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Abstract
Background: Renal	tumors	are	highly	heterogeneous,	and	identification	of	tumor	het-
erogeneity	is	an	urgent	clinical	need	for	effective	treatment.	Mass	cytometry	(MC)	
can	be	used	to	perform	high-dimensional	single-cell	proteomics	analysis	of	hetero-
geneous	samples	via	cytometry	by	time-of-flight	(CyTOF),	in	order	to	achieve	more	
accurate observation and classification of phenotypes within a cell population. This 
study	aimed	to	develop	a	high-dimensional	MC	method	for	the	detection	and	analysis	
of heterogeneity in renal tumors.
Materials and Methods: We collected tissue samples from 8 patients with different 
types	 of	 renal	 tumors.	 Single-cell	 suspensions	were	 prepared	 and	 stained	 using	 a	
panel	of	28	immune	cell-centric	antibodies	and	a	panel	of	21	stem-like	cell-centric	
antibodies.	The	stained	cells	were	detected	using	CyTOF.
Result: Renal	 tumors	were	divided	 into	25	 immune	cell	subsets	 (4	CD4+	T	cells,	7	
CD8+	T	cells,	1	B	cells,	8	macrophages,	1	dendritic	cells,	2	natural	killer	(NK)	cells,	1	
granulocyte,	and	1	other	subset)	and	7	stem-like	cells	subsets	(based	on	positivity	of	
vimentin,	CD326,	CD34,	CD90,	CD13,	CD44,	and	CD47).	Different	 types	of	 renal	
tumors have different cell subsets with significantly different characteristics.
Conclusion: High-dimensional	 single-cell	 proteomics	 analysis	using	MC	aids	 in	 the	
discovery	and	analysis	of	renal	tumors	heterogeneity.	Additionally,	it	can	be	used	to	
accurately	classify	the	 immune	cell	population	and	analyze	the	expression	of	stem	
cell-related	markers	 in	 renal	 tumors.	Our	 findings	 provide	 a	 valuable	 resource	 for	
deciphering tumor heterogeneity and might improve the clinical management of pa-
tients with renal tumors.
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1  | BACKGROUND

Renal	cell	carcinoma	(RCC)	is	the	most	common	type	of	renal	tumors,	
and it is derived from the epithelium of the renal tubules.1 Several 
subtypes	of	RCC	have	been	defined.	Clear	cell	RCC	(ccRCC)	 is	 the	
most	common	subtype,2	which	accounts	for	approximately	70%	of	
all RCC cases and is associated with poor prognosis due to its high 
potential for metastasis and recurrence.3	Papillary	RCC	(pRCC),	the	
second	most	common	subtype,	comprises	of	15%-20%	of	RCC	and	
is	associated	with	high	5-year	survival	rate	(80%-90%).	Hence,	the	
prognosis of pRCC is better than that of ccRCC.4 Chromophobe RCC 
(chRCC)	accounts	for	6%-11%	of	all	RCC	cases	and	has	a	good	prog-
nosis and low metastasis rate.5	The	frequency	of	occurrence	of	other	
rare	types	of	RCC	 is	 less	 than	1%.6	Metanephric	adenoma	 (MA)	 is	
an	uncommon	benign	 type	of	 renal	 tumors,	 and	 it	 is	derived	 from	
the residual renal organization during embryonic development.7	 In	
addition,	although	uncommon,	urothelial	carcinoma	(UC)	of	the	renal	
pelvis is classified as renal tumors and is characterized by high ma-
lignancy and poor prognosis.8 The differences between these his-
tological subtypes of renal tumors are important as they emphasize 
that renal tumors should not be treated as a single disease and in a 
uniform	manner.	In	addition,	renal	tumors	are	highly	heterogeneous.	
The heterogeneity of tumors introduces significant challenges in 
prediction of therapeutic effect as well as for classifying patients 
that might benefit from specific therapies.9	 Hence,	 the	 study	 of	
renal tumor heterogeneity is an urgent clinical need for effective 
treatment.

Tumor microenvironment is one of the main causes of renal 
tumor	 heterogeneity.	 The	 tumor	 microenvironment	 exerts	 se-
lective	 pressure	 in	 distinct	 regions	 of	 the	 tumor,	 generating	 in-
tra-tumor	heterogeneity,10	which	is	the	key	to	the	treatment	and	
prognosis	of	 tumors.	Tumor-infiltrating	 immune	cells	 are	 import-
ant cellular components of tumor microenvironment.11	It	has	been	
linked	to	prognosis	and	response	to	immunotherapy.	For	instance,	
tumor-associated	 macrophages	 are	 significant	 for	 promoting	 or	
blocking	 tumor	 progression.12	 In	 pRCC,	 M1	 macrophages	 were	
associated	with	a	 favorable	outcome,	while	M2	macrophages	 in-
dicated a worse outcome.13	 In	 addition,	CD8+	T	cells	have	been	
associated with improved clinical outcomes and response to 
immunotherapy.	 However,	 due	 to	 the	 limitations	 of	 traditional	
research	methods,	the	phenotypes	of	many	tumor-infiltrating	im-
mune	subpopulations	are	not	well	described.	Therefore,	we	need	a	
suitable approach to achieve more accurate observation and clas-
sification	of	phenotypes	within	a	cell	population,	which	is	of	great	
significance for revealing the heterogeneity.

Cancer	stem	cells	(CSCs)	are	another	important	cause	of	renal	
tumor heterogeneity. Cancer stem cells are a small population 
of neoplastic cells within a tumor which sustains tumor growth 
through	 self-renewal	 and	 differentiation.1	 In	 the	 CSCs	model,	 a	
stem-like	cells	population	contributes	to	metastasis	(tumorigenic-
ity),	 treatment	resistance,	and	recurrence.14	Therefore,	CSCs	are	
the most optimal target populations of therapy and essential for 
clinical targeting.15	For	a	 long	time,	many	researchers	have	been	

committed	 to	 look	 for	 specific	 surface	 markers	 on	 tumor	 stem	
cells.	So	 far,	different	approaches	have	been	developed	 in	order	
to isolate the CSCs.16,17	 Consequently,	 specific	markers	 such	 as	
CD105,	 ALDH1,	 CD44,	 CD133,	 and	 CXCR4	 have	 been	 found	 in	
RCC-derived	 cancer	 stem-like	 cells.16,18-20	 However,	 a	 single	
marker	cannot	be	used	for	 identifying	all	 the	CSCs,21 and there-
fore,	 we	 need	 to	 find	 an	 appropriate	 method	 to	 discover	 novel	
biomarkers	 and	 reveal	 the	heterogeneity	of	CSCs.	This	 can	help	
in	clarifying	the	role	of	CSCs	in	the	occurrence,	development,	re-
currence,	metastasis,	and	multidrug	resistance	of	renal	tumors	and	
can enable more personalized treatment strategies to establish 
novel therapeutic targets.

Currently,	single-cell	profiling	is	an	important	means	to	elucidate	
tumor	heterogeneity,	and22,23 the main methods involved in this are 
single-cell	 sequencing	and	cytology.	These	methods	allow	analysis	
of	multiple	markers	 in	 a	 single	 tumor	 cell	 that	 have	 been	 isolated	
from	fresh	or	fixed	primary	and	metastatic	tumors.24	Single-cell	RNA	
sequencing	provides	high-dimensional,	single-cell	data.25	However,	
high	 cost	 and	 instability	 of	 the	 RNA	 samples	make	 the	 technique	
unsuitable	for	analyzing	a	 large	number	of	samples.	Although	flow	
cytometry	 is	 the	 most	 commonly	 used	 single-cell	 technique,	 the	
overlap of fluorescence emission spectra causes mutual interference 
between the channels and limits the increase in the number of chan-
nels.26	Mass	 cytometry	 (MC)	 is	 a	 single-cell	 detection	 technology	
that	uses	non-radioactive	heavy	metal	isotopes	for	antibody	labeling	
rather	than	fluorophores,	which	allows	the	simultaneous	detection	
of a large number of parameters with negligible overlap at the sin-
gle-cell	level.27	The	emergence	of	MC	or	cytometry	by	time-of-flight	
(CyTOF)	has	revolutionized	single-cell	proteomics,	enabling	a	com-
prehensive	understanding	of	cell	phenotypes,	tumor	heterogeneity,	
signaling	pathways,	and	function.28	Using	single-cell	MC,	Wagner	et	
al	described	the	single-cell	atlas	of	breast	cancer	cells	and	immune	
cells.29	Through	in-depth	immune	analysis	of	73	cases	of	ccRCC	by	
MC,	Chevrier	et	al	identified	17	tumor-related	macrophage	pheno-
types	and	22	T	cell	phenotypes,	demonstrating	the	detailed	human	
atlas of the immune cells in the tumor microenvironment in this dis-
ease.30	In	this	study,	we	present	an	MC-based	atlas	of	immune	and	
stem	cells	in	tumor	samples	from	2	patients	with	chRCC,	3	patients	
with	ccRCC,	1	patient	each	with	pRCC,	MA,	and	UC.	This	unprece-
dented MC data can provide valuable information for the study of 
tumor heterogeneity in different types of renal tumors.

2  | MATERIAL S AND METHODS

2.1 | Sample processing and storage

A	total	of	8	renal	tumors	patients	(2	chRCC,	3	ccRCC,	1	pRCC,	1	
MA,	and	1	UC)	were	harvested	from	patients	in	the	First	Affiliated	
Hospital	 of	 Guangxi	 Medical	 University	 between	 Jan	 2018	 and	
July 2018. These patients voluntarily undergone curative surgery 
and were pathologically diagnosed with renal tumors. Patients un-
dergoing	chemo-	or	radiotherapy	before	resection	were	excluded.	
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All	samples	were	obtained	with	informed	consent	from	patients	in	
accordance with the study protocols approved by the review board 
of	the	First	Affiliated	Hospital	of	Guangxi	Medical	University.

Tumor tissues were obtained and disposed as described.31	After	
surgical	 resection,	 tissue	 samples	 were	 collected	 in	 pre-cooling	
transfer	buffer	with	DMEM,	2%	human	serum,	1%	penicillin-strep-
tomycin,	and	0.2%	fluconazole	and	were	shipped	at	ice	box.	Firstly,	
tumor	tissue	was	cut	into	small	pieces	using	surgical	scalpels.	Then,	
tumor	pieces	were	incubated	for	30	minutes	at	37°C	in	HBSS	disso-
ciation	cocktail	containing	20	µg/mL	DNAse	I	(Sigma)	and	2	mg/mL	
Collagenase	Type	II	(Gibco),	after	which	the	tumor	was	dispersed	to	
single	cells	using	the	GentleMACS	dissociator	(Miltenyi)	with	a	com-
pany	 installed	 program	 (h_tumor_01).	 Attach	 C	 tube	 upside	 down	
onto	the	sleeve	of	the	GentleMACS	dissociator,	run	the	GentleMACS	
program	(h_tumor_02)	again,	and	incubated	for	another	30	minutes	
at	37°C.	Suck	out	80%	of	the	cell	suspension	for	later	use	and	run	the	
program	(m_imptumor_01)	with	a	separator	for	the	remaining	cells.	
Next,	put	on	a	70	µm	cell	strainer	(Falcon)	to	obtain	a	single-cell	sus-
pension	following	centrifugation,	erythrocytes	were	removed	with	
red	blood	cell	lysis	buffer	(Solarbio)	on	ice	for	ten	minutes.	Cells	were	
resuspended	 in	 PBS	 after	 centrifuged,	 counted	 using	 Trypan	 blue	
exclusion	 (Solarbio),	 and	 cryopreserved	 at	 approximately	 3	million	
cells/vial.	 Finally,	 9:1	 as	 cryopreserved	with	FBS	 and	DMSO	solu-
tion	to	preserve	the	cell	suspension	in	liquid	nitrogen	for	subsequent	
testing.	All	tumor	samples	were	dissociated	as	above.

2.2 | Antibody conjugation

Purified antibodies were purchased from the companies listed in 
Table 1 and Table 2. These antibodies be used for MC were conju-
gated	 to	 isotopic	 tags	using	 a	MaxPar	X8	Antibody	Labeling	Kit	 ac-
cording to the manufacturer's instruction. The polymer was mounted 
on	the	preset	lanthanide	metal	of	choice	by	co-incubation	at	37°C	for	
30	minutes.	Separately,	antibodies	were	performed	buffer	exchange	in	
R-buffer	with	a	50	kDa	filter	and	partially	reduced	in	4	mmol/L	TCEP-
R-Buffer	bond	breaker	solution	at	37°C	for	30	minutes.	After	purifica-
tion	of	the	polymer	and	antibodies,	the	recovery	antibody	conjugated	
with	metal-loaded	polymers	that	concentrated	in	the	50	kDa	filter	and	
incubated	at	37°C	for	90	minutes.	After	antibody	binding,	the	unbound	
polymer	and	metal	were	eluted	with	buffer	W,	quantified	by	measur-
ing	absorbance	at	280	nm	on	a	NanoDrop	2000	Spectrophotometer	
(Thermo	Fisher	Scientific),	resuspended	at	a	concentration	of	0.5	mg/
mL	 in	 antibody	 stabilization	 buffer	 (Candor	 Bioscience	 GmbH),	 and	
stored	long	term	at	4°C.	All	antibodies	were	titrated	before	use.

2.3 | Living cell barcoding and antibody labeling

The	 cells	 were	 removed	 from	 liquid	 nitrogen	 and	 rapidly	 dissolved.	
Taking	4	samples	for	barcoding	as	an	example,	1.5	million	cells	were	
taken	 from	 each	 sample	 and	washed	 twice	with	 2	mL	 PBS.	 For	 vi-
ability	 staining,	 cells	were	 stained	with	 cisplatin	 (Fluidigm)	 to	 a	 final	

concentration	of	5	mmol/L.	To	minimize	 inter-sample	 staining	varia-
tion,	Samples	were	barcoded	by	adding	three	unique	metal	 isotopes	
after	 fixation.	 A	 20-well	 barcoding	 group	was	 composed	 of	 unique	
combinations	of	six	barcoding	metals	(102	Pd,	104	Pd,	105	Pd,	106	Pd,	
108	Pd,	 and	110	Pd.	 Fluidigm)	were	 used	 for	 this	 study.	Cells	were	
washed	 once	 with	 1×	 Barcode	 Perm	 Buffer	 (Fluidigm)	 before	 incu-
bated	in	200	ml	barcoding	cocktail	for	30	minutes	at	room	tempera-
ture.	Then,	Cells	were	washed	four	times	with	Cell	Staining	Buffer	and	
combined	all	barcoded	samples	into	one	tube.	Then,	cell	suspensions	
(50	mL)	were	 incubated	with	 50	 μL	 of	 human	 Fc	 receptor	 blocking	
solution	 (Biolegend)	 for	 10	minutes	 and	 incubated	 surface	 antibody	
cocktail	 for	1	hour.	The	cells	were	 then	washed	and	 incubated	with	
1	mL	Nuclear	Antigen	Staining	Buffer	working	solution	for	30	minutes	
at	 room	 temperature.	 The	 intracellular	 antibody	 cocktail	was	 added	
into	cell	suspension	for	1	hour.	After	washing,	we	incubated	samples	

TA B L E  1  Purified	antibodies	about	the	immune	cell-centric	
panel

Immune cell-centric panel

Antibodies Metal Clone Source Identifier

CD19 142Nd HIB19 Fluidigm 3142001B

CD163 145Nd GHI/61 Fluidigm 3145010B

CD14 148Nd RMO52 Fluidigm 3148010B

CD11c 146Nd 3.9 Fluidigm 3146014B

CD196/CCR6 176Yb G034E3 Fluidigm 3176022A

CD161 164Dy HP-3G10 Fluidigm 3164009B

CD27 150Nd LG.3A10 Fluidigm 3150017B

CD206/
MMR

168Er 43511 Fluidigm 3168008B

CD25/IL-2R 149Sm 2A3 Fluidigm 3149010B

CD3e 154Sm UCHT1 Fluidigm 3154003B

CD326/
EpCAM

141Pr 9C4 Fluidigm 3141006B

CD4 174Yb SK3 Fluidigm 3174004B

CD45 89Y HI30 Fluidigm 3089003B

CD45RA 170Er HI100 Fluidigm 3170010B

CD66b 162Dy 80H3 Fluidigm 3162023B

HLA-DR 173Yb L243 Fluidigm 3173005B

CD86 156Gd IT2.2 Fluidigm 3156008B

Foxp3 159Tb 259D/C7 Fluidigm 3159028A

CD197/CCR7 167Er G043H7 Fluidigm 3167009A

Granzyme	B 171Yb GB11 Fluidigm 3171002B

CD279/PD-1 155Gd EH12.2H7 Fluidigm 3155009B

Ki-67 172Yb B56 Fluidigm 3172024B

TGF-β 163Dy TW4-6H10 Fluidigm 3163010B

TNF-α 152Sm Mab11 Fluidigm 3152002B

CD20 161Dy 2H7 Biolegend 302302

CD38 143Nd HIT2 Biolegend 303502

CD45RO 151Eu UCHL1 Biolegend 304202

CD8a 144Nd RPA-T8 Biolegend 301 002
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with	a	fresh	solution	of	1.6%	paraformaldehyde	at	room	temperature	
for	10	minutes	and	stained	with	DNA	intercalator	(Fluidigm)	overnight	
at	4°C.	Before	acquired	cells	on	a	CyTOF2	instrument	(Fluidigm),	cells	
were	 prepared	with	 subsequent	washes	 in	 Cell	 Staining	 Buffer	 and	
deionized	water	to	remove	buffer	salts.	Finally,	cells	resuspended	with	
10%	EQ™	Four	Element	Calibration	Beads.

2.4 | CyTOF debarcode and analysis

Samples	 were	 analyzed	 on	 a	 CyTOF2	 (Fluidigm)	 equipped	 with	
a pneumatic introduction system at an event rate less than 500 
events/second.	 After	 samples	 data	 acquisition,	 FCS	 files	 were	
normalized	 and	 concatenated	 using	 CyTOF	 software	 v6.7.	 After	
files	 standardization,	 cells	 were	 manually	 debarocoded.	 Briefly,	
bar-code	 file	was	modified	unique	 sample	names	 for	debarcode.	
Using	 the	 normalized	 bar-coded	 FCS	 files,	 debug	 BcS	 values	 to	
the point where the vertical red line is before the sharp decline. 
Each individual file contained the corresponding debarcoded cell 
events.	Prior	data	analysis,	we	manually	gated	single	cells,	 living	
cells	 for	each	 file	using	online	software	Cytobank	 (https	://www.
cytob	ank.org/).

For	SPADE	analysis,	we	used	25	 target	numbers	of	nodes	and	
100%	 downsampled	 events	 target.	 The	 clustering	 channels	 were	

selected	based	on	whether	they	were	lineage	markers	and	which	cell	
population to be clustered.

A	 t-SNE	 map	 was	 generated	 by	 the	 t-distribution	 stochastic	
neighbor	 embedding	 (t-SNE)	 analysis	 that	 makes	 a	 pairwise	 com-
parison of cellular phenotypes to optimally plot similar cells close 
to each other and reduces multiple parameters into two dimensions 
(tSNE1	and	tSNE2).	For	most	analysis,	we	selected	equal	events	for	
each	sample.	Channel	(markers)	selection	was	variable	depending	on	
cell populations to be clustered. We chose the default parameters 
settings	 (perplexity,	30;	 iterations,	1000;	 theta,	0.5).	Different	cell	
populations	were	visualized	and	quantified.

For	 heat	 map,	 transformed	 ratio	 of	 medians	 intensity	 corre-
sponds to a logical data scale. The colors in the heat map represent 
the	measured	means	 intensity	 value	 of	 a	 given	marker	 in	 a	 given	
cluster.	Four-color	scale	was	used	with	blue-white	indicating	low	ex-
pression	values,	white-yellow	indicating	medium	intensity	expressed	
markers,	and	red	representing	highly	expressed	markers.

3  | RESULTS

3.1 | Preprocessing of tumor samples and data 
acquisition

We	recruited	2	patients	with	chRCC,	3	patients	with	ccRCC,	1	pa-
tient	with	pRCC,	1	patient	with	MA,	and	1	patient	with	UC	 in	 the	
First	Affiliated	Hospital	of	Guangxi	Medical	University	and	obtained	
tumor	tissues	by	surgery.	A	standard	operating	procedure	was	used	
to	 generate	 single-cell	 suspension	 from	 all	 tissue	 samples.	 These	
samples were stained with 49 antibodies including a panel of 28 im-
mune	cell-centric	antibodies	and	a	panel	of	21	stem-like	cell-centric	
antibodies.	The	stained	cells	were	detected	using	CyTOF.	Application	
of	 our	workflow	yielded	1.5	million	 single-cell	 profiles	 from	8	pa-
tients	and	measured	in	49	protein	epitope	dimensions	(Figure	1).

3.2 | Analysis of immuno-phenotypes of renal 
tumors samples by MC

In	the	tumor	microenvironment,	tumor	and	immune	cells	interact	
and strengthen each other.29	The	nature	and	degree	of	the	tumor-
infiltrating immune cell greatly influences the treatment and prog-
nosis of renal tumors.32	Therefore,	understanding	the	composition	
and difference of immune cell subsets of different types of renal 
tumors provides necessary information for improving the level of 
immunotherapy and predicting prognosis. To visualize the pheno-
typic	diversity	of	immune	cells	in	different	types	of	renal	tumors,	
we	 use	 viSNE	 analysis	 to	 identify	 and	 characterize	 immune	 cell	
subsets. We identified 25 distinct cell subsets in CD45+ cells from 
renal	 tumors	 based	on	phenotypic	 similarity.	Meanwhile,	 the	25	
cell	subsets	were	further	divided	into	CD4+	T	cell	subsets,	CD8+	
T	cell	 subsets,	B	cell	 subsets,	macrophage	subsets,	dendritic	cell	
subsets,	NK	cell	subsets,	and	granulocyte	subsets	according	to	13	

TA B L E  2  Purified	antibodies	about	the	stem-like	cell-centric	
panel

Stem-like cell-centric panel

Antibodies Metal Clone Source Identifier

CD47 209Bi CC2C6 Fluidigm 3209004B

c-Myc 176Yb 9E10 Fluidigm 3176012B

CD274 175Lu 29E.2A3 Fluidigm 3175017B

CD44 171Yb IM7 Fluidigm 3171003B

CD54 170Er HA58 Fluidigm 3170014B

Met 167Er D1C2 Fluidigm 3167017A

CD24 166Er ML5 Fluidigm 3166007B

Notch2 165Ho MHN225 Fluidigm 3165026B

DNMT3B 164Dy 832121 Fluidigm 3164021B

CD13 160Gd WM15 Fluidigm 3160014B

p21 159Tb 12D1 Fluidigm 3159026A

Vimentin 156Gd RV202 Fluidigm 3156023A

p53 143Nd 7F5 Fluidigm 3143018A

CD326 141Pr 9C4 Fluidigm 3141006B

CD45 89Y HI30 Fluidigm 3089003B

CD90 158Gd 5E10 biolegend 328102

CK19 162Dy A53-B/A2 biolegend 628502

MUC1 168Er SM3 abcam ab22711

OV6 152Sm OV-6 R&D MAB2020

CD325 148Nd 8C11 biolegend 350802

LGR5 155Gd SA222C5 biolegend 373802

https://www.cytobank.org/
https://www.cytobank.org/
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clustering	markers	(CD3e,	CD4,	CD8a,	CD20,	CD25,	FOXF3,	CD38,	
CD161,	CD14,	HLA-DR,	CD206,	CD19,	and	CD11c)	(Figure	2A,B).	
Compared	with	 the	 panorama,	 the	 distribution	 of	 25	 subsets	 of	
CD45+	cells	in	chRCC,	pRCC,	MA,	and	UC	were	obviously	uneven	
and	dominated	by	only	some	subsets,	while	the	distribution	of	25	
subsets of CD45+ cells in ccRCC was relatively rich and uniform 
compared with other types of renal tumors. The composition of 
immune cells in the tumor microenvironment is obviously different 
in	different	types	of	renal	tumors,	which	reflects	the	complexity	of	
the tumor microenvironment.

To	 further	 explore	 the	differences	 in	 the	 immune	microenvi-
ronment	 and	 its	 mechanism	 in	 different	 types	 of	 renal	 tumors,	
we	identified	four	CD4+	T	cell	subsets	(02,	03,	11,	and	15);	seven	
CD8+	 T	 cell	 subsets	 (05,	 06,	 08,	 14,	 16,	 17,	 and	 22);	 one	B	 cell	
subset	(09);	eight	macrophage	subsets	(04,	10,	12,	13,	20,	21,	23,	
and	24);	one	dendritic	cell	subset	(19);	two	NK	cell	subsets	(01	and	
18);	one	granulocyte	subset	(07);	and	one	other	type	of	cell	subset	
by	observing	the	expression	of	markers	according	to	the	heat	map	
(Figure	2C).	Next,	we	explored	the	relative	content	of	each	immune	
cell	 subset	 in	 the	 tumor	 microenvironment.	 Interestingly,	 some	
tumor immune cell types had a significant numerical advantage in 
specific	 renal	 tumors	subtypes	 (Figure	2D).	Clusters	13	 (14.05%)	
and	14	 (26.53%)	mainly	 appeared	 in	 chRCC,	while	 it	was	 few	or	

virtually	absent	in	other	renal	tumor	subtypes.	Similarly,	cluster	06	
(11.32%),	cluster	11	(10.10%),	and	cluster	16	(10.86%)	were	found	
predominantly	 in	ccRCC.	Cluster	08	 (19.84%)	was	mainly	distrib-
uted	in	pRCC.	Cluster	10	(11.28%),	cluster	17	(21.6%),	and	cluster	
22	 (12.81%)	were	 higher	 in	MA	while	 they	were	 less	 numerous	
in	others	subtypes.	Cluster	04	(14.79%)	was	mainly	distributed	in	
UC.	In	general,	the	immune	landscape	of	renal	tumors	was	signifi-
cantly	differenct,	especially	with	regards	to	the	subsets	of	CD8+	T	
cells,	CD4+	T	cells,	and	macrophages.

Further	analysis	of	some	clusters	shows	that	PD-1+	(CD279)	cells	
were observed in both the CD8+ and CD4+ subsets. The clusters 08 
and	16,	which	were	characterized	by	the	highest	level	of	PD-1	(CD279)	
expression	among	all	the	CD8+	cells,	were	also	positive	for	the	acti-
vation	marker	CD38.	CD38	was	 found	 to	be	a	potential	 exhaustion	
marker	of	T	cells	 in	ccRCC.33	Overlapping	expressions	of	CD38	and	
PD-1	(CD279)	is	a	predictor	of	exhaustion	of	T	cells	in	ccRCC,30 which 
suggest that some subsets may play an important role in renal tumor 
immune	response.	Taken	together,	this	data	reflected	that	there	is	sig-
nificant heterogeneity in the immune microenvironment in different 
renal	tumors.	Hence,	in	this	study,	we	performed	MC	to	identify	the	
differences in the immune microenvironment among different renal 
tumors by elucidating the immune cell landscape. This may be helpful 
in grouping renal tumors patients for implementing precision therapy.

F I G U R E  1  Workflow	processing	of	samples	of	renal	tumors	and	analytical	methods	for	mass	cytometry
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3.3 | Characterization of cancer stem cell-related 
markers in various types of renal tumors

Increasing	evidence	suggests	that	a	subset	of	cancer	cells	with	stem	
cell-like	 properties,	 known	 as	 CSCs,	 are	 capable	 of	 self-renewal	
and differentiation.34	Although	CSCs	have	been	determined	using	

a	variety	of	surface	markers,	their	isolation	from	different	types	of	
tumors	might	require	different	markers.35,36 Many studies have at-
tempted	 to	establish	a	unique	 individual	biomarker	 to	 identify	 the	
CSCs populations in renal tumors.16,17,37	However,	due	 to	 the	het-
erogeneity	of	stem	cells,	there	is	no	universal	marker	that	can	iden-
tify	CSCs	 in	various	 types	of	 renal	 tumors.	 In	order	 to	 investigate	

F I G U R E  2   Immune	landscape	of	various	types	of	renal	tumors.	A,	The	figure	shows	the	t-SNE	descending	dimension	map	of	the	samples	
of	various	types	of	renal	tumors.	About	12	000	CD45+	immune	cells	were	grouped	into	25	clusters,	the	samples	were	classified	and	
analysed,	and	colors	represent	different	clusters	of	immune	cells.	B,	The	figure	shows	that	the	expression	level	and	distribution	of	main	
cluster	markers	on	the	t-SNE	dimensionality	reduction	map.	Bar	on	the	right	represents	the	median	expression	intensity	of	each	marker.	C,	
The	heat	map	shows	the	differential	expression	of	immune	markers	in	the	25	subsets.	Certain	clusters	were	identified	as	known	cell	types	
according	to	typically	expressed	markers.	Cluster	ids	and	relative	intensity	were	shown	as	bars	on	the	right.	D,	The	stacked	graph	represents	
the	relative	content	of	each	cluster	in	different	renal	tumors,	and	the	Y-axis	is	the	percentage	of	each	cluster	in	CD45+	cells
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the	heterogeneity	of	CSCs	in	renal	tumors	and	the	co-expression	of	
CSCs	related	markers	in	different	types	of	renal	tumors,	the	expres-
sion	profiles	of	these	markers	were	expressed	as	heat	map	and	t-SNE	
(Figure	3A,B).	According	to	the	heat	map,	we	found	that	7	stem-like	
cell-centric	markers	 (vimentin,	CD13,	CD90,	CD34,	CD326,	CD44,	
and	CD47)	were	expressed	in	all	types	of	renal	tumors.	In	addition,	
the	expression	 level	 of	 the	 same	marker	was	different	 among	dif-
ferent	 renal	 tumors	 (Figure	3A).	The	expression	of	vimentin	 in	UC	
was significantly stronger than that of other types of renal tumors. 
CD326	had	the	highest	expression	in	chRCC,	while	the	pRCC	sam-
ples	had	the	lowest.	The	expression	of	CD44	was	strongest	in	pRCC	
and	UC	while	CD47	was	highly	expressed	 in	all	 types	of	 renal	 tu-
mors.	In	fact,	these	markers	have	been	reported	in	literatures	as	pu-
tative	stem	cell	markers	for	renal	tumors	or	other	types	of	cancer.	
For	 instance,	CD44,	CD90,	 and	CD47	 are	 recognized	 as	UC	 stem	
cell	markers.38	Meanwhile,	 in	 gastric	 cancer,	 CD44	 and	CD90	 are	
considered	to	be	specific	biomarkers	that	can	be	used	to	identify	and	
isolate metastatic and tumorigenic CSCs.39 This suggests that the 
same	stem	cell	marker	may	be	expressed	in	different	types	of	cancer	
although	their	expression	levels	may	be	different.	The	expression	of	
these	stem	cell	markers	in	renal	tumors	cells	can	be	used	as	specific	
markers	to	screen	the	stem	cells	in	renal	tumors.	In	order	to	further	
study	the	co-expression	of	the	tumor	stem	cell	markers	in	different	
types	of	renal	tumors	using	t-SNE	analysis,	pairwise	comparison	of	
cell phenotypes was conducted to optimize the drawing of similar 
cells	close	to	each	other,	and	multiple	parameters	were	reduced	to	a	
two-dimensional	display.	Renal	tumors	were	divided	into	7	stem-like	
cells	subsets	(based	on	positivity	of	vimentin,	CD326,	CD34,	CD90,	
CD13,	CD44,	and	CD47),	and	some	stem-like	cells	subsets	have	the	
characteristics	of	co-expression	 (Figure	3B).	We	 found	 two	co-ex-
pression cell populations that were characterized by CD326+ CD47+ 
and	CD326+	CD44+	in	chRCC.	The	difference	was	that	MA	only	has	
CD326+	CD44+	 co-expression	 cells	 population.	 Similarly,	 two	 co-
expression	 cells	 population	 characterized	 by	 CD326+	CD44+	 and	
vimentin+	CD13+	CD44+	were	found	in	ccRCC.	The	co-expression	
cells	 in	 pRCC	 and	UC	were	CD13+	CD44+	CD47+	 and	 vimentin+	
CD13+	CD44+	cells,	respectively.	This	suggests	that	different	stem	
cell	populations	may	exist	in	the	same	as	well	as	different	forms	of	
cancers.40	Thus,	this	detailed	data	might	provide	further	clues	to	ex-
plore	stem	cell	markers	in	renal	tumors.

4  | DISCUSSION

Renal tumors have high intratumoral and intertumoral hetero-
geneity.14 The main reason for cancer treatment failure is that 
treatment regimens are not designed to address tumor heteroge-
neity.	As	a	result,	renal	tumors	tend	to	have	a	worse	response	to	
standard treatment regimens and therefore worse prognoses than 
other types of cancer. The heterogeneity of cancer cells presents 
significant	challenges	to	the	use	of	molecular	prognostic	markers	
and the identification of patients who may benefit from targeted 
treatments.	Therefore,	the	study	of	heterogeneous	characteristics	

will help to improve the clinical management of patients with renal 
tumors.

Single-cell	analysis	 is	one	of	the	methods	to	effectively	solve	
the problem of characterizing tumor heterogeneity.22,23 Mass cy-
tometry	 simultaneously	 allows	 detection	 and	 quantification	 of	
dozens	of	markers	in	a	single	cell,	and	hence,	it	is	uniquely	suited	
for	 multi-parametric	 analyses	 of	 heterogeneous	 samples	 and	 to	
understand the detailed phenotype of cell populations. Mass cy-
tometry	has	been	successfully	applied	in	a	number	of	areas,	such	as	
mapping	the	phenotypic	heterogeneity	in	 leukemia41 and assess-
ing	the	effects	of	drugs	on	immune	cells,42 revealing the compo-
sition	of	many	cancer	immune	microenvironments,	which	enables	
the	determination	of	the	best	method	to	enhance	the	anti-tumor	
immune response.43,44	 Zhang	 et	 al	 studied	 the	 heterogeneity	 of	
the	immune	microenvironment	in	hepatocellular	carcinoma	(HCC)	
using	MC	 and	 identified	 three	 different	HCC	 subtypes	with	 im-
munocompetent,	 immunodeficient,	and	immunosuppressed	char-
acteristics,	 respectively,	 by	 clustering	 immune	 cells	 in	 the	 HCC	
microenvironment. This classification can be used to evaluate the 
prognosis	of	patients	with	HCC	and	to	provide	theoretical	support	
for the choice of treatment.24	Currently,	there	is	little	knowledge	
about the role of heterogeneity in the development of renal tu-
mors due to the limitations in the research methods. This study 
aimed	to	establish	a	high-dimensional	MC-based	method	to	detect	
and analyze the heterogeneity of renal tumors of microenviron-
ment and stem cells.

In	this	study,	we	present	an	MC-based	atlas	of	the	immune	land-
scape.	Based	on	clustering	of	data	generated	using	a	panel	of	 an-
tibodies,	we	identified	25	major	immune	cell	phenotypes	including	
four	CD4+	T	cell	subsets	(02,	03,	11,	and	15);	seven	CD8+	T	cell	sub-
sets	(05,	06,	08,	14,	16,	17,	and	22);	one	B	cell	subset	(09);	eight	mac-
rophage	subsets	(	04,	10,	12,	13,	20,	21,	23,	and	24);	one	dendritic	
cell	 subset	 (19);	 two	NK	cell	 subsets	 (01	and	18);	one	granulocyte	
subset	(07);	and	one	other	type	of	cell	subset.	It	is	well	known	that	
CD4+	helper	T	cells	and	cytotoxic	CD8+	T	cells	inhibit	tumor	growth	
by targeting antigenic tumor cells.30	However,	the	prognostic	signifi-
cance of T cells in tumors is controversial as the T cell subsets may be 
positively or negatively correlated with the patient's prognosis.45	In	
addition,	due	to	the	limitations	of	traditional	research	methods,	the	
phenotype of T cells in many tumors has not been well described. 
The influence of malignant cells on the functional characteristics of 
known	T	 cell	 subsets,	 such	 as	 depleted	T	 cells	 and	T	 helper	 cells,	
has	not	been	widely	studied.	 In	our	study,	we	performed	accurate	
immune typing of tumor cell populations and determined whether 
they	consisted	of	typical	or	novel	cell	subsets,	which	can	potentially	
provide useful information for the study of immune cell subsets and 
prediction of tumors prognosis.

To further analyze the phenotypic and functional associations 
between	immune	cell	subpopulations,	we	also	used	a	two-dimen-
sional	 graph	 embedded	 with	 a	 dimension	 reducing	 t-distributed	
random adjacency to characterize how these immune cell clusters 
are related.41 We found that the degree of infiltration of immune 
cells in the tumor microenvironment were significantly different 
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F I G U R E  3  Expression	level	and	co-localization	of	stem	cell	markers	in	renal	tumors	samples.	A,	Heat	map	depicting	differential	
expression	for	stem	cell	markers	in	renal	tumors.	B,	t-SNE	plots	of	marker	expression	of	70	000	living	cells	from	each	tumor
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in	 different	 tumor	 tissues,	 especially	with	 regards	 to	 subsets	 of	
CD8+	T	 cells,	CD4+	T	 cells,	 and	macrophages.	 In	T	 cells,	we	 fo-
cused	 on	 the	 differences	 in	 the	 expression	 of	 T	 cell	 depletion	
induced	factors	such	as	PD-1	and	CD38	 in	different	renal	 tumor	
tissues.	Overlapping	expressions	of	CD38	and	PD-1	 (CD279)	are	
a	predictor	of	exhaustion	of	T	cells	in	ccRCC,30	It	indicates	that	T	
cell	subpopulations	with	unique	functional	characteristics	exhibit	
unique	phenotypic	characteristics.	We	also	found	that	the	relative	
content	of	T	cells,	with	overlapping	expressions	of	CD38	and	PD-1	
(CD279)	in	ccRCC	and	chRCC,	was	higher	than	that	in	other	types	
of	 renal	 tumors.	Taken	 together,	 this	data	 reflected	 that	 there	 is	
significant heterogeneity in the immune microenvironment in dif-
ferent	 renal	 tumors.	 Our	 results	 showed	 the	 unique	 cytological	
characteristics and revealed the differences in the immune cell 
populations	between	different	renal	tumors,	which	enable	the	po-
tential development of individualized immunotherapy.

Overcoming	 the	heterogeneity	of	CSCs	 is	 also	 the	key	 to	 treat	
renal	tumors,	and	these	cells	can	be	identified	through	the	expression	
of	cell	surface	markers	or	functional	markers.	Several	of	these	types	
of	markers	are	derived	from	the	markers	that	have	been	established	
in studies with normal hematopoietic stem cells or embryonic stem 
cells,	such	as	CD133	and	CD44	molecules.46	We	studied	the	expres-
sion	of	21	stem-like	cell-centric	markers	using	antibodies	in	renal	tu-
mors	using	MC.	We	found	7	stem-like	cells	subsets	in	the	renal	tumors	
(based	on	the	expression	of	vimentin,	CD326,	CD34,	CD90,	CD13,	
CD44,	and	CD47).	Our	data	suggested	that	the	expression	of	these	
stem	cell	markers	in	renal	tumors	could	be	used	as	specific	markers	for	
screening	renal	CSCs.	Although	the	distribution	of	these	tumor	stem-
like	cells	subsets	in	different	types	of	renal	tumors	was	roughly	the	
same,	 their	expression	 levels	were	different.	To	 further	 investigate	
the	co-expression	of	the	different	stem	cell	markers	in	renal	tumors,	
we	used	the	t-SNE	method	for	dimensional	 reduction	analysis.	 It	 is	
noteworthy	that	we	also	found	some	co-expression	tumor	stem-like	
cells	subsets,	such	as	 two	co-expression	cell	populations	that	were	
characterized by CD326+ CD47+ and CD326+ CD44+ in chRCC. The 
difference	was	that	MA	only	has	CD326+	CD44+	co-expression	cells	
population.	Similarly,	 two	co-expression	cells	population	character-
ized by CD326+ CD44+ and vimentin+ CD13+ CD44+ were found in 
ccRCC.	The	co-expression	cells	in	pRCC	and	UC	were	CD13+	CD44+	
CD47+	and	vimentin+	CD13+	CD44+	cells,	respectively.	This	suggest	
that	different	stem	cell	populations	may	exist	in	the	same	as	well	as	
different forms of cancers40	owing	to	the	fact	that	the	self-renewal	
and differentiation of CSCs.47	Our	analysis	showed	that	renal	tumors	
have	different	stem-like	cells	subsets,	which	means	that	more	precise	
and	specific	stem-like	cells	subsets	can	be	distinguished	by	identify-
ing	the	co-expression	of	tumor	stem	cell-like	subsets.	The	discovery	
of	these	stem-like	cells	subsets	provides	the	basis	for	screening	drugs	
for	targeted	therapy	of	renal	tumors	stem	cells,	thus	greatly	improv-
ing RCC diagnosis and treatment.

Having	said	that,	our	study	does	have	certain	limitations.	Firstly,	
MC	relies	on	the	usage	of	high-quality	antibodies,	and	the	expression	
of	 some	markers	might	 not	 be	 detected	 efficiently	 as	 the	 current	
options	 for	 commercially	 available	 high-quality	 tumor	 antibodies	

are	 limited.	 Secondly,	 the	 presented	 immune	 cell	 phenotypes	 are	
based	 on	 single-cell	 measurements	 coupled	 with	 computational	
analysis.	Although	our	 approach	 recapitulated	 the	 known	 immune	
landscape,	follow-up	studies	are	required	to	define	the	roles	of	the	
phenotypes identified here.30	Thirdly,	whether	these	stem-like	cells	
subsets have the characteristics of tumor stem cells as well as their 
clinical	 significance	 still	 needs	 to	 be	 experimentally	 verified	 and	
analyzed	 in	 combination	with	 the	 clinical	 data.	 Finally,	 due	 to	 the	
limited	sample	size,	much	of	the	MC	data	were	descriptive,	and	the	
tendency	for	the	increased	expression	of	some	markers	or	subsets	
requires	further	validation.48 These limitations will be addressed in 
our	 future	work,	which	will	 aim	 at	 increasing	 the	 sample	 size	 and	
further	screening	for	high-quality	antibodies	 in	order	to	verify	the	
experimental	results.

5  | CONCLUSION

High-dimensional	single-cell	proteomics	analysis	using	MC	aids	in	the	
discovery	and	analysis	of	renal	tumors	heterogeneity.	Additionally,	it	
can be used to accurately classify the immune cell population and an-
alyze	the	expression	of	stem-like	cells	in	renal	tumors,	thus,	aiding	in	
the	discovery	of	novel	disease-related	subsets.	Our	findings	provide	
a valuable resource for deciphering tumor heterogeneity and might 
improve the clinical management of patients with renal tumors.
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