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Abstract: Machine learning methods enable the electronic nose (E-Nose) for precise odor identifi-
cation with both qualitative and quantitative analysis. Advanced machine learning methods are
crucial for the E-Nose to gain high performance and strengthen its capability in many applications,
including robotics, food engineering, environment monitoring, and medical diagnosis. Recently,
many machine learning techniques have been studied, developed, and integrated into feature ex-
traction, modeling, and gas sensor drift compensation. The purpose of feature extraction is to keep
robust pattern information in raw signals while removing redundancy and noise. With the extracted
feature, a proper modeling method can effectively use the information for prediction. In addition,
drift compensation is adopted to relieve the model accuracy degradation due to the gas sensor
drifting. These recent advances have significantly promoted the prediction accuracy and stability of
the E-Nose. This review is engaged to provide a summary of recent progress in advanced machine
learning methods in E-Nose technologies and give an insight into new research directions in feature
extraction, modeling, and sensor drift compensation.
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1. Introduction

An electronic nose (or E-Nose) is an aroma analyzer that uses mechanical and elec-
tronic components to emulate the human olfactory system. Unlike conventional aroma
analysis methods under the lab environment, E-Nose is developed for applications demand-
ing quick measurement while avoiding the subjectivity of humans, which has been proven
promising in robotics [1–4], food engineering [5–11], environment monitoring [12–15], and
diagnosis of diseases [16–21].

Compared to the human olfactory system, an E-Nose uses a gas sensor array to
convert the gas molecular signals into electric signals (Figure 1). Although no highly specific
receptors are used in an E-Nose, unique patterns can be generated for various odors as their
fingerprints for future predictions through proper machine learning techniques. According
to Yan et al. [22], most optimizations adopted by recent studies for E-Nose systems belong
to one of three categories: sensitive material selection and sensor array optimization, the
feature extraction and selection method, and the pattern recognition method. Despite
the advancements in finding more selective and sensitive materials/mechanisms for gas
sensing such as a functionalized graphene [15,23–26], the conductive polymer [27–30],
and sound acoustic wave gas sensor [31,32], improving the differentiation capability and
long-term signal consistency of an E-Nose remains a challenge for machine learning and
data processing.
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Figure 1. An analogy between human olfactory system and E-nose [33]. 
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characterizing the pattern of an odor signal. The extracted features can be used for quali-
tative and quantitative aroma analysis assisted by proper modeling techniques. Qualita-
tive aroma analysis aims to distinguish different odors; quantitative aroma analysis pre-
dicts a particular property associated with target odor. However, many gas sensors suffer 
from drifting problems [34–36]; that is, sensor responses to the same gas change over time 
due to sensor aging and environment change, and the inconsistency of sensor responses 
may void the model built on previous data. The sensor drifting problem can be relieved 
by drift compensation algorithms through machine learning instead of building a model 
on new data. 

Although there have been a few previous reviews on the E-Nose, they focus either 
on specific applications [37–39] or only a portion of the entire E-Nose data processing 
pipeline [22,40]. In comparison, this review aims to provide a comprehensive study of 
machine learning techniques for general E-Nose applications. Moreover, recent years 
have seen high-performance neural network approaches adopted by various machine 
learning tasks for audio and image processing, but few works review their effectiveness 
in E-Nose data processing. Therefore, we are motivated to include the latest practices that 
have applied neural networks to the E-Nose in this work. Here, we review the recent ad-
vances in E-Nose machine learning techniques, with a focus on three important aspects: 
(1) feature extraction, (2) modeling, and (3) gas sensor drift compensation. By surveying 
machine learning methods for different E-Nose applications, this work tries to evaluate 
the performance of an E-Nose in existing applications and to inspire new applications in 
many emerging fields. 

2. Machine Learning for E-Nose 
2.1. Feature Extraction 

E-Nose data is a time-series array of high dimensionality that reflects the concentra-
tion of target gas, and the sensor response shows as in Figure 2. The signal strength in-
creases during the response phase and decreases during the sensor recovery phase in each 
measurement. Odors are distinguished and identified based on their distinct features at 
both phases in their responses. The features can either be manually extracted or learned 
from a neural network. 

Figure 1. An analogy between human olfactory system and E-nose [33].

The general machine learning framework of the E-Nose for specific applications
involves feature extraction, modeling, and drift compensation. An E-Nose produces
high-dimensional time-series raw signals in responding to target gases, which contain
noises and redundant information. Feature extraction preserves only the information
uniquely characterizing the pattern of an odor signal. The extracted features can be used
for qualitative and quantitative aroma analysis assisted by proper modeling techniques.
Qualitative aroma analysis aims to distinguish different odors; quantitative aroma analysis
predicts a particular property associated with target odor. However, many gas sensors
suffer from drifting problems [34–36]; that is, sensor responses to the same gas change
over time due to sensor aging and environment change, and the inconsistency of sensor
responses may void the model built on previous data. The sensor drifting problem can be
relieved by drift compensation algorithms through machine learning instead of building a
model on new data.

Although there have been a few previous reviews on the E-Nose, they focus either
on specific applications [37–39] or only a portion of the entire E-Nose data processing
pipeline [22,40]. In comparison, this review aims to provide a comprehensive study of
machine learning techniques for general E-Nose applications. Moreover, recent years
have seen high-performance neural network approaches adopted by various machine
learning tasks for audio and image processing, but few works review their effectiveness
in E-Nose data processing. Therefore, we are motivated to include the latest practices
that have applied neural networks to the E-Nose in this work. Here, we review the recent
advances in E-Nose machine learning techniques, with a focus on three important aspects:
(1) feature extraction, (2) modeling, and (3) gas sensor drift compensation. By surveying
machine learning methods for different E-Nose applications, this work tries to evaluate the
performance of an E-Nose in existing applications and to inspire new applications in many
emerging fields.

2. Machine Learning for E-Nose
2.1. Feature Extraction

E-Nose data is a time-series array of high dimensionality that reflects the concen-
tration of target gas, and the sensor response shows as in Figure 2. The signal strength
increases during the response phase and decreases during the sensor recovery phase in
each measurement. Odors are distinguished and identified based on their distinct features
at both phases in their responses. The features can either be manually extracted or learned
from a neural network.
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Figure 2. A typical electrical response from a gas sensor [24].

2.1.1. Manual Feature Extraction

In general, manually extracted features are selected based on the prior knowledge of
data processing and E-Nose data. Features extracted from raw signals can be either from
the time domain or frequency domain [41–43].

Time-domain features can be extracted from the original response curve. The com-
monly used features are summarized by [22] in Table 1, where x(t) represents either the
voltage or resistance change signals generated by the E-Nose. Those features characterize
the local pattern and can be calculated based on a small section of complete signals.

Table 1. Summary of commonly used features extracted from time-response curves.

Feature Description

Maximum response Max value of response

Responses of special time Response value of special time in the whole response curve

Time of special responses Time of special response value in the whole response curve

Area Area values of sensor response curve and time axis surrounded

Integral Area between two time points

Derivative D =
dx(t)

dt

Difference Magnitude difference between two time points

Second Derivative D′′ =
d2x(t)

dt2

Nallon et al. [23] fabricated a graphene gas sensor and tested its response towards
11 different analytes. The signals were first normalized to the range 0~1, after which the
undercurve areas during the sensor response and recovery were used as features. Zhi
et al. [5] used a commercialized E-Nose with 18 metal oxide semiconductor (MOX) gas
sensors to distinguish tea of different qualities. Maximum response values and average
response values during the time period were extracted for classification.

In addition to the low-level features abstracting local characteristics of E-Nose signals,
there are also high-level feature extraction practices such as parametric fitting with prede-
fined functions [29,30]. Nallon et al. [24] modeled the resistance response of a graphene
gas sensor as Rs(t) = αS

(
1− e−βst)+ γs for the sensing period and Rr(t) = αre−βrt + γr

for the recovery period. Thus, six function parameters were obtained for each sensor and
used as features for gas discrimination. It was reported that those parametric features
showed better discrimination towards gases compared to other time-domain features.
Yan et al. [44] compared different curve fitting functions on their performance in wound
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pathogen detection. In the study, signals were collected on seven pathogen samples using
an E-Nose device with 5 MOX gas sensors. After the features were extracted using different
feature extraction methods, they were used for training the same radial basis function
network (RBFN), and the resulting test accuracies were compared. The selection of the
parametric fitting function was essential to classification; a template function with more
parameters might be influenced by the noise in the signal and result in low-quality features.

Inspired by the parametric curve fitting method, Liu et al. [45] came up with a non-
parametric modeling-based feature extraction method by decomposing a sensor signal into im-
pulse responses. An arbitrary signal v(t) can be represented by v(t|θs) = ∑D

τ=1 θs(τ)us(t− τ),
where us are the ideal step inputs and θs are the coefficients used as features. A Mercer
kernel was applied to regularize the solution and improve the finite impulse response
model, which converted the problem into solving θ̂s = argminθs(Vs − Xsθs)

T(Vs − Xsθs) +
θT

s K−1θs, where Vs are the sensor response vectors, Xs are the vector presentation of
us(t− τ), and K is the kernel matrix. The method generated a feature matrix of size D ∗ S,
where D was the order of impulse response and S was the number of sensors. The extracted
features were reported as effective for odor classification and noise resistance enough to
skip denoising preprocessing.

The Windowing method slices signals in the time domain with window functions
such as hamming and gaussian. Guo et al. [46] used a moving window to compute the
area surrounded by the window and sensor signals (Figure 3). A window was placed
around the peak of the normalized signal and moved both left and right by the width of the
window, which generated three features corresponding to each window position. Various
hyperparameters were tested including the width and the type of window, of which a
training window of size 480 s produced the best classification accuracy.
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Frequency-domain features can be extracted after transforming the original time-domain
signal to a frequency domain through Fourier transform or wavelet transform [47–51]. Dur-
ing the experiment by Dai et al. [6], who used MOX sensors to classify different teas,
original signals were transformed into a vector by wavelet packet decomposition with
Daubechies wavelet as the wavelet base. The three-level decomposed signals produced
eight energy strengths corresponding to distinct frequency bands for each sensor. Average
and maximum energy strengths were then calculated as features. Men et al. [52] applied
the same wavelet decomposition method as Dai while using variable importance of projec-
tion scores generated by partial least squares (PLS) to choose the features with the most
explanatory power. The average and maximum energy strengths were then calculated
as features.

Ye et al. [53] transformed the original signal to the frequency domain using discrete
Fourier transform and used AC noise shift as a differentiation indicator. The AC noise that
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came from the power supply of the measurement equipment were 60 Hz and 120 Hz and
they would be shifted from the measurement due to the surface reaction of the molecule
and gas sensor. Similarly, Gomri et al. [54] analyzed the power spectral density (PSD) of the
noise measured at gas sensor terminals during the sensor interaction with target analytes.
Features including the derivative and the max power of noise PSD were proved effectively
discriminate two different gases.

2.1.2. Feature Extraction through Learning

In addition to manual feature extraction that requires domain knowledge about the E-
Nose and gas sensors, features can also be “learned” through optimizing a neural network.
Different from the convolution neural network (CNN) in the next section, the methods
discussed in this section do not adopt an end-to-end (E2E) scheme, which means they are
not trained for prediction. Instead, these methods involve learning intermediate feature
representations of E-Nose signals via supervised and unsupervised learning. Shi et al. [55]
developed an odor classification pipeline with a CNN and support vector machine (SVM).
The CNN was pretrained to learn feature embeddings, after which the SVM was trained
on the features for odor classification. It was reported that the workflow cascading the
CNN with the SVM had better differentiation ability compared to training two classifiers
individually. With a similar architecture, [56] used a CNN to extract fusion features from
an E-Nose and hyperspectral data for rice classification. Signals collected from the E-Nose
and hyperspectral imager were concatenated and reshaped into a 2D image, after which
the CNN was pretrained on the images for feature extraction. Another extreme learning
machine (ELM) classifier was then trained on the resulting features for prediction.

P
(
vj
∣∣h) = σ

(
ci + ∑

j
Wijhj

)
(1)

P
(
hj
∣∣v) = σ

(
bj + ∑

i
Wijhj

)
(2)

Langkvist and Loutfi [57] proposed a method that used a Restricted Boltzmann Ma-
chine (RBM) to extract features from the E-Nose signals. RBM is a generative model
learning to reconstruct input from its hidden representation. More specifically, the re-
searchers used a variation of RBM called conditional RBM (or cRBM) to learn the feature
representation of time-series gas sensor array signals (Figure 4). As an unsupervised
learning method, RBM does not require labeled data during training, the goal of training is
to construct the conditional probability pair as Equations (1) and (2), where h is the latent
representation of the input, and v is the original input. After pretraining cRBM with data, a
weight projecting input to latent features can be used to train or fine-tune another model to
perform classification.

Other unsupervised models were also tried for feature extraction such as autoencoder
and a deep belief network [34,57–59]. Autoencoder is a feed-forward network structure
aimed at recovering input at its output by minimizing mean square error; a stacked au-
toencoder refers to an autoencoder with more than one hidden layer. Essentially, an
autoencoder is a non-linear version of principal component analysis (PCA) whose non-
linearity is introduced by the activation function between hidden layers, and both PCA
and autoencoder can be used for dimension reduction [60]. Compared to dimension reduc-
tion with PCA, autoencoder can preserve more non-linear relationships in the resulting
feature space. A recent study [61] also showed that an autoencoder network built from
unlabeled data can generate highly discriminative features for another labeled dataset.
Zhao et al. [62] proposed a stacked sparse autoencoder model (SSAE), which was com-
bined with a backpropagation neural network (BPNN) to perform feature extraction for
Chinese liquor classification (Figure 5). After the model was trained, an extra prediction
layer was appended to the encoder of autoencoder for prediction. Lu et al. [63] replaced
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the hand-craft features for the E-Nose with latent representation generated from a gated
recurrent unit-based autoencoder (GRU-AE). Compared to other dimensionality reduction
methods including PCA and Kernel-PCA, feature representations from the GRU-AE were
more distinguishable and effectively improved classification performance.
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There have been many time-series unsupervised feature extraction methods proposed
but not yet tried with gas sensor array signals. A more advanced model involves a temporal
autoencoder [64] to capture both short-term features using CNN and temporal changes
using long short-term memory (LSTM), or directly applying an LSTM autoencoder to
extract features [65].

2.2. Modeling

Machine learning models have been heavily researched for mapping E-Nose fea-
tures to target predictions such as odor categories and gas mixtures of different chemical
concentrations.
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2.2.1. Qualitative Aroma Analysis

The qualitative aroma analysis with an E-Nose aims to identify the distinctness of
several unknown gas samples by the responses generated from the E-Nose device. The
diversity of gas sensor arrays enables an E-Nose with differentiation capability towards dif-
ferent target gases and the differentiation capability of an E-Nose can be further improved
with advanced modeling techniques. Table 2 lists the surveyed E-Nose modeling practices
for qualitative aroma analysis.

Table 2. Summary of commonly used model in E-Nose odor differentiation.

Gas Type Gas Number Sensor Number Models Reference

Tea 4 18 KNN, and variations, LDA [6]

Tea 4 18 KNN ensemble [5]

Coffee 7 6 KNN, PLS-DA, Multi-Layer Perceptron [66]

Beer 5 10 SVM [52]

Beer 5 10 CNN–SVM [55]

Wine 3 6 SVM, XGBoost,
Multi-Layer Perceptron [67]

Onion 2 7 LDA [68]

Potato 5 9 LDA, Multi-Layer Perceptron [69]

Rice 6 10 Extreme Learning Machine [56]

Ginseng 4 18 LDA, Hierarchical Cluster Analysis [70]

Kiwifruit 8 10 LDA [71]

Soy Sauce 4 18 - [72]

Single Chemicals 20 1 KNN, LDA [24]

Single Chemicals 4 1 KNN, LDA, Random Forest [23]

Single Chemicals 3 1 SVM [53]

Single Chemicals 3 12 CNN [73]

Single Chemicals 12 8 CNN [74]

Polluted water 12 4 Multi-Layer Perceptron [12]

Smell mixture 10 7 Multi-Layer Perceptron [75]

Essential Oils 6 9 Multi-Layer Perceptron [76]

Essential Oils 6 9 LDA, SVM [77]

Many studies [5,6] have adopted linear models such as linear discriminant analysis
(LDA) or the crude k-nearest neighbor (KNN) model due to their easy implementation.
Some studies have experimented with simple neural networks [66,75], most of which
consisted of only one or two layers with a small number of parameters. E-Nose data are
hard to obtain since there is no standard E-Nose system configuration or setup. In addition,
environmental conditions vary among experiments, which holds the E-Nose back from
adopting deep learning methods that demand large amounts of data samples.

However, there are also practices to apply deep learning models such as deep multi-
layer perceptron networks, LSTM [78], and convolution neural networks (CNN) for odor
classification [79–81]. It was reported by [82] that a deep neural network (DNN) with five
hidden layers outperformed an SVM and MLP with a single but wide hidden layer for
classifying wine. The proposed DNN required manual feature extraction and the maximum
responses of sensors were used as features.

Regular feed-forward neural network architecture such as MLP tremendously in-
creases the number of parameters when the network goes deeper. However, the convolu-
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tional neural network (CNN) improves efficiency by reusing the same set of parameters
to different segments in inputs, which is well suitable for applications with inputs highly
correlated in local areas, such as images and time-series signals. Compared to traditional
machine learning methods, the CNN does not require the feature extraction process.

The architecture of a CNN can vary depending on the interpretation of E-Nose data.
Some recent studies considered E-Nose data as a time-series array, while others interpreted
E-Nose signals as images and applied a similar CNN architecture to image processing.
Zhao et al. [79] processed e-nose signals as time-series data using a 1D-CNN, taking the
assumption that signal responses from the gas sensor array in an E-Nose correlated along
time steps, and signals from different sensors were independent. A structure was proposed
(Figure 6) as a combination of two topologies: (1) signals of each sensor are processed by
the same convolution operation and then concatenated along a depth channel, (2) cross
sensor relationships are considered in the following three 1D convolution layers. A dropout
layer was added during training to avoid overfitting, and a uniformly distributed Xavier
was used for convolution layer parameter initialization. A total of 593 samples were used
for model training and an evaluation in differentiating Ethylene, CO, and Methane. It was
reported that 1D-CNN could outperform SVM, MLP, KNN, and random forest by around
10% on average.
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On the other hand, Qi et al. [83] treated the E-Nose signals as an image and used a
CNN with two convolution layers for Chinese liquor classification. All the values in the
gas sensor array signal map were normalized to between 0 and 1 to generate a grayscale
image. Wei et al. [73] tried to adapt a LeNet-5 network structure, which was previously
for handwritten letter recognition to classify gases. They first down-sampled the signal to
smaller feature maps, then rescaled all the values to 0~255, and then fed these to the CNN
network as shown in Figure 7. To remedy the lack of data problem, a data augmentation
technique was applied through translating the down-sampled data by steps of 2n to have
a new feature map. It was reported that the resulting model outperformed multi-layer
perceptron (MLP) and other linear models when classifying three gases and gas mixtures.
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Peng et al. [84] practiced a deeper CNN with a total of 12 convolution layers and two
pooling layers. Inspired by ResNet, shortcuts across convolution blocks were included
to overcome the problem of gradient vanishing and speed up training. In their setting,
four types of gases were measured with eight MOX gas sensors, with each gas sampled
300 times to form a dataset of 1200 samples. The proposed GasNet structure achieved 95.2%
classification accuracy, outperforming an MLP and SVM by a large amount but taking
training speed and model size as trade-offs. Zhang et al. [85] added a channel attention
module to the CNN backbone, which was used to learn the dependencies of different
channels for refined features. Compared to the manual feature extraction, the proposed
model resulted in the best classification accuracy on 10 Chinese liquors.

Hci,j =

√
1 + cos

(
θi + θj

)
2

, 1 ≤ i, j ≤ T (3)

Hsi,j =

√
1− cos

(
θi + θj

)
2

, 1 ≤ i, j ≤ T (4)

Some recent works encoded E-Nose data into an image before adopting a CNN for
classification. Liu et al. [86] encoded the time-series signal of each sensor to an image of
three channels to preserve the temporal dependencies. Two out of three total channels in
the encoded images were built from a polar transition field, and the other channel was built
from a Markov transition matrix. To convert time-series signals to a polar transition matrix,
response strength in a sensor signal was normalized by the min–max method to the range
of 0~1. Thus, an angle can be calculated as the inverse cosine of the normalized response.
Two T × T angle transition matrixes were built with each position as Equations (3) and (4),
where T is the number of time steps for the signal. In addition, the Markov transition
matrix represented the chance that a state appears at a specific time after a state at another
time point. The bin method constructed different states of responses, which quantile the
response value to Q slots and assign the sequence number of bins as the state for each
response value (Figure 8). The Q value was reported to affect the classification performance
and was set to 32 for the optimal result. All the images encoded from nine sensors would
be patched together to form an image of dimension (3T) × (3T) × 3 in RGB format for
visualization and CNN classification. A recent study from Wang et al. [87] surveyed several
ways to convert E-Nose data to an image-like 2D structure, including (1) taking E-Nose
time-series data as an image, (2) reshaping data from each sensor into a small image patch
and padding all the patches together in order, (3) the same as (2) but putting the most
relevant sensors closer during padding. A modified ResNet-based CNN network was
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proposed to perform classification, and the conversion through method (3) was proved
to outperform the other two on classification accuracy. Jong et al. [88] converted the
correlation coefficient table of sensor responses to a heat map image; a regular CNN can
process the resulting images for image processing. Shi et al. [89] treated the correlation
coefficient table as a complete graph and used a graph convolutional neural network
for modeling.
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Terros-Tello et al. [90] investigated the performance of 1D-CNN, LSTM, and traditional
machine learning models on classifying odors from explosives of different amounts. The
LSTM model was able to produce accurate prediction by examining only a short portion of
the entire time-series of E-Nose data.

To further improve the differentiation capability for gases, sensor fusion has been
introduced by some studies by considering the signals from an electronic tongue together
with an E-Nose [5,66,72,91], and Figure 9 shows one of the sensor fusion frameworks. Two
sets of features are extracted from the E-Nose and E-Tongue, respectively, and are used to
train separate classifiers, a decision is made by fusing the result from both classifiers using
decision level fusion based on Dempster–Shafer evidence theory.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 9. A sensor fusion framework to predict tea of different grade [5]. 

2.2.2. Quantitative Aroma Analysis 
Quantitative analysis of E-Nose signals is a task aimed at estimating the continuous 

properties associated with gases or odors such as molecule concentration and strength. 
Compared to qualitative analysis, where labels associated with each sample indicate only 
the uniqueness of certain gases, target labels/properties in the quantitative analysis are 
more flexible. For instance, Zhang et al. [15] used a gas sensor array to estimate the con-
centration of formaldehyde, ammonia, and their mixtures. An MLP model was built in 
the experiment for prediction, and the mean absolute errors were 0.27 ppm and 0.37 ppm 
for ammonia and formaldehyde, respectively. In addition to the concentration of specific 
molecular components, other properties associated with gas can be predicted if they are 
related to the molecular composition of the gas. Coffee pH may relate to the concentra-
tions of different volatile compounds, and it can be predicted based on the signal gener-
ated by a gas sensor array [66]. Table 3 provides a summary of practices for quantitative 
aroma analysis with an E-Nose. 

Table 3. Summary of commonly used model in E-Nose gas concentration estimation. 

Gas Type Predicting Prop-
erty 

Predicting Tar-
get 

Sensor 
Number Models Evaluation 

Method Reference 

Gas Mixture  Concentration 3 2 Neural-fuzzy 
network  RMSE [14] 

Gas Mixture Concentration 6 4 MLP and its 
variations 

MSEP [92] 

Gas Mixture Concentration 2 3 MLP MSE, MAE [15] 

Ginseng Chemical Concen-
tration 

7 18 PLSR, MLP RMSE, R2 [35] 

Tea 
Chemical Concen-

tration 4 10 
SVMR, Ran-

dom Forest Re-
gression 

RMSE, R2 [7] 

Fish TVC 1 9 SVMR, RBFN RMSEP, R-value [91] 
Flower Aroma Strength 1 11 MLP, RBFN RMSE, R2 [93] 

Coffee 
PH, Solid%. 

Acid%, Soluble%  4 6 PLSR 
R-value, RPD, 

RMSE [66] 

Figure 9. A sensor fusion framework to predict tea of different grade [5].



Sensors 2021, 21, 7620 11 of 22

2.2.2. Quantitative Aroma Analysis

Quantitative analysis of E-Nose signals is a task aimed at estimating the continuous
properties associated with gases or odors such as molecule concentration and strength.
Compared to qualitative analysis, where labels associated with each sample indicate only
the uniqueness of certain gases, target labels/properties in the quantitative analysis are
more flexible. For instance, Zhang et al. [15] used a gas sensor array to estimate the
concentration of formaldehyde, ammonia, and their mixtures. An MLP model was built in
the experiment for prediction, and the mean absolute errors were 0.27 ppm and 0.37 ppm
for ammonia and formaldehyde, respectively. In addition to the concentration of specific
molecular components, other properties associated with gas can be predicted if they are
related to the molecular composition of the gas. Coffee pH may relate to the concentrations
of different volatile compounds, and it can be predicted based on the signal generated by
a gas sensor array [66]. Table 3 provides a summary of practices for quantitative aroma
analysis with an E-Nose.

Table 3. Summary of commonly used model in E-Nose gas concentration estimation.

Gas Type Predicting Property Predicting
Target

Sensor
Number Models Evaluation

Method Reference

Gas Mixture Concentration 3 2 Neural-fuzzy network RMSE [14]

Gas Mixture Concentration 6 4 MLP and its variations MSEP [92]

Gas Mixture Concentration 2 3 MLP MSE, MAE [15]

Ginseng Chemical Concentration 7 18 PLSR, MLP RMSE, R2 [35]

Tea Chemical Concentration 4 10 SVMR, Random
Forest Regression RMSE, R2 [7]

Fish TVC 1 9 SVMR, RBFN RMSEP,
R-value [91]

Flower Aroma Strength 1 11 MLP, RBFN RMSE, R2 [93]

Coffee PH, Solid%. Acid%,
Soluble% 4 6 PLSR R-value, RPD,

RMSE [66]

Beer Chemical Concentration - 9 MLP R-value,
MSE [94]

Squid Chemical Concentration 1 18 PLSR R2, t-test [8]

Polluted water Odor Concentration 1 5 PLSR RSME, R2 [13]

Kiwifruit Ripeness Index 3 10 PLSR, SVMR, Random
Forest Regression RSME, R2 [71]

Linear models are the most common models used in quantitative aroma analysis with
an E-Nose for their simplicity. Partial least square regression (PLSR) is the preferred linear
model over regular linear regression [70]. The preference is due to the limitation of the
E-Nose data: features are much cheaper to calculate than obtaining many data samples,
which introduces the curse of dimensionality problems. In this case, a high correlation
might be observed among features, and overfitting can occur. PLS decorrelates features
by projecting them into a latent space and reducing feature numbers by keeping the top-k
latent variables that most explain the variance of latent target variables.

Recently, there has been a rising popularity in applying neural network structure for
quantitative aroma analysis. Multi-layer perceptron (MLP) is the simplest feed-forward
neural network structure applied by many studies. At each hidden layer, matrix multipli-
cation is performed between the input vector and weight matrix to produce the output at
that specific layer Most researchers adopt the architecture with one~two hidden layers and
hidden units of different sizes, but networks can vary with structure towards predicting
targets. Zhang et al. [92] reported their experiment using an E-Nose to predict individual
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chemical concentrations in gas mixtures with MLP (Figure 10). They compared the perfor-
mance between a multiple inputs multiple outputs (SMIMO) MLP and several multiple
inputs single output MLPs (MMISO).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 24 
 

 

Beer Chemical Concen-
tration 

- 9 MLP R-value, 
MSE 

[94] 

Squid Chemical Concen-
tration 

1 18 PLSR R2, t-test [8] 

Polluted water Odor Concentra-
tion 

1 5 PLSR RSME, R2 [13] 

Kiwifruit Ripeness Index 3 10 
PLSR, SVMR, 

Random Forest 
Regression 

RSME, R2 [71] 

Linear models are the most common models used in quantitative aroma analysis with 
an E-Nose for their simplicity. Partial least square regression (PLSR) is the preferred linear 
model over regular linear regression [70]. The preference is due to the limitation of the E-
Nose data: features are much cheaper to calculate than obtaining many data samples, 
which introduces the curse of dimensionality problems. In this case, a high correlation 
might be observed among features, and overfitting can occur. PLS decorrelates features 
by projecting them into a latent space and reducing feature numbers by keeping the top-
k latent variables that most explain the variance of latent target variables. 

Recently, there has been a rising popularity in applying neural network structure for 
quantitative aroma analysis. Multi-layer perceptron (MLP) is the simplest feed-forward 
neural network structure applied by many studies. At each hidden layer, matrix multipli-
cation is performed between the input vector and weight matrix to produce the output at 
that specific layer Most researchers adopt the architecture with one~two hidden layers 
and hidden units of different sizes, but networks can vary with structure towards predict-
ing targets. Zhang et al. [92] reported their experiment using an E-Nose to predict indi-
vidual chemical concentrations in gas mixtures with MLP (Figure 10). They compared the 
performance between a multiple inputs multiple outputs (SMIMO) MLP and several mul-
tiple inputs single output MLPs (MMISO). 

 
Figure 10. Structure of (a) SMIMO- and (b) MMISO-based MLP concentration estimation models 
[92]. 

Radial basis function network (RBFN) is a type of neural network with special archi-
tecture, which normally does not go “deep” (Figure 11). Typical RBFN consists of an input 
layer, a hidden layer, and an output layer. Unlike MLP, whose parameters are all random-
ized before training and calculations are performed as a matrix calculation at all the hid-
den layers, RBFN uses a radial basis function ϕ  to calculate the response at each hid-

Figure 10. Structure of (a) SMIMO- and (b) MMISO-based MLP concentration estimation models [92].

Radial basis function network (RBFN) is a type of neural network with special ar-
chitecture, which normally does not go “deep” (Figure 11). Typical RBFN consists of an
input layer, a hidden layer, and an output layer. Unlike MLP, whose parameters are all
randomized before training and calculations are performed as a matrix calculation at all
the hidden layers, RBFN uses a radial basis function φ(d) to calculate the response at
each hidden unit, where d represents the distance between the “center” of the unit and
input vector. Gaussian activation (Equation (3)) is often used as the radial basis function
in RBFN, which plays a similar role as the RBF kernel in a support vector machine to add
more non-linearity by virtually projecting input vector into higher dimensions. Moreover,
RBFN has a different training method from MLP, which relies mainly on the gradient-based
method. The training step varies for RBFN depending on the decision of the variable
setting: if center vector and receptive width are to be updated during training, then the
gradient-based method can be used; otherwise, training will adopt a two-step manner, the
hidden layer and output parameters will be trained separately in each step. To train the
hidden layer, a center-based cluster algorithm such as K-means is used to determine the
mean and variance of each hidden unit, and these variables are fixed during the training for
the output layer using the gradient-based method [95]. RBFN is generally faster and more
robust to train than MLP and is likely to perform better than MLP for qualitative prediction.

φ(x, c) = e−
||x−c||2

2σ2 (5)

There have been many recent studies using deep learning models for quantitative
aroma analysis with an E-Nose [96]. Wang et al. [97] trained different recurrent neural
network models on an open source dataset for air pollutants’ concentration. Compared
to the vanilla recurrent neural network (RNN) and gated recurrent unit (GRU), LSTM
showed the lowest prediction error on all four different pollutants. Guo et al. [98] proposed
an E-Nose framework to predict odor descriptors using a CNN–LSTM model. E-nose
data collected from 16 gas sensors were first sliced into small patches, among which
each patch represented the same period. The data patches were then fed into multiple
CNN–LSTM models, and each of the models ended with a fully connected layer that
regressed a combination of odor descriptors. The CNN–LSTM model used both the spatial
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and temporal information while avoiding the gradient vanish problem in LSTM for long
time series. To solve the data contamination problem caused by noise, Wijaya et al. [99]
performed noise filtering through wavelet transform on the E-Nose raw signals before
feeding the signals into an LSTM model. The most suitable mother wavelet for wavelet
decomposition was decided based on the information quality ratio between raw and filtered
signals. The noise filtering step was proved to be important to LSTM model performance
on predicting the microbial population in beef samples.
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Various metrics can be used to evaluate the performance of modeling for a gas property
estimation task. Table 4 summarized the description and equation (if any) for evaluation
metrics, among which a large t-value, R-value, and R2 value are desirable, while a small
RMESP, RMSE, and MSE are desirable.

Table 4. Modeling evaluation metric for gas property estimation.

Metric Equation Description

t-value - The significance of the predicting model is
close to the real model

r-value ∑n
i=1(ŷi−ŷ)(yi−y)√

∑n
i=1(ŷi−ŷ)

2
√

∑n
i=1(yi−y)2

The correlation between predicted value and
real value

R2 1− ∑n
i=1(ŷi−yi)

2

∑n
i=1(yi−y)2

The extent to which predict model is
explaining the variation of data

RMESP
√

∑n
i=1

(
ŷi−yi

yi

)2

n

Average squared rooted deviation from
predicted value to real value by percentage

RMSE
√

∑n
i=1(ŷi−yi)

2

n

Average squared rooted deviation from
predicted value to real value

MSE ∑n
i=1(ŷi−yi)

2

n
Average squared deviation from predicted

value to real value

MAE ∑n
i=1|ŷi−yi |

n
Average absolute deviation from predicted

value to real value

2.3. Sensor Drift Compensation

One of the biggest problems existing in gas sensor applications is sensor drifting.
There are two causes of drifting: (1) natural drift is due to the aging of the sensor, and
(2) secondary drift is due to environmental influences such as temperature and humidity.
Unlike other sensors such as the gyroscope or accelerometer, gas sensors require reference
gases of specific concentrations for calibration. Romain et al. [101] had a long-term stability
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test for commonly used MOX gas sensors and found that some sensors drift more than
200% after 7 years. A dataset with gas sensor signals over 36 months for investigating
sensor drift was released by Vergara et al. [35], which was used by many related studies as
the benchmark for gas sensor drift compensation. The dataset was divided into 10 batches,
with all the data samples in the same batch corresponding to specific time ranges. Multiple
machine learning techniques addressing the sensor drifting problem have been proposed
such as ensemble learning and domain transfer learning. Table 5 summarizes the methods
adopted by the recent E-Nose drift compensation based on the classifier ensemble, and all
the methods were evaluated on the dataset collected in [35].

Table 5. Summary for drift compensation by ensemble.

Ensemble Method Accuracy Mean Accuracy Std Dev Accuracy on Final Batch Reference

SVM ~81.6% ~12% ~68% [35]

MLP and KNN 63.93% (MLP),
75.59% (KNN)_

~29% (MLP),
~17%(KNN)_

38% (MLP),
53% (KNN) [102]

SVM with 2D weights 84.8% ~15% ~60% [103]

SVM with regularization ~79.3% ~8% ~80% [36]

MLP ~83.1% ~10% 72.89% [104]

SVM, LSTM
83.2% (SVM)

77.8% (LSTM)
89.26% (SVM and LSTM)

16.63% (SVM)
9.21% (LSTM)

10.0% (SVM and LSTM)

70.6% (SVM),
83.3% (LSTM),

83.4% (SVM and LSTM)
[105]

Ensemble learning for drift compensation trains a set of predictors on the data collected
at different times [106,107]. Each of the predictors is assigned a weight on predicting new
data samples. The average accuracy and standard deviation of all data batches and the final
data batch accuracy are compared among different methods. Vergara et al. [35] proposed
the ensemble learning method with SVM classifiers to counteract sensor drifting. An SVM
classifier was trained on each batch of newly collected data at time t, notated as ft(x). To
predict the data at time step t+1, the decision was made as a weighted sum of classifiers
trained previously, i.e., ht+1 = ∑t

i=1 βi fi(x), where βt is the weight for each classifier. For
simplicity, the prediction accuracy of each ft(x) on the current batch of data was used
as βt. The result showed that the ensemble classifier improved classification stability
(Figure 12). Liu et al. [103] improved the ensemble method by introducing extra weights
when training each classifier, called 2D dimension ensemble. For each batch of data with k
different classes, k(k − 1)/2 classifiers were trained to solve the multi-class classification
problem. Each of the classifiers was assigned a weight based on their performance on the
current batch of data. Verma et al. [36] modified the original optimization step in ensemble
drift compensation by introducing a regularization term. The regularization term restricts
the data distribution change using the KL divergence and norm-based terms, resulting
in higher accuracy than the original approach. Zhao et al. [105] proposed an ensemble
learning framework with SVM and LSTM classifiers for drifting compensation. The dataset
was preprocessed in four different configurations for training both SVM and LSTM, which
added extra robustness to the ensemble learning.
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Domain transfer learning aims to find a feature space that maximizes the similarities
between samples from the source domain and target domain while ensuring the discrimi-
nation capability of the features [108–110]. Zhang et al. [111] investigated domain transfer
learning with extreme learning machine (ELM) for gas sensor drift compensation. ELM is
a special MLP whose weights in the first two layers are randomized and only the weights
in the last layer are tunable. Two proposed methods (DAELM-S and DAELM-T) updated
the weights parameter β of ELM obtained from previous data (source domain) by incorpo-
rating the latest partially labeled and unlabeled data (target domain). DAELM-S (Equation
(6)) updated β by minimizing the weighted sum of error for labeled data from the source
domain and target domain, where t is the target value and H is the input to the output
layer; DAELM-T (Equation (7)) updated β by minimizing the error on the latest labeled
data while regularizing the parameters change based on the source domain parameters.
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Based on [111], Ma et al. [112] proposed the weighted domain transfer extreme learn-
ing machine (WDTELM), which focused on reducing the impact of wrongly classified
unlabeled data samples to parameter update. The final objective function was a variation
from DAELM-T with extra weight (Equation (3)). Unlabeled data were first clustered and
only a few in each cluster needed labeling. The weight for the rest of the unlabeled sample
was assigned by its distance to the labeled data from the same cluster. The method showed
4% improvement on average compared to the previous DAELM-T.

Zhang et al. [113] proposed to find a feature projection that mitigated the difference be-
tween the source and target domain while regularizing the data distortion. Similarly, [114]
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used a kernel transformation for domain transfer. Based on [113], Yi et al. [115] proposed
a feature subspace projection method by minimizing local intra-class variance and maxi-
mizing local inter-class variance. An autoencoder-based domain transfer was proposed
in [34] to learn a feature projection unsupervised. The method modeled sensor drift as a
result of device variation and time variation and encoded both variations into a domain
feature vector. The autoencoder (Figure 13) was optimized to recover the input feature at
its output. For those labeled data in the target domain, the resulting feature representations
from the autoencoder were fed into an MLP for further classification. During training,
a regularization term was added to enforce the similarity between encoded features for
samples from the source and target domains.
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Tao et al. [116] developed an adversarial training framework based on neural networks
for E-Nose domain adaption, and the Wasserstein distance was used to measure the
difference between the source domain and target domain (Figure 14). The adversarial
training framework consisted of a feature extractor and a domain discriminator, where the
feature extractor was trained to generate similar features for samples from the source and
target domain, and the domain discriminator was trained to maximize the dissimilarities
between the two. The classification performance was added as another constraint for the
extracted features.

In addition to domain transfer learning, Atiq et al. [117] proposed a method to select
drift-insensitive features. Discrete binary particle swarm optimization (DBPSO) searched
for top-M feature combinations from the feature space that are the most resistant to drift.
A cosine similarity model was built to evaluate feature combinations’ drift resistance by
training on the first data batch and testing on other data batches collected at different time
points. Yu et al. [118] also stated that by using a deep belief network for data preprocessing,
the resulting features are more resistant to drifting due to the strengthened coupling among
different sensors.
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3. Conclusions

Due to the complex VOCs composition of odors, machine olfaction is rather challeng-
ing. The recent significant improvement in E-Nose’s stability and performance in both
qualitative and quantitative analysis is a result of adopting machine learning methods.
This review presented an overview of machine learning methods in smart sensing with a
focus on feature extraction, modeling, and sensor drift compensation.

Previous works in E-Nose technology have extensively studied the time-domain
and frequency-domain features in the signal analysis of an E-Nose. Manually extracted
features were sufficient for odor discrimination in many cases and were widely used
in various applications. However, manual feature extraction requires prior knowledge
of gas sensor technology and needs very careful and time-consuming feature selection.
In contrast, recent studies showed successful feature learning of raw sensing signals
with neural networks, such as deep belief network and autoencoder, which only needed
minimum data preprocessing steps for very competitive odor prediction accuracy. In
addition, many practices adopted neural networks for modeling in both qualitative and
quantitative analysis with E-Nose. Even with the limited data samples, the reported
CNN and LSTM architectures led to performance boosts in comparison with conventional
machine learning models. Moreover, gas sensor drifting affects the signal and feature
consistency, which is a critical problem for an E-Nose’s performance. Although gas sensor
drift compensation was addressed by many recent works with machine learning methods
such as ensemble learning and domain adaption learning, it remains a significant obstacle
for E-Nose technology. Additionally, the performance of feature selection and models
depends on the E-Nose system setup and target gas [119–121], which might be another
challenge to overcome.

Given that many advanced machine learning techniques are well established for
other fields such as audio processing and computer vision [122], we hope that more
attempts can be made to migrate those methods to E-Nose applications in the future. In
addition, most works reported the proposed machine learning algorithm performance on a
dataset collected on their own device, which makes it difficult to compare algorithms across
different works. Although there have been a few public E-Nose datasets available [123–125],
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they have a limited number of samples and focus on specific target gases. Therefore, there
is a need for building a benchmark dataset for the E-Nose with a standard system setup
and data collection scheme. Moreover, many current works addressed the effectiveness of
their methods only on certain target gases. However, we envision common patterns are
shared among different gases of similar odors and transfer learning across various gases
should be further exploited [120].
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