory responses to odor in both participants (Fig 7). Both participants,

across all 3 task types, showed rapid increases in theta, followed by oscillatory increases in beta

and gamma that persisted into exhalation. Detailed analysis of the responses to these different

tasks is beyond the scope of this manuscript; results are displayed here solely for the purpose of

this control analysis, which shows that the oscillations we observed in our original dataset are

present across a range of olfactory tasks and were therefore unlikely to have been driven solely

by the nature of the task.

Discussion

We found that odor induces oscillations in human piriform cortex in the theta, beta, and

gamma frequency bands, each with distinct temporal dynamics, forming the basis of a charac-

teristic human olfactory cortical response. While theta oscillations rapidly emerged, peaked,

and dissipated within the first 500 ms of inhalation, gamma and beta oscillations emerged and

peaked later, extending into the exhale period (see Figs 2 and 3B and 3D). These findings sug-

gest that the spectrotemporal characteristics of oscillations in piriform cortex in response to

odor are similar in rodents and humans. While our study cannot speak to the origin of these
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oscillations, it allows us to consider the possibility that knowledge of the drivers of LFP oscilla-

tions in rodents [9] may be applicable to humans, despite differences between species [101];

for example, that beta and gamma oscillations in piriform cortex rely on an intact olfactory

tract from the bulb [30], with important implications for our understanding of the top down

or bottom up nature of olfactory processing [102–104]. We further found that the strength of

beta and gamma oscillations was significantly more correlated with odor identification accu-

racy than theta oscillations, suggesting that beta and gamma rhythms are important for odor

identification in humans. Our work serves to unite results from previous intracranial human

studies that have reported odor-induced oscillations at both low and high frequencies, with

variable results [57,72–76,104].

Interestingly, we found that gamma rhythms were more tightly correlated to odor identifi-

cation accuracy than beta during exhale (see Fig 4C). Since gamma rhythms are thought to

Fig 7. Odor-induced theta, beta, and gamma oscillations are evident across a range of olfactory tasks. Shown are spectrograms from 2 participants (P8

and P9) who performed 3 different olfactory tasks including a detection task (top row), an edibility assessment task (middle row), and an odor naming task

(bottom row). Short-dashed vertical line indicates sniff onsets. Average respiratory signals from each participant are shown as a red overlaid line on each

spectrogram. Black contours indicate statistical significance (P< 0.05, FDR corrected). Below each panel is broadband and beta-filtered time series from 1

trial for that participant. The source data are available in S4 Data. FDR, false discovery rate.

https://doi.org/10.1371/journal.pbio.3001509.g007
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reflect local computations [24,25,28,32,33,44,61,64], and beta oscillations are thought to reflect

long-range network interactions [27,28,40,43,61,64], local computations in piriform cortex

may have particular significance during exhale, though our study does not directly address this

and future studies on this topic are needed. Our data also highlight an important role for theta

oscillations in human piriform cortex, in agreement with previous studies [57], as we found

that theta phase modulated beta and gamma amplitudes during inhalation, only when odor

was present (see Fig 4). Rodent work has identified functionally distinct subpopulations of

piriform neurons that differentially encode the intensity and identity of odor [81,82,105]. It is

possible that the distinct oscillations we identified in human piriform cortex represent distinct

populations of neurons that encode different features of the odor percept with unique tempo-

ral and spectral properties, though future work is required to determine this. In particular, the

addition of single unit recordings may allow us to determine whether the different oscillations

are tied to different subpopulations of piriform neurons.

Theta, beta, and gamma oscillations have been extensively studied in the olfactory systems

of rodents, providing insights into the functional roles of these oscillations in olfactory percep-

tion [23,25–31,33,34,36,37,39–43,60,64,65,68,106,107]. Furthermore, an impactful body of

rodent work has shown that the timing of olfactory responses relative to sniffing behavior is an

important mechanistic feature of odor coding, enabling accurate olfactory percepts to form

quickly [25,34,108–116]. Though much of this work has focused on the olfactory bulb,

responses in rodent piriform cortex also include temporal modulations [81,114,117], and its

oscillations reflect sniff phase [39,62,78]. In contrast to the extensive and elegant body of rodent

work, oscillations in human piriform cortex have been vastly understudied. Here, dovetailing

with animal work, we found that theta, beta, and gamma oscillations emerged at different times

relative to sniff onset. The link between sniffing behavior and oscillations in rodents, combined

with dramatic differences in sniffing behavior between rodents and humans, raises some

intriguing questions about the timing of odor responses in humans. When sampling odors,

rodents engage in multiple sniffing strategies and may sniff at rates up to 12 Hz [118–120].

Humans might at times increase their sniffing frequency a bit when smelling an odor, but often

sample odors in a single sniff, and are not able to reach sniffing frequencies of 12 Hz (though

this has not yet been directly tested). Despite these large differences in sniffing behaviors across

species, we found surprisingly similar time courses of odor responses in piriform cortex. For

example, Frederick and colleagues [64] found that beta oscillations in rodent piriform cortex

emerged at around 200 ms following odor onset, similar to our findings in human piriform cor-

tex. We found that beta oscillations peaked and persisted longer than gamma oscillations, also

in agreement with findings in rodents [59]. In rodents, the theta rhythm is actively shaped by

sniffing behavior, which, in turn, shapes higher frequency oscillations. In humans, sniffing

behavior almost never occurs at frequencies near the theta range, yet we found that theta oscilla-

tions shape higher frequency oscillations in the human olfactory system during inhalation, as is

the case in rodents. This may suggest that the time scale of some odor-induced oscillations is

not entirely dependent on breathing rate and that network properties that support these

rhythms maybe conserved across species. Our findings support the idea that the theta rhythm

serves as the “internal reference clock” of odor information processing [57], though future stud-

ies combining data from both humans and rodents and, potentially, from noninvasive human

olfactory bulb recordings [121] could contribute much-needed insights to answer this question.

An important consideration in comparing our findings to those in rodents is the nature of

the task. The 2 most commonly used olfactory tasks in rodent studies are the Go-No Go

(GNG) task and the 2-Alternative Forced Choice (2AFC) task [64,122–124]. The GNG task

requires a response only when a target odor is present, whereas the 2AFC task requires a differ-

ent response to each odor, depending on the identity of the odor. Our task is more similar to
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the 2AFC task, as it requires participants to respond differently to each odor, depending on the

identity of the odor. However, it is generally challenging to compare tasks between species—

both GNG and AFC tasks require training of rodents and include rewards during each trial.

This is less common for human studies, in which experimenters directly instruct participants

on the task, and rewards are not required for participants to learn the rules of the task. Several

rodent studies have shown differences in oscillatory signatures across different olfactory tasks

and difficulty levels [32,64]. It is therefore possible that differences in task-related responses

could impact differences between correct and incorrect trials between species [125–127]. A

worthwhile direction for future research includes a direct comparison between rodent and

human tasks, in which humans are trained and rewarded on a trial-by-trial basis, exactly as is

typically conducted with rodents.

We found that the magnitude of beta and gamma oscillations strongly predicted odor iden-

tification accuracy, whereas this effect was weaker in the theta band, offering support for dis-

tinct functional roles for the different rhythms in olfactory processing [28,33,43,118].

Establishing beta rhythms in human piriform cortex may also lay the groundwork for future

work on olfactory networks and integration of olfactory information with other cognitive pro-

cessing streams and behaviors [43]. For example, integration of olfactory information with lan-

guage networks [128–130], memory networks [131–135], sleep states [136–139], and other

olfactory-guided behaviors [140,141] could potentially involve interactions in beta oscillatory

networks. Interestingly, we found that theta oscillations, but not beta or gamma oscillations,

increased during attended states when no odor was present (Fig 5B) and prior to sniffing when

odor was expected (Figs 2A and 3A and 3D). Taken together, these findings may indicate a

role for theta in olfactory attention, in line with previous studies suggesting that the phase and

amplitude of lower frequency oscillations reflect attentional states in the human brain [97].

Olfactory attention also shapes neural responses in rodent olfactory cortex [95], and potential

future work may include a direct comparison of these oscillations between species. It may also

be interesting to explore these oscillations in other primary olfactory areas, which may have

similar neural responses to piriform cortex.

A limitation of our work is that we were unable to fully tease apart the contributions of

attention and expectation to our findings. Though we did conduct a control analysis designed

to look for effects of attention and anticipation by analyzing responses to sniffs taken without

anticipation of odor in between tasks, this analysis was limited by the fact that there was no

odor during the sniffs that we analyzed. A perfect control would include presentation of odor

in the absence of any expectation or anticipation. This would be difficult to achieve, as multiple

presentations of odor across an experimental session almost undoubtedly would be anticipated

after a couple of trials. This is an interesting topic for future studies, once these challenging

aspects of experimental design are addressed.

Overall, our findings begin to define a characteristic human spectrotemporal odor

response, consisting of 3 distinct frequency bands with unique time courses relative to sniff

onset, with lower frequency phase modulating higher frequency amplitude, and corresponding

closely with cortical responses that have been found in rodents. This lays the groundwork for

future studies to further explore the functional role of the different aspects of the human corti-

cal olfactory response.

Methods

Ethics statement

This study was approved by the Institutional Review Board at Northwestern University, under

protocol #STU00201349, and the study adhered to the Declaration of Helsinki and the
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Belmont Report. Participation was voluntary and written informed consent was obtained from

all participants.

Participants

Our study included iEEG data from 9 patients with medication-resistant epilepsy. All partici-

pants had depth electrodes implanted stereotactically for clinical presurgical evaluation (Fig

1A). Electrode locations were determined solely based on clinical need and, in our participant

population, included piriform cortex within the medial temporal lobe. Data were acquired at

Northwestern Memorial Hospital.

Behavioral task

Participants performed a cued odor identification task in which they were asked whether an

odor matched a prior auditory cue. This task involved periodic presentation of odors with

intertrial intervals exceeding 6× the respiratory period of each individual, which was at least 15

s for every participant. During this intertrial period, participants breathed naturally through

the nose, and no odor was presented. The experimental trials were conducted in each partici-

pant’s hospital room and were computer controlled, presented to participants using an Apple

laptop computer running MATLAB (RRID: SCR_001622) via the PsychToolBox extension

(RRID: SCR_ 002881). Each trial of the task began with an auditory cue consisting of either the

word “rose” or the word “mint.” The cue was delivered by computer speaker. After a delay of 3

to 7 s, the odor of rose (essential oil) or mint (methyl salicylate) was delivered through opaque

squeeze bottles, while nasal airflow was monitored in order to precisely determine sniff—and,

therefore, odor—onsets. We wanted participants to self-initiate odor delivery, so that they

could control the timing of the stimulus, and to ensure high-quality data by allowing patients

to initiate trials at appropriate timing according to their individual situations. Note that this

design increased the jittered timing between the cue and the sniff, with patients initiating the

odor stimulus within 3 to 7 s following the cue. Participants were instructed that following the

auditory cue, when they were ready, they should exhale, bring the bottle to their nose, and

then sniff to sample the odor. For 2 patients, the experimenter held the bottle and followed the

same procedure. At the moment when the patient sniffed, the experimenter sent a sync pulse

to the clinical acquisition system via button press. The experimenter’s button press sent a sig-

nal via a data acquisition board (USB-1208F, Measurement Computing), which translated

TTL pulses from MATLAB into the clinical EEG acquisition system (Nihon Kohden, Japan).

Importantly, this button press did not provide sniff onset information—rather, it served to

mark the odor-containing sniff in order to differentiate this sniff from other sniffs. Precise

sniff onsets were determined by analysis of the nasal airflow signals, described in the methods.

After smelling the odor, participants indicated whether the odor matched the cue via button

press, with the exception of 2 patients who preferred to speak their response, which was

recorded by an experimenter.

As previously described [98], participants completed between 48 and 64 trials, except for 1

participant who completed only 16 trials due to clinical constraints. The average intertrial

interval was 21.3 s, ranging from 14 to 28 s, across participants. The average performance on

the task was 73.3% correct (P1: 79.69%, P2: 75.56%, P3: 31.25%, P4: 91.07%, P5: 100%, P6:

87.5%, P7: 46.88%), which means the response was “yes” when the odor matched with the

sound cue or “no” when they were not matched. We found no difference in performance

between the first (mean ± standard error: 73.98% ± 9.12%) and second (72.58% ± 10.72%) half

of trials (two-tailed Wilcoxon signed-rank test; z = 0.40, P = 0.69). The performance was
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higher in cue–odor-matched trials (85% ± 7.08%) than nonmatched trials (58.17% ± 15.05%)

(two-tailed Wilcoxon signed-rank test; z = 2.20, P = 0.028).

iEEG and respiratory signal recording

iEEG signals were recorded using the clinical EEG data acquisition system (Nihon Kohden,

Tokyo, Japan) that is currently in use in Northwestern Memorial Hospital. The sampling rate

for each participant was determined clinically, and ranged from 500 to 2,000 Hz across partici-

pants. The reference and ground consisted of an implanted electrode strip on the surface of

the brain facing the scalp. We recorded nasal airflow using a piezoelectric pressure sensor

(Salter Labs Model #5500) with a nasal cannula placed at the patients’ nostrils during the

experiment. Nasal airflow signals were recorded directly into the clinical acquisition system

and were therefore automatically synchronized with the iEEG data. The signal was first mean

centered, then key respiratory features—including inhale and exhale onset, respiratory peak,

and trough volume and time—were detected automatically with MATLAB

toolbox BreathMetrics, developed by our lab [142], and then manually confirmed.

Electrode localization

As previously described [97,98], to determine the implanted electrode locations, we used pre-

operative structural MRI scans and postoperative computed tomography (CT) scans using the

FMRIB Software Library’s (FSL) registration tool flirt [143,144]. Individual CT images were

registered to MRI images using 6 degrees of freedom and a cost function of mutual informa-

tion, which was followed by an affine registration with 12 degrees of freedom. Individual MRIs

were registered to a standard Montreal Neurological Institute (MNI) brain (MNI152_1mm_-

brain included in FSL) with 12 degrees of freedom. Finally, the transformation matrices gener-

ated above were combined to create a transformation from the individual CT image to

standard MNI space.

The electrodes were localized by thresholding the raw CT image and calculating the

unweighted mass center of each electrode. Finally, the coordinates were converted to standard

MNI space using the transformation matrix generated above.

Though we analyzed spectrograms from all electrodes on the piriform cortex depth wires

and all electrodes on the parietal grids, electrodes corresponding to those shown in Fig 2 were

selected by the following procedure. For each participant, we first determined which subset of

electrodes was anatomically located inside piriform cortex using predrawn individual ROIs

based on the Human Brain Atlas [145]. This typically included between 1 and 3 electrodes. For

the participants who had only a single electrode in piriform cortex, we used that one. For par-

ticipants with multiple electrodes within piriform cortex, we chose the one that was closest to

the center of piriform cortex. Notably, we also analyzed all piriform electrodes separately with

similar results.

Time-frequency analysis

For all time-frequency analyses, filtering was conducted using a two-pass, zero-phase-lag,

finite impulse response (FIR) filter, as implemented by the MATLAB toolbox fieldtrip (RRID:

SCR_004849), unless specified otherwise. We first low-pass filtered the iEEG signal at 235 Hz

and then removed 60 Hz noise and its harmonics with a band-stop filter with a bandwidth of 4

Hz. We then down-sampled the signal to 500 Hz and re-referenced the data to the common

average. To compute spectrograms, we filtered the preprocessed data between 1 to 200 Hz in

100 logarithmically increasing steps ranging from 2 to 50 Hz in width. We kept only the first

95 frequency bands from 1 to 153 Hz as our frequencies of interest for all subsequent analyses
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unless specified otherwise. The analytical amplitudes of the filtered signals were calculated by

taking the absolute value of the Hilbert-transformed signal, and temporally smoothed with a

moving average filter kernel of 10 ms.

To compute spectrograms, we first created sniff onset–aligned epochs, extending from −2 s

prior to 4 s following the sniff onset, for each trial. Sniff onsets were determined using Breath-
Metrics. Sniffs taken during experimental trials at the time of odor presentation were used for

the odor condition, sniffs taken in between trials when no odor was present were used for the

no-odor condition, and sniffs taken during experimental trials in between the cue and odor

were used for the attended no-odor condition. There were a larger number of no-odor trials

compared to odor trials, and, therefore, no-odor trials were randomly sampled without

replacement for each participant separately to match trial numbers across conditions for fur-

ther analysis. The spectrograms were calculated by averaging the amplitude epochs across tri-

als at each frequency, which was further normalized by subtracting the baseline average. The

time window of [−0.55, −0.05] s prior to cue onset was used as baseline. To determine statisti-

cal significance, we used a permutation method [97,98,146] to generate z score values. For

each repetition of the permutation process, the sniff onsets were circularly shifted in time by a

random amount while maintaining the relative distance between them. Then, we calculated

the average amplitude across these randomly shifted events. The procedure above was repeated

10,000 times resulting a null distribution of baseline amplitude. Finally, the baseline-corrected

real spectrogram was divided by the standard deviation of this null distribution, resulting a z

score map. Raw power, baseline-corrected power, and z-normalized maps can be seen in

S6 Fig.

To compare the spectrograms between odor and no-odor condition, we used a permutation

method. In each permutation, the condition labels were shuffled across all trials, and the differ-

ence of baseline-corrected spectrogram between permuted odor and no-odor conditions were

calculated. This process was repeated 10,000 times resulting in a null distribution of spectro-

gram difference at each time-frequency point. The mean and stand deviation of the null distri-

bution was obtained using MATLAB’s normfit function. Finally, a z score of the real

spectrogram difference was calculated by subtracting the mean and then dividing by the stan-

dard deviation. The spectrograms created for the attentional control analysis shown in Fig 4B

were generated with the same methods, with the number of trials adjusted to include equal

numbers of odor and attended no-odor trials.

To compute the percentage change of the amplitude time series shown in Fig 3A, we aver-

aged the amplitude time series across frequencies within each of the following frequency

bands: theta 4 to 8 Hz, beta 13 to 30 Hz, and gamma 30 to 150 Hz, for each trial. The percent-

age change of amplitude was calculated as (Amplitude-Amplitude_baseline)/Amplitude_base-

line for each trial. The baseline window was defined as −500 ms to −50 ms relative to cue

onset. To compare the percentage change of amplitude between odor and no-odor conditions,

we performed a paired sample t test at each time point. Multiple comparisons across all time

points were corrected using FDR.

In order to visualize the differences in temporal dynamics across frequency bands, we cre-

ated a z-normalized amplitude map for each frequency band using a bootstrapping method

(Fig 3B). First, each trial was baseline corrected and z normalized. Then, in each repetition, we

resampled all 323 trials (with replacement) and calculated the average across trials for each fre-

quency band. A z-score matrix (repetition × time) was generated for each frequency band after

2,000 bootstraps (Fig 3B).

We then performed a cluster-based analysis to quantify the time course of significant

responses for each frequency band (Fig 3C). First, we performed a one-sample t test against

zero for z-normalized amplitudes for all trials at each time point for each frequency band. To
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identify continuous significant clusters, we then used a cluster-based statistical thresholding

analysis. The P value threshold for initial clustering was set to P = 0.01, and the cluster size was

defined as the sum of the t-statistics of a given cluster. To generate a null distribution of the

cluster size, we used a permutation method. In each repetition (10,000 repetitions in total), a

random number of trials were circularly shifted separately, and the maximal cluster size was

calculated as described above. The 95th percentile of the distribution was used as the cluster

size significance threshold, which corresponds to cluster-based corrected P< 0.05.

We next conducted an analysis to explore the timing and phase of responses in each fre-

quency band (Fig 3D). We calculated the distribution of respiratory phase values at which the

peak amplitude responses occurred using a bootstrapping method. For each bootstrap, we

resampled 323 trials (with replacement) while keeping the pairwise relationship between LFP

and breathing signals. The LFP and respiratory signals were first averaged over resampled tri-

als. To find the peaks of the LFP amplitude response, we smoothed the amplitude time series

using a moving average method with a kernel of 50 ms. Then, the respiratory phase of the max-

imal amplitude over the 4 s postsniff time period was extracted. The respiratory phase was

obtained from the breathing signal using the Hilbert method. Finally, the distribution of the

respiratory phases across trials were qualified using PLV [147] as implemented in the

MATLAB toolbox circstats (RRID: SCR_016651) [148]. The Rayleigh test was performed to

test for the nonuniformity of phase distributions. For the peak timing analysis on the single-

participant level, we used the same method.

We next conducted a series of analyses to look for relationships between LFPs and odor

identification accuracy (Fig 4). First, we computed amplitude spectrograms for odor and no-

odor conditions separately. The 2 spectrograms were z normalized to the same combined null

distribution generated using methods described in the previous section to rule out the effect of

trial number difference across conditions. In order to statistically compare the amplitude dif-

ference between correct and incorrect trials, we conducted a resampling analysis. For each rep-

etition, we resampled equal numbers of correct and incorrect trials (71, with replacement) to

ensure a fair comparison across conditions. On each repetition, we calculated the mean of z-

normalized amplitudes across the entire time window for each frequency band for each condi-

tion (these distributions are shown in Fig 4B), subtracted the mean of incorrect trials from the

mean of correct trials, and repeated this process 200 times to generate the distribution of dif-

ference values between correct and incorrect trials. The difference values for each frequency

band was tested against 0 using one-sample t tests to generate statistics. The distribution was

plotted as scatter as well as box plot (Fig 4B).

We then conducted a bootstrap correlation analysis to directly assess the correlation

between task performance and LFP amplitude of each frequency band for inhale and exhale,

respectively, on a trial-by-trial basis (Fig 4C). For each repetition (1,000×) in the analysis, we

resampled 323 trials with replacement and calculated the accuracy of the chosen trial set. We

then calculated the mean amplitude during inhale and exhale separately (inhale–exhale transi-

tion defined by phase angle of pi/2 for averaged breathing signal) for all 3 frequency bands.

We calculated Pearson’s correlation coefficients between task accuracy and mean amplitudes

for inhale and exhale, for each frequency band. We then repeated this entire process 50 times

to generate a distribution of correlation coefficients for each respiratory phase and frequency

condition. We used FDR to correct for multiple comparisons (P< 0.05) when we set the sig-

nificance threshold for the r value. We subsequently Fisher z-transformed all Pearson’s r values

and conducted a repeated measures two-way ANOVA as well as paired sample t tests to ana-

lyze the differences across frequency bands and respiratory phases.

We next created scatter plot visualizations of amplitude responses during inhale and exhale

phases for correct and incorrect trials and fitted a linear SVM classifier to each of the scatter
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plot in order to see how well the amplitude during inhale and exhale, taken together, could

predict task performance (Fig 4D and 4E). To balance the discrepancy between correct and

incorrect trial numbers (252 versus 71), we conducted a bootstrapping analysis using equal

numbers of trials across conditions on each repetition. For each respiratory phase and fre-

quency band, we sampled 30 trials within condition with replacement each time, calculated

percent change relative to baseline with the trial-wise averaged amplitude time series, and cal-

culated average amplitudes during inhale and exhale for each trial set. Inhale and exhale peri-

ods were defined as 0 to 1.5 s and 1.5 to 3 s postsniff, respectively, for all trials. This process

was repeated 500 times for both correct and incorrect trials to generate a scatterplot of corre-

sponding inhale and exhale amplitudes for trials from both conditions. In order to test the sep-

arability of data, we applied a linear binary SVM classifier using MATLAB function fitcsvm
with 5-fold cross validation. ROC curves were generated using the function perfcurve.

Phase-amplitude coupling analysis

We calculated the MI to measure coupling between theta phase and higher frequency ampli-

tudes (13 to 150 Hz) (Fig 5). To do so, we extracted the phase angle time series for the theta fre-

quency band (4 to 8 Hz), and then from that phase time series, created sniff-aligned trial

epochs. Data from all trials were concatenated. To generate the higher frequency amplitude

data that were used to compute the MI, the raw time series were filtered and amplitude

extracted (as described previously) to the same 47 log-spaced frequency bands (13.05 to 153.04

Hz), with logarithmically increasing bandwidth, as described in the previous section for the

time-frequency analysis. We then concatenated these data identically to the theta phase data.

MI was calculated as the Kullback–Leibler distance divided by the logged number of bins. To

normalize the MI, we created a null distribution of MI values using a permutation method.

For each repetition, and for each frequency band, we circularly shifted the amplitude time

series and calculated the MI between the shifted amplitudes and theta phase values. This pro-

cess was repeated 1,000 times for each frequency band to generate the corresponding null dis-

tribution of MI values. We then normalized the raw MI to the null distributions to generate

the z scores and FDR corrected the P values for multiple comparisons. To control for the effect

of evoked potential on phase-amplitude coupling, we used a permutation method to ensure

that the significant MI we observed was unlikely due to the steep slope of evoked potential

occurring in every trial. For each repetition, we shuffled the order of theta phase but kept the

order of higher frequency amplitude to randomize the trial-by-trial relationship and calculated

MI for each frequency band based on the shuffled trials. This process was repeated 1,000 times

for each frequency band to create a null distribution for the MI value under the null hypothesis

that the phase-amplitude coupling was due to steep waveforms occurring in every trial. We

then normalized the raw MI to the null distributions to generate the z scores and FDR cor-

rected the P values for multiple comparisons.

Control for nature of the task

Two participants performed 3 different olfactory tasks over 6 separate blocks. Patients per-

formed 2 blocks of each task. The 3 tasks required the participant to indicate the following: (1)

whether or not they detected any odor (Detection task); (2) whether the odor was edible (Edi-

bility task); or (3) the identity of the odor (Naming task). For all 3 tasks, each trial began with a

countdown (“3, 2, 1, Sniff”), which appeared in sequential order, with each number lasting 1 s.

The participant was instructed to sniff when the word sniff appeared, using a manual handheld

olfactometer that allowed for sniff-controlled timing of odor delivery. The handheld olfactom-

eter consisted of an odor canister connected to a nose port, constructed with one-way valves at
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the outlet and inlet such that the headspace was able to be sampled only and immediately upon

sniffing. The canister was contained inside of an opaque 3D printed case. Each run consisted

of 20 trials, resulting in 40 trials of each task type. Odors were of natural origin and included

banana, salsa, liquid smoke, blood orange tea, peanut butter, garlic, peppermint, pine, and

rose, for each trial. The tasks were performed while clinical ongoing electrophysiological activ-

ity was recorded at a sampling rate of 1,000 Hz using a 256-channel clinical EEG acquisition

system (Nihon Kohden). The respiratory signals were recorded using a pressure sensor at the

nose (Salter Labs). Time-frequency analysis of odor-induced responses in the piriform cortex

was conducted using the methods described above.

Supporting information

S1 Fig. Related to Fig 2. Odor-induced and odor-evoked spectrograms. Nonphase-locked

(left) and phase-locked (right) spectrograms are shown for each participant (P1–P7). The non-

phase-locked spectrogram was obtained by subtracting the event-related potential from each

trial before time-frequency decomposition. The red solid overlay indicates each participant’s

respiratory signal. Black outlines indicate statistically significant clusters (P< 0.05, FDR cor-

rected). The phase-locked spectrogram was calculated as the baseline-corrected time-fre-

quency decomposition of the event-related potential. The vertical short-dashed lines indicate

sniff onset. The source is available in S5 Data. FDR, false discovery rate.

(TIF)

S2 Fig. Related to Fig 2. Sniff onset–aligned spectrograms with linear frequency scale. The

black solid overlay indicates each participant’s (P1–P7) respiratory signal. Black outlines indi-

cate statistically significant clusters (P< 0.05, FDR corrected). The vertical short-dashed line

indicates sniff onset. The source is available in S6 Data. FDR, false discovery rate.

(TIF)

S3 Fig. Related to Fig 2. Odor-induced responses are maximal in PC. (A) Odor-induced ampli-

tude (sum of z score) is larger in the depth wire located in the PC compared to those located

outside of the PC (Lateral to PC) in theta, beta, and gamma frequency bands. � indicates statisti-

cally significant difference (two-tailed paired t test). (B) The mean z score was calculated over a

time window of 2 s in the theta, beta, or gamma frequency band for each electrode and each par-

ticipant. The data were collapsed over the z-axis and smoothed. The background brain is a slice

(z = −16) of the MNI standard brain. The pink rectangles outline PC. The source is available in

S6 Data. MNI, Montreal Neurological Institute; PC, piriform cortex.

(TIF)

S4 Fig. Related to Fig 4. Odor-induced responses for correct and incorrect trials. (A) Example

scatter plots showing the correlations plotted in Fig 4C. The scatter plot corresponding to the

correlation value of 1 dot from each bar in Fig 4C is shown. (B) Representative spectrograms

from 3 participants, showing correct (top) and incorrect trials (bottom) separately. The red

solid overlay indicates each participant’s (P1–P7) respiratory signal. Black outlines indicate

statistically significant clusters (P< 0.05, FDR corrected). The vertical short-dashed line indi-

cates sniff onset. The source is available in S7 Data. FDR, false discovery rate.

(TIF)

S5 Fig. Related to Fig 6. Results of MI computed for odor and no-odor trials, accounting for

possible contribution of steep slope of sensory-evoked potentials (see Supplementary meth-

ods). The source is available in S7 Data. MI, modulation index.

(TIF)
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S6 Fig. Related to Fig 2. Sniff onset–aligned raw power (left), power change relative to base-

line (middle), and z score map (right, same as Fig 2C) are shown for each participant (P1–P7).

The baseline was defined as [−0.55, −0.05] s prior to cue onset. The black overlaid line indi-

cates the respiratory signal. The vertical short-dashed line indicates sniff onset. The source is

available in S8 Data.

(TIF)

S1 Text. Supplementary methods.

(PDF)

S1 Data. Zip file containing datasets underlying Fig 2A, 2B, and 2C.

(ZIP)

S2 Data. Zip file containing datasets underlying Fig 3A, 3B, 3C, and 3D.

(ZIP)

S3 Data. Zip file containing datasets underlying Fig 4A, 4B, 4C, 4D, and 4E.

(ZIP)

S4 Data. Zip file containing datasets underlying Figs 5B, 6A, 6B, and 7.

(ZIP)

S5 Data. Zip file containing datasets underlying S1 Fig.

(ZIP)

S6 Data. Zip file containing datasets underlying S2 and S3 Figs.

(ZIP)

S7 Data. Zip file containing datasets underlying S4 and S5 Figs.

(ZIP)

S8 Data. Zip file containing datasets underlying S6 Fig.

(ZIP)
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