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Fault-tolerant interface between quantum
memories and quantum processors
Hendrik Poulsen Nautrup 1, Nicolai Friis 1,2 & Hans J. Briegel1

Topological error correction codes are promising candidates to protect quantum computa-

tions from the deteriorating effects of noise. While some codes provide high noise thresholds

suitable for robust quantum memories, others allow straightforward gate implementation

needed for data processing. To exploit the particular advantages of different topological

codes for fault-tolerant quantum computation, it is necessary to be able to switch between

them. Here we propose a practical solution, subsystem lattice surgery, which requires only

two-body nearest-neighbor interactions in a fixed layout in addition to the indispensable error

correction. This method can be used for the fault-tolerant transfer of quantum information

between arbitrary topological subsystem codes in two dimensions and beyond. In particular,

it can be employed to create a simple interface, a quantum bus, between noise resilient

surface code memories and flexible color code processors.
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Noise and decoherence can be considered as the major
obstacles for large-scale quantum information processing.
These problems can be overcome by fault-tolerant

quantum computation1,2, which holds the promise of protecting
a quantum computer from decoherence for arbitrarily long times,
provided the noise is below a certain threshold. Quantum error
correction codes are indispensable for any fault-tolerant quantum
computation scheme3. Among these, stabilizer codes4, building
on classical coding theory, admit a particularly compact
description. In particular, the subclass of topological stabilizer
codes (TSCs)5 is promising since TSCs are scalable and permit a
local description on regular D-dimensional lattices.

Two of the most prominent examples of TSCs in two dimen-
sions are surface codes6,7 and color codes8. While surface codes
support adaption to biased noise9 and have better error thresh-
olds than comparable color codes10, they do not support a
transversal phase gate. However, transversality is essential for any
encoded quantum logic gate since it guarantees a straightforward
implementation within a quantum error correction code. Gauge
color codes, for example, were recently shown to support the
transversal implementation of a universal set of gates in a three-
dimensional (3D) layout11. It is hence desirable to store quantum
information in surface code quantum memories while performing
computation on color codes in two (and three) dimensions12.

Here we present a protocol that makes such hybrid computa-
tional architectures viable. We develop a simple, fault-tolerant
conversion scheme between two-dimensional (2D) surface and
color codes of arbitrary size. Our flexible algorithm for code
switching is based on a formalization of lattice surgery13,14 in
terms of operator quantum error correction15 and measurement-
based quantum computation16. This introduces the notion of
subsystem lattice surgery (SLS), a procedure that can be under-
stood as initializing and gauge fixing a single subsystem code. The
required operations act locally on the boundaries, preserve the 2D
structure, and are generators of a topological code. As all gen-
erators of the resulting code have constant size, errors on any of
their components only affect a constant number of qubits,
making the protocol inherently fault-tolerant. As we explicitly
show, this generalizes the methodology of lattice surgery to any
combination of 2D topological subsystem stabilizer codes, with
color-to-surface code switching as an example of particular
interest. While we restrict ourselves to 2D topological codes for
the better part of this paper, we show that the essential ingre-
dients of SLS carry over to higher-dimensional codes. In fact, the
procedure works even for non-topological codes at the expense of
locality. Therefore, our results represent a significant step toward
a fault-tolerant interface between robust quantum memories and
versatile quantum processors, independently of which topological
codes will ultimately prove to be most effective. The method
proposed here hence has the prospect of connecting different
components of a future quantum computer in an elegant, prac-
tical, and simple fashion.

Results
Stabilizer formalism. We consider a system comprised of n
qubits with Hilbert space H ¼ C2� ��n

. The group of Pauli
operators Pn on H is generated under multiplication by n
independent Pauli operators and the imaginary unit i. We write
Pn ¼ i;X1;Z1; :::;Xn;Znh i; where Xj, Zj are single-qubit Pauli
operators acting on qubit j. An element P 2 Pn has weight w(P) if
it acts nontrivially on w qubits. We define the stabilizer group
S ¼ S1; :::; Ssh i for s≤ n as an Abelian subgroup of Pn such that
the generators Si are independent operators ∀i= 1, ..., s and
�1 =2S. S defines a 2k-dimensional codespace C ¼ span ψj if gð Þ
of codewords ψj i 2 H through the condition S ψj i ¼ ψj i 8S 2 S,

encoding k= n − s qubits. We denote the normalizer of S by
NðSÞ, which here is the subgroup of Pn that commutes with all
elements of S. That is, elements of NðSÞ map the codespace to
itself. We write L ¼ NðSÞ=S for the (quotient) group of logical
operators which induces a tensor product structure on C, i.e.,
C ¼ �k

i¼1Hi. This construction implies that different logical Pauli
operators are distinct, non-trivial classes of operators with an
equivalence relation given by multiplication of stabilizers.

The distance of an error correction code is the smallest weight
of an error E 2 Pn such that E is undetectable. The code can
correct any set of errors E ¼ Eaf ga iff EaEb=2NðSÞ � ih iS
8Ea; Eb 2 E. A stabilizer code defined through S has distance d
iff NðSÞ � ih iS contains no elements of weight less than d.
Equivalently, any non-trivial element of L is supported on at least
d qubits. By the above error-correction condition, an error with
weight at most (d−1)/2 can be corrected while an error E with
weight d/2≤w(E)< d can only be detected. From a slightly
different perspective, codewords are degenerate ground states of
the Hamiltonian H ¼ �Ps

i¼1 Si. Adopting this viewpoint,
correctable errors are local excitations in the eigenspace of H
since they anticommute with at least one generator Si 2 S, while
logical operators map the degenerate ground space of H to itself.

Subsystem stabilizer formalism. A subsystem structure can be
induced on stabilizer codes by considering non-Abelian gauge
symmetries15. The group of gauge transformations is defined as
G ¼ LG ´S ´ ih i where S is a stabilizer group and LG is the group
of operators in NðSÞ � ih iS that are not in a non-trivial class of
L ¼ NðSÞ=G. This imposes a subsystem structure on the code-
space C ¼ HL �HG where all operators in G act trivially on the
logical subspace HL

17. While logical operators in L define logical
qubits in HL, operators in LG define so-called gauge qubits in
HG. That is, operations in L and LG both come in pairs of
(encoded) Pauli X and Z operators for each logical and gauge
qubit, respectively. We recover the stabilizer formalism if G is
Abelian, i.e., LG ¼ ;. As before, a set of errors E ¼ Eaf ga is
correctable iff EaEb=2NðSÞ � G 8Ea; Eb 2 E. Errors can again be
considered as local excitations in the eigenspace of a Hamiltonian
H ¼ �Pg

i¼1 Gi; where g is the number of generators Gi 2 G.

Topological stabilizer codes. Stabilizer codes S are called topo-
logical if generators Si 2 S have local support on a D-dimensional
lattice. Here we focus on 2D rectangular lattices Λ= [1, L] × [1,
L′] with linear dimensions L and L′ in the horizontal and vertical
direction, respectively, where qubits are located on vertices (not
necessarily all are occupied) but our discussion can be easily
extended to arbitrary regular lattices. We call a generator Si 2 S
local5 if it has support within a square containing at most r2

vertices for some constant r, called interaction range or diameter.
Moreover, we require of a TSC that its distance d can be made
arbitrarily large by increasing the lattice size. In other words, the
generators Si are not only local but also translationally invariant
at a suitable scale18. This definition of TSCs can be extended
straightforwardly to topological subsystem stabilizer codes
(TSSCs)19 where we impose locality on the generators of G
instead of S. Then, generators of S are not necessarily local.

Logical string operators. An intriguing feature of 2D topological
codes is that logical operators can be interpreted as moving
point-like excitations around the lattice, i.e. logical operators
form strings across the lattice. Specifically, for any 2D TSC or
TSSC on a lattice with open boundaries there exists a quasi-1D
string of tensor products of Pauli operators generating a logical
Pauli operator whose support can be covered by a rectangle of
size r × L′5, i.e., a vertical strip of width at most r. If S obeys the
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locality condition, logical operators can be implemented row-by-
row by applying Pauli operations along paths connecting two
boundaries such that excitations emerge only at its endpoints. If S
is not local, excitations might also emerge elsewhere since logical
operators can anticommute with generators that act nontrivially
on gauge qubits. Due to the translational invariance of generators
with respect to the underlying lattice, one can always increase the
code distance or choose the lattice such that there exists a logical
Pauli operator whose support is covered by a vertical strip of
maximal width r along the boundary (or at most a constant
number of lattice sites away from it).

Since it is a general feature of topological codes to support
logical string operators5, we can generalize the method of lattice
surgery13,14 to such codes. To this end, we consider any two TSCs
or TSSCs GA and GB on two 2D lattices, e.g., ΛA= [1, LA]2 and
ΛB= [1, LB]2, with open boundaries that have distances dA and
dB, respectively. We place the lattices such that their vertical
boundaries are aligned. Let PA

L 2 LA and PB
L 2 LB be two logical

operators defined along the aligned boundaries with maximal
width rA and rB, respectively, where rI is the interaction range of
code I=A, B. The logical operators act nontrivially on a set of
qubits, say QA and QB, respectively. Let NI= QIj j (for I=A, B)
and N=max{NA, NB}. W.l.o.g. we assume NA =N. We order the
sets QI according to walks along paths5 on ΛI running, e.g., from
top to bottom such that we can implement PI

L in a step-by-step
fashion as described above. We write QI= {1, 2, ..., NI} for such an
ordering. For ease of notation, we denote qubits in the support of
PI
L by i= 1, ..., NI since the association of qubits to the sets QI is

clear from the context. Consequently, the logical operators take
the form

PI
L ¼ PI

L;1 � PI
L;2 � :::� PI

L;NI
; ð1Þ

for single-qubit Pauli operators PI
L;i acting on qubits i with i= 1,

..., NI.

Merging protocol and code splitting. Given the two codes GA

and GB with respective logical Pauli operators PA
L and PB

L along
boundaries, the goal is to achieve a mapping
GA ´GB 7!GA ´GB ´ PA

L � PB
L

� �
that projects onto an eigenstate of

PA
L � PB

L (i.e., a Bell state). Therefore, we now define a fault-
tolerant protocol that merges the two codes into one, similar to
the method of lattice surgery, which has been developed for
surface codes13 and extended to color codes14. As we will see, the
merged code can then be split to realize the mapping described
above. The merging procedure has the following four steps.

(i) Including ancillas. We introduce a set QC of N − 1 ancillas
initialized in the +1 eigenstates of their respective Pauli X
operators. The ancillas are placed on newly added vertices along a
column between boundaries (Fig. 1a) and we order the set QC

accordingly from top to bottom, i.e., QC= {1, 2, ..., N − 1}. More
formally, including ancillas in þj i-states is equivalent to adding
N − 1 single-qubit X stabilizers to GA ´GB. Note that this step is
not strictly necessary but it has been included here to highlight
the similarity to lattice surgery. Nonetheless, this step is useful if
one operates solely on TSCs (rather than TSSCs), since this can
allow reducing the interaction range of the resulting merged code
(see Methods section for details).

(ii) Preparing lattices. Redundant vertices are added to the
lattices ΛA and ΛB without adding corresponding new qubits.
This corresponds to a relabeling that increases the interaction
range on both lattices and the distance between ancillas by at
most a constant r2, where r=max{rA, rB}. This is done in such a
way that horizontal strips of width (height) r contain the same
number of qubits in QA, QB, and QC (Fig. 1b). Beyond the strip
containing the last element of QB we only require the same
number of qubits in QA and QC, except for the last strip, where
QC contains one qubit less than QA. The lattices are then
connected along their vertical boundary such that the resulting
merged lattice ΛM has linear dimension LA + LB + 1 along the
horizontal direction. This step guarantees that the merged code
remains topological according to the definition above. If a
different definition of locality is adopted for topological codes,
step (ii) can be replaced by a stretching of the lattices to ensure
that the merged code is topological in the same sense as well.

(iii) Merging codes. After combining the underlying lattices,
the codes are merged. To this end, one measures N merging
operators, which are defined on the new lattice ΛM as

GM
i ¼ PA

L;iP
B
L;iZ

C
i Z

C
i�1 8i ¼ 1; :::;N ; ð2Þ

where ZC
i acts on ancilla i with Z0≡ 1 and ZN≡ 1. Since NA≥NB,

we identify PB
L;i � 1 for i>NB.

(iv) Correcting errors. In order to retain full fault tolerance,
dmin=min{dA, dB} rounds of error correction are required on the
merged code. For this purpose, the structure of the merged code
can be deduced from the SLS formalism that is introduced and
analyzed in Methods section.

We now formulate the following theorem.

Theorem 1. For any two TSCs (or TSSCs) defined on regular 2D
lattices with open boundaries, the procedure described in steps
(i)–(iv) fault-tolerantly projects onto an eigenstate of PA

L P
B
L .

Moreover, all operations in steps (iii) and (iv) correspond to
generators of a TSSC defined on the merged lattice with
potentially increased interaction range and distance no less than
the minimum distance of the merged codes.

For the proof of Theorem 1, we refer to Methods section, where
the required SLS formalism is described in full detail. In this
approach, the merged code is effectively treated as a subsystem
code and the original codes GA and GB are recovered by gauge
fixing. Note that in the merged code, some stabilizers at the
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Fig. 1 Subsystem lattice surgery between two topological codes. a
Depiction of two topological codes defined on lattices ΛA and ΛB (grid not
shown), respectively. Logical Pauli operators PIL of the respective codes I=
A, B are represented by solid red lines connecting qubits (blue dots) within
ΛA and ΛB, respectively. These operators have support on a vertical strip
(gray areas) of width rI for I=A,B. Qubits in the support of PIL are
associated with a set QI. Ancillas added in step (i) of the merging protocol
are depicted as red dots and are associated with a set QC. Merging
operations GM

i , which are defined in Eq. (2), are indicated (in part) by
dashed green lines (with only the ith component being covered). The
product of all merging operations acts as PAL � PBL such that a collective
measurement projects onto a joint eigenstate of the two logical operators.
Here, the diameter of an operator GM

i can grow with the lattice sizes since
rA> rB. b Adding redundant vertices (gray dots) to the lattices increases the
interaction range of the codes such that QA, QB, and QC contain the same
number of qubits within each horizontal strip of thickness r between
adjacent blue, dashed lines (e.g., the yellow area). Then, the diameter of
merging operators can be kept constant, i.e., independent of the system
size
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boundary are merged while others can generate new gauge qubits.
More details on the merged code structure in the most general
case and in the case of a specific TSSC can be found in the
Methods section. After the merging procedure described in steps
(i)–(iv), the two individual codes can be recovered by measuring
all ancillas in the X-basis. In this case the merged code is split and
the two logical subspaces are left in a joint eigenstate of their
respective Pauli operators. Here it is important to note that error
correction has to be performed on the separate codes in order to
retain full fault tolerance13. Quantum information can then be
teleported from one logical subspace to the other by measure-
ment. This fault-tolerant way of transferring quantum states from
one arbitrary TSC (or TSSC) to another provides a simple
method that allows exploiting the advantages of different error
correction codes. In particular, it can be used to realize an
interface between a quantum memory (e.g., based on a surface
code) and a quantum processor (using, for example, a color code).
We will therefore now demonstrate our protocol for this crucial
example of two TSCs.

Color-to-surface code switching. The archetypical examples for
TSCs are surface codes (SC) and color codes (CC). Surface codes6

are defined on 2-face-colorable regular lattices with qubits located
on vertices. The two colors are identified with X- or Z-type
generators SXp ; S

Z
p 2 S SCð Þ, respectively, acting as SPp ¼ Q

v2NðpÞ Pv ,
whereNðpÞ is the set of vertices adjacent to the plaquette p and P
= X, Z (Fig. 2a). Horizontal and vertical boundaries cut through
plaquettes and can be associated with their respective colors. The
lattice is constructed such that opposite boundaries are identified
with the same color. The number of logical qubits can be obtained
by a simple counting argument. It is given by the difference
between the number of physical qubits and the number of
independent stabilizers. For the SC, the former is equal to the
number of vertices v, while the latter equals the number of faces
f. Since v − f= 1, we find that the SC encodes a single logical
qubit. Logical operators for SCs are strings connecting boundaries
of the same color that are separated by a boundary of a different
color. Note that, for any choice of SC, one such logical operator is
guaranteed to be aligned with the chosen (e.g., the vertical)
boundary5, but one may not be able to freely choose whether this
logical operator is of Z- or X-type. 2D color codes8 are defined on
3-face-colorable regular lattices with qubits located on vertices.
The generators of the corresponding stabilizer group S CCð Þ are
pairs of operators SXp and SZp , i.e., two independent stabilizers per
plaquette. The lattice is constructed such that we can use three
colors to distinguish three types of boundaries and plaquettes.
That is, any two adjacent plaquettes have different colors from
each other and from their adjacent boundary (Fig. 2). In the CC,
the number of physical qubits is equal to the number of vertices,
but there are two independent stabilizers for each face. A quick
count then reveals that the CC encodes one (v − 2f= 1) logical
qubit. Logical operators for CCs are string operators along the
lattice connecting three boundaries of different colors. This
implies that there exists a string along the boundary of one type
that effectively connects all three boundaries.

As an example for the application of our protocol let us
consider the situation shown in Fig. 2a, where the outcome of a
quantum computation, encoded in an arbitrary logical state
ψLj i ¼ α 0j i þ β 1j i of a color code, is transferred to a quantum
memory based on a surface code initialized in the state þLj i. A
circuit representation of this task is shown in Fig. 3. Since both
initial codes in Fig. 2a have distance 3, we include two ancillas in
the state þj i, as instructed in step (i). Step (ii) of the protocol can
be omitted since the lattices in this example already have the
desired structure. As laid out in step (iii) and illustrated in Fig. 2b,
one then measures joint Z stabilizers across the boundary,
projecting the two surfaces onto a single, merged surface (M)
corresponding to an eigenstate of Z SCð Þ

L Z CCð Þ
L . That is, the merging

procedure projects onto a merged code that contains Z SCð Þ
L Z CCð Þ

L
as a stabilizer. The reduced 2D logical subspace can be
represented by Z Mð Þ

L ¼ Z CCð Þ
L and a merged XL operator along

ZL
(M)

ZL
(CC)ZL

(SC)

XL
(M)

XL
(SC)

XL
(CC)

b

a

Fig. 2 Lattice surgery between a surface and a color code. a Examples of a
surface code (SC) and a color code (CC) with distance 3 defined on lattices
with open boundaries. Different types of boundaries are color coded. Qubits
are located on vertices depicted in blue. While plaquettes in the surface
code correspond to X-type (yellow) and Z-type (orange) stabilizers,
respectively, each plaquette in the color code corresponds to both X- and Z-
type stabilizers. Representative logical Pauli operators XL and ZL are
depicted by dashed lines and are tensor products of single-qubit X and Z
operators, respectively. b Merging stabilizers are (orange) plaquette
operators acting as Z on qubits along the boundary and ancillas (all shown
in fuchsia). Measuring all merging stabilizers projects onto a joint
eigenstate of the two logical operators Z SCð Þ

L and Z CCð Þ
L . While Z-type

stabilizers remain unaffected, the procedure merges X-type stabilizers and
logical X operators, respectively, as displayed. In particular, the resulting
merged code, labeled by M, encodes only one remaining logical qubit
defined by ZðMÞ

L and XðMÞ
L . Note that the geometry of the underlying codes

can be chosen to fit the geometry of a specific computational architecture.
Note further that there are many different layouts realizing the same error
correction code and this figure merely shows a common variant

|�L〉

m2

m1MZZ

|�L〉

|+L〉

MX

XL ZL

Fig. 3 Circuit for measurement-based information processing implemented
via lattice surgery. The upper and lower single, horizontal lines correspond
to the logical qubits encoded in the color and surface codes, respectively.
MZZ andMX are projective measurements that project onto an eigenstate of
ZL ⊗ ZL and XL ⊗ 1L respectively. MZZ is implemented through the merging
protocol and code splitting described in the main text. The double lines
labeled m1 and m2 represent classical conditioning of the XL and ZL gates on
the measurement outcomes m1 and m2, respectively

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01418-2

4 NATURE COMMUNICATIONS |8:  1321 |DOI: 10.1038/s41467-017-01418-2 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


both surfaces, e.g., X Mð Þ
L ¼ X SCð Þ � X CCð Þ. Since both color and

surface codes are TSCs, the merged code can be understood as a
TSC (as opposed to a TSSC) and merging operators coincide with
merging stabilizers. Then, as instructed in Fig. 2b, X-type
stabilizers have to be extended onto ancillas while Z stabilizers
remain unaffected. For details on the distinction between TSSCs
and TSCs, we refer to the SLS formalism introduced in the
Methods. Having obtained this merged code of distance 3, three
consecutive rounds of error correction ensure fault tolerance as
suggested in step (iv). Note that the merging procedure increases
the bias toward X-type errors since the minimum weight of
logical X operators is increased. However, note that increasing the
weight (and interaction range) of X stabilizers on the boundary
can cause a temporarily worse error correction performance w.r.t.
Z errors for the merged code than for the individual codes.

Irrespective of this we can then proceed by splitting the codes.
To this end, we simply measure ancillas in the X-basis, while
refraining from further measurement of the merging stabilizers.
This procedure projects onto the separate surfaces while
entangling the logical subspaces. After another three rounds of
error correction to preserve fault tolerance, measuring X CCð Þ

L
teleports the information according to the circuit displayed in
Fig. 3.

Discussion
We have introduced the method of subsystem lattice surgery
(SLS) as a generalization of lattice surgery13,14 to any pair of 2D
topological codes, exploiting their similarities20. The applicability
of our algorithm to all topological codes such that all topological
features are preserved arises from their property to support
logical string operators on the boundary5. Therefore, the rele-
vance of our algorithm remains unchanged even if other topo-
logical codes, such as the subsystem surface code21 (see also the
Methods section) or Bacon-Shor code22–24, are used as quantum
memories or processors. Indeed, our method can even be gen-
eralized beyond 2D topological codes at the expense of the 2D
layout or topological features (see Methods section for details).

In contrast to the method of code deformation18,25,26, where a
single underlying lattice is smoothly deformed everywhere
through multiple rounds of local Clifford transformations, we
combine two initially separate lattices through operations within
constant distance of their boundaries. To the best of our
knowledge, other established methods for code conversion27–29

have either been applied solely to specific codes, or have not been
generalized to subsystem codes.

To highlight the usefulness of incorporating SLS into future
quantum computers, let us briefly assess the current contenders
for fault-tolerant quantum computation. At present, one of the
most promising techniques is SC quantum computation supple-
mented by magic state injection30 in order to promote it to a
universal quantum computer. However, the overhead on magic
state distillation is large6,7 and it is expected that more effort will
be directed towards identifying more resource-efficient techni-
ques. At the same time, other approaches to universal fault-
tolerant quantum computation are significantly constrained by
no-go theorems that prohibit a universal set of transversal gates in
a single stabilizer code31 and transversal non-Clifford gates in 2D
topological codes32,33. The former no-go theorem can be cir-
cumvented by gauge fixing11,34 or (subsystem) lattice surgery, and
is hence no issue for our approach. The latter no-go theorem can
be avoided in a 3D architecture or non-topological codes35–37.
One potential replacement for magic state distillation is hence the
3D gauge color code11,38 which successfully sidesteps both no-go
theorems. Even though the resource requirement is similar to that
of quantum computation with the surface code38, 3D topological

codes support other useful features such as single-shot error
correction39. As we show in the Methods section, SLS can also be
employed to switch between codes of different dimensions, as
well as between topological and non-topological codes. This
facilitates the circumvention of both no-go theorems in an elegant
fashion. At this point it should also be pointed out that many
non-topological codes supporting transversal non-Clifford
gates35–37 have lower resource requirements than comparable
3D topological codes or magic state distillation. However, while
all 2D (and some 3D) TSSCs (including the merged code that
appears during SLS) with local stabilizers feature error thresh-
olds19,38, the existence of error thresholds has not been proven for
any of the mentioned non-topological codes. That is, in the case
of non-topological codes it is not guaranteed that the storage time
can be made arbitrarily large by enlarging the code distance.
Codes have to be concatenated instead4.

In any of these cases, quantum computers can only be expected
to operate as well as their weakest link. Here, this applies to the
error correction code used. The clear advantage of SLS in this
context is that the weakest link (i.e., code) may be employed on-
demand only and can otherwise be avoided. For instance, in a
distributed architecture a code for the implementation of, e.g., a
non-Clifford operation can be called only when required. In this
scenario, SLS is particularly beneficial since non-Clifford opera-
tions could also unfavorably transform errors present in the
system36, while SLS does not carry such errors to other codes. SLS
should thus not be seen as a stand-alone contender with other
methods of realizing universal fault-tolerant quantum computa-
tion, but rather as a facilitator thereof, allowing to selectively
combine and exploit the advantages of other methods. We hence
expect lattice surgery to play a crucial role in future quantum
computers, be it as an element of a quantum bus or for dis-
tributed quantum computing29.

Our findings further motivate experimental efforts to develop
architectures that are flexible enough to implement and connect
surface and color codes and/or other codes. For instance, ion trap
quantum computers40 may provide a platform soon capable of
performing lattice surgery between two distinct codes. In this
endeavor, the inherent flexibility attributed to multizone trap
arrays41 may be beneficial. Moreover, topological codes and our
approach to code switching are obvious choices for fault-tolerant
quantum computation with architectures requiring nearest-
neighbor interactions in fixed setups, such as superconducting
qubits42 or nitrogen-vacancy diamond arrays43. However, given
the local structure of topological codes and the simplicity of our
algorithm, the requirements for any architecture are compara-
tively low.

Despite the inherent fault tolerance of SLS, the codes on which
it is performed are nonetheless subject to errors. Further inves-
tigations of error thresholds2,19 for (non-)topological codes and
bench-marking44 are therefore required, in particular with regard
to (subsystem) lattice surgery. Finally, our code switching method
may find application in the design of adaptive error correction
schemes45.

Methods
Subsystem lattice surgery. In the main text, we have introduced a subsystem
lattice surgery (SLS) protocol that is applicable to arbitrary 2D TSSCs, and we have
shown how it can be used to teleport quantum information between surface and
color codes. In this Methods section, we explain how lattice surgery can be
understood entirely within the subsystem stabilizer formalism. To this end, we
define SLS by the fault-tolerant mapping GA ´GB 7!GA ´GB ´ PA

L � PB
L

� �
, where the

merging procedure as described in steps (i)–(iv) and formalized in Theorem 1 is an
initialization of an intermediate, merged code GM and the splitting fixes gauge
degrees-of-freedom to obtain GA ´GB ´ PA

L � PB
L

� �
from GM.

To see this, we again consider two “standard” TSSCs, GA and GB. Note that we
thereby exclude certain pathological “exotic” codes as will be explained in the proof
of Lemma 1. Adopting the previous notation, we assume that the lattices have been
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chosen such that the logical operators PI
L (I=A, B) along their boundaries have

support on NA and NB qubits, respectively. For ease of presentation we further
choose NA=NB=N. Now, let GI with I=A, B be codes characterized by the tuples
[[nI, kI, gI, dI]], where nI are the numbers of physical qubits, kI the numbers of
logical qubits, gI the numbers of gauge qubits, and dI are the distances, respectively.
We choose the generating set fGI

1; :::;G
I
sIþ2gI

g for code GI , where sI= nI − kI − gI is
the number of independent stabilizer generators (or the number of stabilizer qubits
in accordance with our previous terminology). The lattices are then aligned and
prepared as in step (ii) of the algorithm described in the main text, but we omit
including ancillas for now. We proceed by defining the merging operators

GM
i ¼ PA

L;iP
B
L;i 8i ¼ 1; :::;N ð3Þ

on the merged lattice ΛM. From these merging operators, we then collect Δg≤N −
1 (where the meaning of this notation becomes apparent in the following section)
inequivalent ones (w.r.t. GA ´GB ´ PA

L � PB
L

� �
) in the set W ¼ GM

i

� �
i¼1;:::;Δg , and

call the group generated by these operators M. We refer to elements of W as
merging generators. This allows us to define the subsystem code

GM :¼ GA
1 ; :::;G

A
sAþ2gA

D E
´ GB

1 ; :::;G
B
sBþ2gB

D E
´M´ ih i: ð4Þ

Note that, technically, Eq. (4) specifies a subsystem stabilizer code only if the center
of GM is non-empty, such that a stabilizer subgroup SM can be defined. That this is
indeed the case follows from Lemma 2. As we will show next, the code GM has the
structure of the merged code discussed in Theorem 1. The essential features of this
structure can be captured in the following Lemma.

Lemma 1. The code GM defined in Eq. (4) is a TSSC on the merged lattice ΛM with
distance no less than dmin=min({dA, dB}). In addition, GM can be gauge fixed to
GA ´GB ´ PA

L � PB
L

� �
, effectively splitting the code into GA and GB.

Proof. First, let us show that GM obeys the locality condition for TSSCs. By
definition, generators of the separated codes are also generators of the merged code.
Their interaction range is increased by at most a constant along the vertical
direction due to the relabeling in step (ii). Thereby, the interaction range of
merging generators is also kept constant. The generators of the code GM are hence
all local.

Second, we verify that the distance of the merged code is at least dmin. Since
GA ´GB ´ PA

L � PB
L

� �
is a subgroup of GM, the normalizer N GM� �

is a subgroup of
N GA ´GB ´ PA

L � PB
L

� �� �
. Then, note that there exist stabilizers S 2 SA ´SB that

anticommute with some GM 2 M. If that was not the case, all GMjQI
would either

be elements of the code GI or undetectable errors. The latter option can be ruled
out in accordance with the argument in the proof of Lemma 2. The former option,
GMjQI

2 GI 8GM 2 M, would imply that PI
L is not a logical operator. In a quantum

error correction code, such mutually anticommuting operators act either on the
logical subspace or on gauge qubits. However, any stabilizer of the separate codes is
also contained in GM according to the definition of the merged code in Eq. (4).
Now recall that if GM is a subsystem stabilizer code, it can be decomposed as
GM ¼ LM

G ´SM ´ ih i, as explained in the main text. Therefore, the aforementioned
anticommuting stabilizers S must act on gauge qubits and we can hence identify S
as belonging to LM

G . Later, we will further elaborate on the structure of GM. Since
SA ´SB contains elements that are not in the stabilizer of GM but not vice versa,
SM must be a subgroup of SA ´SB ´ PA

L � PB
L

� �
. Consequently, any equivalence

class of N GM
� �

=SM is contained in an equivalence class of
N GA ´GB ´ PA

L � PB
L

� �� �
= SA ´SB ´ PA

L � PB
L

� �� �
.

The quotient group NðGÞ=S defines so-called bare logical operators that do not
act on gauge qubits. Generally, NðGÞ= ih iS contains all information about the
logical operators but not about all undetectable errors. At the same time,
undetectable errors are related to bare logical operators, since NðSÞ=G ’
NðGÞ= ih iS for any subsystem stabilizer code G19. To conclude then that the
distance of GM is dmin, we have to verify that deformations (i.e., multiplications) of
any non-trivial, logical operators P 2 N GM

� �
=SM by operators in GM yield

operators of weight at least dmin. Since any such P is also contained in LA ´LB this
is true for deformations by operators in GA ´GB. But we still need to confirm this
for operators in GM � GA ´GB

� �
. Specifically, we have to consider deformations

under GM
i

� �
i¼1;:::;N . In principle, these merging operators can reduce the weight of

operators P below dmin. However, this can only happen under rather exotic
circumstances. That is, only for logical operators of the form P= PA ⊗ PB, where
PI 2 LI (I =A, B) and PI≁PI

L acts as PI
L on a region KI ⊂ QI such that for the

complementary regions KI (with KI ∪KI being the set of all qubits on lattice ΛI and
KI \ KI ¼ KI � KI) the weights of these operators satisfy 0<wðPAjKA

Þ þ
wðPBjKB

Þ<dmin independently of the system size. Here we make use of the fact that
QA and QB have been labeled equally (cf. main text) and write with a slight abuse of
notation KI \ KI ¼ KI � KI (where I ¼ B if I=A and vice versa). In the scenario
described above, one could define the logical operator PA � PB �Q

i2KA\KB
GM
i

with weight 0<wðPAjKA
Þ þ wðPBjKB

Þ<dmin. At the same time, this also constricts
PI
L since PI must be such that wðPI � PI

LÞ � dmin. Since this describes extremely

restricted cases that (to the best of our knowledge) do not feature in any practical
scenario, we will exclude codes with such properties from our construction.

Note that we can also exclude cases where wðPAjKA
Þ þ wðPBjKB

Þ ¼ 0. In such

cases at least two logical operators PA;PB 2 LA ´LB with suppðPIÞ � suppðPI
LÞ

(I=A, B) exist. However, we are only interested in projecting onto the joint
eigenstate of any two logical operators PA

L and PB
L along the boundary. Therefore,

we can always exclude the aforementioned case by choosing PA
L and PB

L such that
there does not exist a logical operator that has support on a subset of QI. In the case
of TSSC with non-local stabilizers, such logical operators may have support on
disconnected regions of a lattice19. Then, these regions have to be connected using
local generators to obtain proper string operators. Then, any non-trivial logical
operator of the merged code has support on at least dmin qubits. The distance of the
merged code is hence at least dmin.

Third, the merged code is scalable since the separate codes are scalable. Thus,
we can conclude that GM is indeed a TSSC. At last, note that fixing SM to SA ´SB

through a measurement of stabilizers S 2 SA ´SB anticommuting with at least one
merging generator, the separate codes can be recovered while retaining the
eigenstate of PA

L � PB
L . This gauge fixing has to be accompanied by error correction

to ensure full fault tolerance. Q.E.D.
To finally prove Theorem 1, we will now explain the connection between the

merged code GM defined in Eq. (4) and the framework discussed in the main text.
The merging procedure described in steps (ii)–(iv) can be understood as an
initialization of the merged code. Specifically, measuring merging generators as in
Eq. (3) (or similarly, Eq. (2)) initializes GM from the prepared codes GA ´GB. The
parity of all random measurement outcomes yields the parity of PA

L � PB
L and error

correction has to be performed thereafter in order to ensure correctness (see step
(iv)). Fault tolerance is guaranteed since merging generators are constant-weight
and errors can only propagate to a constant number of physical qubits. Since we
have established in Lemma 1 that GM is indeed a TSSC with distance at least dmin,
this concludes the proof of Theorem 1.

Altogether, by proving Theorem 1 and Lemma 1, we showed that SLS is fault-
tolerant and well-defined through a merging, i.e., a mapping GA ´GB 7!GM,
followed by a splitting, i.e., a mapping GM 7!GA ´GB ´ PA

L � PB
L

� �
.

Concluding this Methods section, we return to the discussion of the ancillas
added during step (i) of the preparation. As already discussed in the main text,
ancillas can be understood as additional stabilizer qubits included into the initial
codes. In the merged code these become gauge qubits. The usefulness of ancillas
arises when one considers TSCs as it is the case for the example discussed in the
Results section. In that case the merged code can be understood as a TSC with
stabilizers merged across the boundary. Here, introducing ancillas means that
stabilizers of one surface are instead merged with stabilizers of ancillas, allowing for
the possibility of reducing the interaction range of the merged code.

Merged code structure. In this section, we provide a careful analysis of the
merged code. In particular, we will discuss the structure of the subgroups SM and
LM
G . Here we claim that GM is a [[nA + nB, kA + kB − 1, gA + gB +Δg, dM]] code with

distance dM≥ dmin. That is, the distance dM merged code has nA + nB physical
qubits, kA + kB − 1 logical qubits, and gA + gB +Δg gauge qubits, where Δg is the
number of merging generators (see Eq. (3)). To see this, we have to understand the
structure of SM and GM

G in comparison with the separate codes GA ´GB.
First, note that we can define Δg new gauge qubits via their respective Pauli

operators GM
i ; Si

� �
i¼1;:::;Δg where Si ∈ SA × SB ∀i such that GM

i ; Sj
� 	 ¼ 0 for i≠ j.

That is, there exist Δg independent stabilizers which are now included as gauge
operators together with the same number of merging generators. As we will see, the
existence of such stabilizers is guaranteed by the choice of logical operators PA

L and
PB
L as explained in the proof of Lemma 1.

Lemma 2. For the operators PA
L and PB

L chosen above there exists a stabilizer
Si 2 SA ´SB for any merging generator GM

i 2 W such that GM
i ; Si

� � ¼ 0 and
GM
j ; Si

h i
¼ 0 8GM

j 2 W � GM
i

� �
.

Proof. Suppose such a stabilizer does not exist. Then, there exists a G 2 M that
yields the same error syndrome as GM

i , i.e., ψ GM
i G



 

ψ� � ¼ 0 for any codeword
ψj i 2 CA ´ CB. Since GM

i G =2GA ´GB, it is a non-trivial logical operator in LA ´LB.
Combining this with the fact that W � fGM

j gj¼1;:::;N , the existence of the logical

operator GM
i G is not compatible with our construction of PI

L as discussed in the
proof of Lemma 1. That is, there exist no logical operators PI 2 LI with
supp PIð Þ � supp PI

L

� �
(I=A, B) for our choice of PI

L. Q.E.D.
We have hence defined Δg new gauge qubits by W and the same number of

independent stabilizers. As another consequence of Lemma 2, we can also define an
additional stabilizer equivalent to PA

L � PB
L . That is, the merged code has sA + sB −

Δg + 1 independent stabilizers and thus, a necessarily non-empty center (but
reduced logical subspace).

To complete our analysis of the merged code, we have to verify that GM still
contains gA + gB gauge qubits besides new ones. Therefore, note that there might
exist pairs of gauge operators g; ~g 2 LA

G ´LB
G generating a gauge qubit, for which

fg;GM
j g ¼ 0 with GM

j 2 W ∀j ∈ J where J ⊆ {1, ..., Δg}. While the associated gauge

qubit in LA
G ´LB

G was defined by ~g; gh i, in the merged code it is redefined to be
generated by h~g; g �Q

j2J Sji. Here, Sj 2 LM
G is associated with one of the Δg new

gauge qubits introduced above. W.l.o.g. we have assumed that ½~g;GM
j � ¼ 0 ∀j= 1,
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..., Δg. Otherwise, we would simply have to apply the same argument to ~g 2
LA
G ´LB

G with f~g;GM
j g ¼ 0 for some j ∈ J′ ⊆ {1, ..., Δg}.

One can see that this code is indeed generated as indicated in Eq. (4). Hence, the
distinction to the separated codes is that some stabilizers now act on gauge qubits
which can be reversed by gauge fixing. Interestingly, applying this formalism to two
Bacon-Shor codes22 on regular square lattices [1, L]2, yields a merged, asymmetric
Bacon-Shor code23 on a [1, 2L] × [1, L] lattice.

Subsystem surface code lattice surgery. Here, we exemplify SLS by means of the
subsystem surface code (SSC)21. Therefore, consider two such codes GA and GB

defined on regular square lattices [1, L]2 with qubits located on vertices. In Fig. 4a,
we chose the smallest SSC with distance d= L= 3 defining a unit cell where the
central vertex is unoccupied. The codes are generated by triangle and boundary
operators, labeled GI

i and SIi , respectively, with i= 1, ..., 4 and I=A, B (Fig. 4a).
Triangle operators fGI

igi¼1;:::;4 act on qubits adjacent to a triangular plaquette p as
GI
i ¼

Q
v2N ðpÞ Xv for i= 2, 3 and GI

i ¼
Q

v2N ðpÞ Zv for i= 1, 4. Boundary operators

fSIi gi¼1;:::;4 are weight-two Pauli operators acting on every other pair of boundary
qubits as either X-type or Z-type operators for i= 1, 4 and
i= 2, 3, respectively. The stabilizer group is defined as

SI ¼ SI1; :::; S
I
4;G

I
1G

I
4;G

I
2G

I
3

� �
: ð5Þ

Henceforth, we write A∝ B whenever we identify a group A with a generating set B
up to phases. A single gauge qubit is defined up to irrelevant phases by

LI
G / GI

1;G
I
3

� �
: ð6Þ

Logical operators XI
L and ZI

L are tensor products of single-qubit Pauli X- and Z
operators, respectively, connecting two opposite boundaries as shown in Fig. 4a.

Now we initialize a merged code by measuring merging generators fGM
i gi¼1;2;3

as depicted in Fig. 4b. The merged code is left with 5 stabilizer qubits,

SM ¼ SA1 ; S
B
4 ;G

A
2 G

A
3 S

B
1 ; S

A
4 G

B
2G

B
3 ;Z

A
L Z

B
L

� �
; ð7Þ

where we only kept stabilizers in SA ´SB that commute with the merging

generators. Consequently, we can identify 2 additional gauge qubits, i.e., 4 in total,

LM
G / GA

1 ;G
A
3 S

B
1 ;G

B
1 ;G

B
3 ;G

M
1 ; S

B
1 ;G

M
3 ; S

A
4

� �
: ð8Þ

Here we included a semicolon between generators of independent gauge qubits and
neglected additional phases. Evidently, this code has the structure predicted in the
preceding Methods section and is indeed a TSSC with distance 3.

Beyond 2D topological codes. Finally, let us discuss the applicability of SLS to
higher-dimensional topological codes as well as to non-topological codes. As we
shall argue, all of the above holds true in these cases. In short, this is because the
essential feature of SLS is to project onto a joint eigenstate of two logical operators
by measuring generators of a merged code. Such a merged code can always be
formally defined, irrespective of whether or not the initial codes are topological.

Let us first consider topological codes in more than two dimensions. For
instance, 3D topological codes (as opposed to 2D topological codes) can support
membrane-like logical operators on their 2D boundary46,47. Similarly, it can be
expected that most topological codes in D dimensions can support logical operators
that are associated with (D − 1)-dimensional extended objects on the boundary46.
With this assumption, it is straightforward to show that SLS can be applied in any
dimension. This leaves us with the question of whether SLS can also be used to
switch between dimensions. This is indeed the case, since, interestingly, 3D
topological codes also support string-like logical operators33 which can be used to
teleport information from a 2D topological code to a higher-dimensional one via
SLS. In fact, at the expense of its 2D layout, a 2D code can even be wrapped along
the surface of a 3D code to perform SLS between a string- and a membrane-like
logical operator while preserving a 3D notion of locality.

Finally, let us consider the effects of relaxing the constraint of demanding
topological features for the quantum error correction codes under scrutiny. For
such codes there exists no notion of locality or scalability. Therefore, an underlying
lattice of physical qubits cannot be defined in a meaningful way. However, when
revising the arguments from Lemmas 1 and 2 in the spirit of non-topological codes,
it turns out that one does not require any topological features to prove that the
distance of the merged code is the minimum distance of the initial codes. Neither is
it necessary to require locality or scalability to show that the merged code can be
gauge-fixed to the original codes. The merged code as specified in Eq. (4) is always
well-defined algebraically even without topological features. That is, at the expense
of locality and/or scalability, Lemmas 1 and 2 hold and we can use SLS to switch
between topological and non-topological codes. Nevertheless, one can expect that
scalability in particular is a feature that is desirable for any code. Therefore, let us
note that the merged code is scalable if the separate codes are scalable even if it is
not topological otherwise. As an example of codes that are scalable but not
topological consider the doubled codes36 which are also amenable for SLS.

Data availability. Data sharing is not applicable to this article as no data sets were
generated or analyzed during the current study.
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