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Abstract

The conventional wisdom in molecular evolution is to apply parameter-rich models of nucleotide and amino acid
substitutions for estimating divergence times. However, the actual extent of the difference between time estimates
produced by highly complex models compared with those from simple models is yet to be quantified for contemporary
data sets that frequently contain sequences from many species and genes. In a reanalysis of many large multispecies
alignments from diverse groups of taxa, we found that the use of the simplest models can produce divergence time
estimates and credibility intervals similar to those obtained from the complex models applied in the original studies. This
result is surprising because the use of simple models underestimates sequence divergence for all the data sets analyzed.
We found three fundamental reasons for the observed robustness of time estimates to model complexity in many
practical data sets. First, the estimates of branch lengths and node-to-tip distances under the simplest model show
an approximately linear relationship with those produced by using the most complex models applied on data sets with
many sequences. Second, relaxed clock methods automatically adjust rates on branches that experience considerable
underestimation of sequence divergences, resulting in time estimates that are similar to those from complex models.
And, third, the inclusion of even a few good calibrations in an analysis can reduce the difference in time estimates from
simple and complex models. The robustness of time estimates to model complexity in these empirical data analyses is
encouraging, because all phylogenomics studies use statistical models that are oversimplified descriptions of actual
evolutionary substitution processes.
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Introduction
Models of nucleotide and amino acid substitution are of
fundamental importance in molecular phylogenetic analy-
ses (Nei and Kumar 2000; Yang 2006; Arenas 2015). Many
sophisticated substitution models have been developed,
and the complexity of models developed for use in phylo-
genomic studies continues to increase (Arenas 2015; Abadi
et al. 2019). Indeed, complex models can provide a more
complete description of nucleotide and amino acid substi-
tution processes that involve transition/transversion rate
differences, biased base compositions, inequality of evolu-
tionary rates among sites, and substitution pattern hetero-
geneity among genomic regions and sequence partitions
(Sumner et al. 2012; Arenas 2015). Because the difference
between the estimated and actual numbers of substitutions
grows quickly and nonlinearly over time (Nei and Kumar
2000; Yang 2006), researchers often select the most com-
plex model available to improve the accuracy of divergence
time estimates (Arbogast et al. 2002; Sumner et al. 2012;
Arenas 2015; Abadi et al. 2019).

Do the time estimates from the most complex models
differ significantly from those produced using a relatively sim-
ple model when analyzing large data sets that contain many
species, genes, and calibrations? The answer to this question is
of high practical significance. If it is affirmative, time estimates
may be vulnerable to both incorrect model specification and
the overall limitations of current substitution models. On the
other hand, if time estimates are generally similar for simple
and complex substitution models, then currently available
models could be deemed sufficient for molecular dating, be-
cause even the most complex model is a simplification of
actual evolutionary processes that are much more complex
due to differences in regional mutation patterns and spatial
and temporal selective pressures (Arenas 2015; Abadi et al.
2019).

Although no studies have directly examined the impact of
model complexity on time estimation in phylogenomic inves-
tigations, there have been reports that simple substitution
models often perform similarly to or only slightly worse
than complex substitution models in some types of phyloge-
netic inferences (Tamura et al. 2004; Yoshida and Nei 2016;
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Spielman and Kosakovsky Pond 2018; Abadi et al. 2019;
Dornburg et al. 2019; Spielman 2019). However, in molecular
dating, it is intuitively assumed that underestimation of se-
quence divergences caused by the use of simple models will
result in significantly distorted time estimates. Here, we used
diverse large data sets to test the conventional wisdom that
the use of simple models will result in poor estimates of
divergence times (table 1). To detect potential benefits of-
fered by the use of complex models, we compared Bayesian
estimates of divergence times obtained when using extremely
simple models with those obtained when using complex
models that contained many biological attributes and param-
eters (table 1).

We focus on models of the general time-reversible (GTR)
class because they are employed in all current empirical dat-
ing analyses. Although many new substitution models have
been proposed to relax the assumptions of stationarity, re-
versibility, and homogeneity of base substitution patterns, as
well as to incorporate complex structural constraints and
epistatic fitness landscapes, these advanced models are not
yet available in popular phylogenetic software packages due
to their implicit complexity and onerous computational
requirements (Jayaswal et al. 2014; Arenas 2015; Arenas
et al. 2015; Usmanova et al. 2015). Therefore, in our reanalysis,
we used the models selected as the best-fit models in the
source phylogenomic studies as “complex models” (table 1).
The “simple models” used were the Jukes–Cantor (JC) model
for nucleotide substitutions (Jukes and Cantor 1969) and the
Poisson model for amino acid substitutions (Nei and Kumar
2000). Both assume that all substitution types are equally
likely at a given site, an assumption that is always violated
in reality. To ensure the most powerful contrast, we applied
these simplest models without partitioning the sequence
alignment by genes, genomic features (e.g., codon positions),
or sets of positions with similar substitution patterns (see
Materials and Methods).

We also used the same tree topology as in the source
publications in our comparisons, because it is a common

practice in phylogenomic studies to use the phylogeny reli-
ably inferred by using a sophisticated tree-building method as
a fixed topology for molecular dating (e.g., Li et al. 2019;
Oliveros et al. 2019). In addition, the use of the same pub-
lished tree topologies ensured consistent placement of cali-
brations and eliminated the confounding effects of using
alternative phylogenies and calibrations.

Results

A Plant Data Set Analysis
We first present results from a reanalysis of a large-sequence
alignment containing 103 plant species (Morris et al. 2018)
(“Plants,” table 1). Pairwise sequence distances ranged from
0.01 to 3.18 (median¼ 0.83) nucleotide substitutions per site
(fig. 1a). The GTR model with rate variability among sites (þC)
was used in the original analyses and is presented here as the
complex model (Morris et al. 2018). For comparison, we ana-
lyzed this data set using the JC model as our simple model. The
difference in the maximum likelihood (ML) values for the
GTRþ C and JC models was very large (DlnL ¼ 14757.9)
and highly significant (P< 10�16). Conventionally, the JC
model would be a poor choice for molecular dating analysis.
Indeed, the use of the JC model led to the underestimation of
pairwise evolutionary distances by as much as 73%, and there
was severe substitution saturation resulting in a classic curvi-
linear trend (fig. 1a, the gray area).

Surprisingly, Bayesian estimates of divergence times
obtained using the JC model were very similar to those
obtained using the GTR þ C model when the same se-
quence alignment, topology, and calibrations were used
(fig. 1b). This trend was also observed for divergence time
estimates obtained via substitution models of intermediate
complexity (fig. 1c). The linear regression slope between time
estimates under the JC and GTR þ C models was 0.97, with
low dispersion (R2 ¼ 0.99). Although time estimates gener-
ated using the GTRþ C and JC models showed high overall
similarity, a few node times showed local discrepancies (e.g.,

Table 1. Detailed Information about the Empirical Data Analyzed.

Taxonomic
Group

Data
Type

Sequence
Count

Sequence
Lengtha

Tree
Depthb

Ratec Substitution
Modeld

Partition
Count

Rate
Modele

Calibration
Count

DlnLf References

Mammals (A) M 274 7,370 185 2.28 HKY1C 1 ABR 36 96,320.5 dos Reis et al. (2012)
Mammals (B) A 162 11,010 187 1.53 JTT1C 26 ARB 64 110,854.0 Meredith et al. (2011)
Birds N 51 722,202 102 0.21 HKY1C NA ABR 18 3,794.2 Jarvis et al. (2014)
Fishes N 118 85,363 140 0.51 HKY1C 4 IBR 13 13,048.1 Alfaro et al. (2018)
Metazoans A 54 38,577 757 0.41 LG1C1F 1 IBR 33 68,405.1 dos Reis et al. (2015)
Spiders A 43 55,447 561 0.54 WAG1C 1 IBR 8 37,088.5 Bond et al. (2014)
Plants N 103 856,439 798 0.87 GTR1C 1 IBR 37 14,757.9 Morris et al. (2018)
Eukaryotes &

prokaryotes
A 102 9,874 4,511 0.29 LG1C 29 IBR 11 183,666.0 Betts et al. (2018)

N, nuclear DNA; M, mitochondrial DNA; A, amino acid; ABR, autocorrelated branch rate model; IBR, independent branch rate model.
aSequence length is the number of sites in the alignment used in the original study. We randomly selected 10,000 sites in our analyses if sequences are longer than 10,000 sites.
For the “Plants” data set, we used an alignment of 2,217 sites.
bTree depth is the root age obtained from the original published study. Times are in millions of years.
cThe evolutionary rate is calculated by dividing the sum of the maximum likelihood (ML) branch lengths obtained using the original complex model over the sum of published
times elapsed. The unit is substitutions per site per billion years.
dThe substitution model used for the majority of partitions in the original study for estimating divergence times.
eThe branch rate model used in the original study for estimating divergence times.
fDifference between the log-likelihoods of the original complex model and the simple model. A positive value means that the complex model provides a better fit to the data.
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arrows in fig. 1b). However, these node times generated using
the JC model fell within the 95% credibility intervals (CrIs)
obtained using the GTR þ C model (fig. 1g). CrIs from the JC
and GTR þ C models overlapped for every node (fig. 1g),
suggesting that estimates of divergence times and CrIs from
the simplest model will be as useful as those obtained via
complex substitution models in downstream biological anal-
yses and hypothesis testing.

We hypothesized that the inclusion of 37 calibration
points, and their associated probability densities, in the
“Plants” data set constrained the node time estimates and
eliminated the bias anticipated to be caused by the use of the

simple JC model. So, we compared times obtained using the
GTRþ C and JC models after eliminating all the internal
calibrations but retaining the original root calibration. The
linear pattern persisted (slope ¼ 0.95, R2 ¼ 0.99, fig. 1d).
We then tested the possibility that a well-constrained root
calibration caused the observed linear relationship of dates
from simple and complex models, even though the root cal-
ibration was expected to only dictate the overall time span,
rather than the patterns of individual node times. So, we
reanalyzed the phylogeny, making the probability density dis-
tribution of the root calibration diffused and adding a ran-
domly selected internal calibration in the Bayesian analysis

Pairwise distances Divergence �mes
(all calibra�ons)

Divergence �mes
(no internal
calibra�ons)

Divergence �mes
(diffused root, one
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RelTime
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Slope = 0.97
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FIG. 1. Plant data analyses. (a) Severe underestimation of pairwise distances via the JC model. The gray-dashed line represents equality between
time estimates, and the gray area represents the underestimation resulting from using the JC model. (b) Similar divergence time estimates are
produced by using the JC and GTR þ C models when all calibrations are used in Bayesian analyses. Times are in millions of years. Gray-dashed line
represents 1:1 line. The slope and coefficient of determination (R2) for the linear regression through the origin are shown. Arrows mark three nodes
that show different time estimates. (c) Relationship between the complexity of models and the slope of divergence times inferred using the GTR þ
C and other models. JC, K2, HKY, TN, and GTR represents Jukes–Cantor, Kimura 2-parameter, Hasegawa–Kishino–Yano, Tamura–Nei, and general
time-reversible models, respectively. The number of model parameters is shown in the parentheses. Circles indicate whether a gamma distribution
(þ C) for incorporating rate variation across sites is used (open circle) or is not used (closed circle) with the substitution model. The Bayesian
method produces similar time estimates between the JC and GTR þ C models when (d) all internal calibrations are excluded, and (e) one internal
calibration and a diffused root calibration are used. Times are in millions of years. (f) The RelTime method produces similar divergence times
between the JC and GTR þ C models. Times are normalized to the sum of node ages. (g) Comparison of 95% Bayesian credibility intervals
generated under the JC (dark red) and GTR þ C (cadet blue) models. Dots are point estimates of divergence times. Distributions of posterior time
estimates for three nodes pointed in panel (b) are shown (inset).
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(see Materials and Methods). The resulting divergence times
from using the simple JC model were still very similar to those
from the more complex GTR þ C model (slope¼ 0.95, R2¼
0.99, fig. 1e). Therefore, dates from simple and complex mod-
els show good linear relationships in Bayesian analyses with
even a few calibrations.

To eliminate the effect of calibrations in mediating the
similarity of times obtained using simple and complex mod-
els, we estimated divergence times using the RelTime method
in which no calibrations and no branch rate model are re-
quired. For this data set, divergence times under the JC and
GTR þ C models were very similar (fig. 1f), and the confi-
dence intervals also showed broad overlap. This result sug-
gested that the specification of a branch rate model and
calibrations used in the Bayesian analysis for the data set
analyzed are unlikely to explain the high similarity in diver-
gence times between the JC and GTR þ C model. Overall,
substitution model complexity appears to have a limited im-
pact on divergence time estimates for the “Plants” data set.

The Complexity of the Substitution Model Has
Limited Impact on Time Inference for Many Data Sets
We examined the similarity of times estimated via simple and
complex models for many other data sets, which contained
small or large numbers of species (43–274), had varying evo-
lutionary time depths (102–4,511 My), evolved with slow or
fast rates (0.21–2.28 substitution per site per billion years), or
employed small or large numbers of calibration points (8–64)
(table 1). For all these data sets, the use of simple models
underestimated pairwise evolutionary distances and showed
curvilinear relationships with distances estimated using com-
plex models (fig. 2). The curvilinear relationship was partic-
ularly dramatic for more ancient divergences due to
substitutional saturation (fig. 2a).

Despite the curvilinear relationship of pairwise distances
estimated using simple and complex models, their divergence
time estimates showed strong linear relationships for nuclear
nucleotide, mitochondrial nucleotide, and amino acid se-
quence alignments (fig. 3a). The linear regression slopes ranged
from 0.92 to 1.01 (fig. 3a). The linear relationships persisted in
all analyses even when internal calibrations were removed
(only the root calibration was kept); slopes ranged from 0.96
to 1.11 (fig. 3b). The use of a random internal calibration and a
diffused root calibration produced a similar range of slopes
(0.94–1.01) (supplementary fig. S1, Supplementary Material
online). As with the “Plants” data set, RelTime dating analysis
also produced excellent linear relationships of node times es-
timated via simple and complex models (supplementary fig.
S2, Supplementary Material online).

The mean of the relative absolute difference between
times estimated by simple and complex models was small
(<6.2%), but some node times deviated considerably from
the 1:1 linear trend for these two models. For example, three
nodes in the “Spiders” data set showed 15–23% difference
between time estimates obtained from simple and complex
models (fig. 3a). Interestingly, these differences disappeared
(<1%) when all the internal calibrations were excluded
(fig. 3b). In contrast to the patterns observed for the

“Spiders” data set, divergence estimates from the
“Eukaryotes & Prokaryotes” data set showed larger differences
between simple and complex models when all the internal
calibrations were removed. However, Bayesian CrIs obtained
using simple models often contained the point estimates
obtained using complex models, and vice versa (fig. 4 and
supplementary fig. S3, Supplementary Material online). CrIs
overlapped for >97% of the nodes across all the analyses
between simple and complex models (fig. 4), and the over-
lapping region was significant for the majority of the nodes
(supplementary fig. S4, Supplementary Material online).
Therefore, simple and complex models seem to offer similar
statistical power for biological hypothesis testing. For exam-
ple, in the analysis of “Mammals (A)” data set, divergence
estimates from both simple (88.6–91.3 My) and complex
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FIG. 2. (a) Curvilinear relationships of pairwise distances. Pairwise
distances are normalized to the maximum pairwise distance obtained
using the complex model for a given empirical data set to enable
comparisons across empirical data sets. The gray-dashed line repre-
sents equality between distance estimates. (b) Average percent differ-
ences between pairwise distances obtained using simple and complex
models. The error bar shows 1 SD. Data sets for “Mammals (A),”
“Mammals (B),” “Birds,” “Fishes,” “Metazoans,” “Spiders,” “Plants,”
and “Eukaryotes & Prokaryotes” are from dos Reis et al. (2012),
Meredith et al. (2011), Jarvis et al. (2014), Alfaro and Holder (2006),
dos Reis et al. (2015), Bond et al. (2014), Morris et al. (2018), and Betts
et al. (2018), respectively.
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(88–90.6 My) models rejected the evolutionary model in
which the last common ancestor of placental mammals
appeared after the Cretaceous–Paleogene (K–Pg) event, con-
sistent with conclusions in some previous studies (Hedges
et al. 1996; Kumar and Hedges 1998; dos Reis et al. 2012).

Fundamental Factors Enabling Robustness of Inferred
Times to Model Complexity
Elucidation of causal factors mediating the similarity of time
estimates produced under simple and complex substitution
models is needed to reveal the fundamental basis of our

observation and to establish its generality. We hypothesized
that the branch length estimates obtained via simple and
complex models were linearly related (even though not 1:1)
for the data sets analyzed. This linearity would result in similar
relative branch lengths, and thus divergence times. This hy-
pothesis arose from our observation that the RelTime
method produced similar time estimates under simple and
complex models (supplementary fig. S2, Supplementary
Material online). RelTime is based on a relative rate frame-
work in which the relationship between branch lengths and
time estimates is established algebraically (Tamura et al. 2012,
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2018). Divergence times are the ratios of the linear combina-
tions of branch length estimates (and of node-to-tip distan-
ces), which allows us to predict that the relative branch
lengths between simple and complex models will be similar.

Indeed, linear models (through the origin) described the
relationship between branch lengths from simple and com-
plex models for all empirical data sets we examined (fig. 5).
This trend is dramatically different from that observed for
pairwise distances, where a curvilinear relationship was ob-
served in every case (fig. 2). Linear regression slopes of branch
lengths are all <1 because simple models underestimate se-
quence divergences. However, branch lengths were uniformly
underestimated via simple models for the empirical data sets
tested, resulting in similar relative branch lengths between
simple and complex model scenarios (fig. 5) as well as similar
relative node-to-tip distances (supplementary fig. S5,
Supplementary Material online). Because divergence times
are a function of the ratios of the linear combinations of
branch lengths, and the ratios of node-to-tip distances, they
become comparable under simple and complex models.

Despite the linear patterns described earlier, we expected a
greater magnitude of underestimation for longer branches and
deeper sequence divergences when using simple models (see
fig. 2a), which could distort time estimates. This effect is indeed
observed for the longest branches in most of the data sets
analyzed, as they show significant deviation from the linear
trend (fig. 5). We confirmed this pattern in a systematic anal-
ysis of short, long, and intermediate branch lengths (fig. 6a);
and shallow, deep, and intermediate node-to-tip distances
(fig. 6c). However, divergence time estimates on deep nodes
and branch times on long branches were often not very dif-
ferent between simple and complex models (fig. 6b and d).
These results suggest that relaxed clock methods automatically
adjust evolutionary rates within a phylogeny to produce robust
time estimates for the empirical data sets analyzed.

However, this adjustment may not be possible for phylog-
enies with few species or sparse taxon sampling within some
clades, producing isolated long branches and causing time
estimates from simple models to differ from complex models.
For example, many very long branches may appear in an
unbalanced phylogeny (supplementary fig. S6a,
Supplementary Material online). Interestingly, we found
that the slope of times estimated using simple and complex
models was close to 1 when the rates were similar to those
observed in empirical data sets (1� category in supplemen-
tary fig. S6b and c, Supplementary Material online), which is
consistent with results from our empirical analyses. For data
sets where evolutionary rates are extremely fast (e.g., 10�), or
sequence divergences are very large (see Materials and
Methods), we found that the use of a single, very shallow
calibration often produced overly young estimates (blue
dots, 2�–10� in supplementary fig. S6c, Supplementary
Material online). It is because the underestimation of lengths
for long branches is more severe when using a simple model,
and the rate adjustment offered by relaxed clock methods is
not as effective. However, the use of good calibrations at
deeper nodes alleviated the discrepancy and produced less
biased time estimates for the simple model (green and pink
dots, 2�–10� in supplementary fig. S6c, Supplementary
Material online). Because reliable alignment of sequences
showing large divergences is very challenging (Edwards et al.
1995), researchers will (and should) generally be apprehensive
of using highly divergent genes (e.g., 10�).

Increasing Numbers of Sequences Makes Time
Estimates from Simple and Complex Models More
Similar
We investigated the effect of the number of sequences in a
data set on the similarity of estimated dates from simple and
complex models, because a data set with sparse taxon
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FIG. 4. Comparisons of Bayesian credibility intervals (CrIs) inferred by using simple and complex models. Shown are the proportions of node times
for which simple and complex models produce overlapping CrIs (solid), CrIs produced by complex models contain point time estimates produced
by simple models (open), and CrIs produced by simple models include point time estimates produced by complex models (hatch) when (a) all
calibrations are used and (b) no internal calibrations are used. See also supplementary figure S3, Supplementary Material online, for more detailed
information about (a).
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sampling may show a greater discrepancy. We evaluated the
linearity of the relationship of branch lengths generated via
simple and complex models for data subsets with increasingly
larger numbers of sequences subsampled from the “Plants”
data set. We found that when the number of sequences
sampled was small (e.g., 10), the linear relationships between
branch lengths were weak for some subsets (lower linear co-
efficient, R2) and strong for others (higher R2) (fig. 7). With an
increasing number of sequences, the dispersion of R2 values
became smaller, resulting in a more robust linear relationship
between branch lengths (fig. 7). In the empirical data sets
analyzed, the dispersion of R2 became very small for data
sets that contain as few as 40 sequences. Therefore, a stronger
linear relationship of branch length estimates between simple
and complex models exists for data sets with many species,
resulting in similar divergence time estimates. Our results may
explain the inconsistent patterns reported in previous studies
(Yang 1996; Schenk and Hufford 2010), which analyzed rela-
tively small data sets (5–25 sequences).

Effects of Irreversibility and Nonstationarity of
Substitution Patterns
As mentioned earlier, our primary focus is on complex mod-
els used in practical analyses, which are from the GTR class.
However, it is important to consider whether a violation of
the assumption of model stationarity and time-reversibility
has biased time estimates significantly. Because non-GTR sub-
stitution models are not available for use in the Bayesian
dating software, we used the RelTime method to infer diver-
gence times directly for phylogenies in which branch lengths
were estimated under an unrestricted model (in which the
time-reversibility in substitution models is not assumed) and
a model in which the stationarity of the substitution patterns
is not assumed (see Materials and Methods). We found that
the JC model and non-GTR models produced similar diver-
gence time estimates and confidence intervals (fig. 8a and b).
It is because branch length estimates obtained using the JC

and non-GTR models showed strong linear relationships
(fig. 8c and d). Simple and complex models generated com-
parable time estimates and, hence, may provide equivalent
statistical power for hypothesis testing within the range of
evolutionary conditions observed in empirical data sets ana-
lyzed for this study.

Discussion
Divergence times estimated using simple and complex sub-
stitution models were remarkably similar across a range of
phylogenomic data sets, a pattern that we observed for both
Bayesian and RelTime methods. More surprisingly, similar
estimates were observed even when a small number of cali-
brations (e.g., only the root calibration) was used in Bayesian
and non-Bayesian analyses. We found that three fundamental
reasons can explain the observed robustness of time esti-
mates to model complexity in many phylogenomic data
sets. First, the estimates of branch lengths and node-to-tip
distances under simple and complex models show strong
linear relationships, especially for data sets with many sequen-
ces. Second, relaxed clock methods are able to automatically
adjust evolutionary rates on branches that experience under-
estimation of sequence divergences, resulting in time esti-
mates that are similar to those from complex models.
Third, the use of calibrations (especially deep calibrations)
further narrows differences in time estimates from simple
and complex models, as calibrations often offer strong con-
straints on node ages.

Although divergence time estimates derived via simple
and complex models show remarkable overall similarity, use
of different substitution models may produce very different
point estimates for some nodes (e.g., >20% difference for
node 3 in fig. 1g). It is mainly because the distributions of
posterior times under simple and complex models differ for
those nodes. Even for phylogenomic data sets, divergence
time estimates are generally associated with large estimation
errors due to the variance of branch length estimates, the
degree of evolutionary rate heterogeneity, and the uncer-
tainty related to clock calibration (Zhu et al. 2015; Tao
et al. 2020). Therefore, CrIs, which represent the uncertainty
surrounding divergence time estimates, are more useful than
point estimates in biological hypothesis testing (Warnock
et al. 2017). CrIs produced by simple and complex models
largely overlapped (fig. 4 and supplementary fig. S4,
Supplementary Material online), and the widths of CrIs
around time estimates were also very similar when the
same set of calibrations were used (fig. 1g and supplementary
fig. S3, Supplementary Material online).

Even though we found that simple models produced
results comparable to those from complex models across
many empirical data sets, we anticipate that there will be
situations in which complex models are best suited for mo-
lecular dating. This includes the analysis of data sets in which
the number of sequences is small, substitution patterns have
shifted substantially in some groups, sequences divergences
are large, or taxon sampling in some clades is so sparse as to
create many long branches. Complex models are also
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persion around the linear trends of branch lengths from simple and
complex models. Boxes show the variation of the coefficient of de-
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branch lengths obtained using the GTRþC and the corresponding
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branch lengths. Model abbreviations are as those in figure 1. The
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required when using an external mutation or substitution
rate to set evolutionary distances to times because actual
branch lengths are best estimated via a complex model.
Therefore, complex models are needed if one is interested
in estimating not only divergence times but also absolute and
relative evolutionary rates. Complex models may also be re-
quired when inferring the phylogeny and divergence times
jointly, although use of a predetermined topology is a com-
mon practice in phylogenomic studies (e.g., Li et al. 2019;

Oliveros et al. 2019). In the future, we plan to investigate
the impact of substitution model complexity on the joint
inference of phylogeny and times.

A majority of phylogenomic analyses make a simplifying
assumption that the same substitution model applies across
all the sites in a concatenated data set or within each data
partition. However, evolutionary dynamics and processes dif-
fer regionally (and even positionally) in mutation patterns,
sequence contexts, and selective pressures (Yang et al. 1994;
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FIG. 8. Relationships of RelTime divergence times estimated with branch lengths obtained using the JC model and models that are (a) non-time-
reversible and (b) non-stationary for all nucleotide data sets. Gray solid lines represent 95% confidence intervals. The sum of node ages was used to
normalize divergence times and confidence intervals. Relationships of branch lengths obtained using the JC model and models that are (c) non-
time-reversible and (d) non-stationary. The gray-dashed line represents the best-fit linear regression through the origin. The slope and coefficient
of determination (R2) for the linear regression are shown.

Dating with Simple versus Complex Models . doi:10.1093/molbev/msaa049 MBE

1827



Yang and Swanson 2002; Shapiro et al. 2006; Kosakovsky
Pond et al. 2008; Bordner and Mittelmann 2014; Jayaswal
et al. 2014; Arenas 2015). Therefore, one may imagine that
even a seemingly complex substitution model (e.g., GTRþC)
is relatively simple when compared with the actual reality.
The observation that the simplest models produce time esti-
mates similar to those obtained using much more complex
models may be used to suggest that the current model com-
plexity is appropriate for estimating divergence times. But,
extensive analyses of simulated data are required to fully ex-
plore the sufficiency of current substitution models and un-
derstand whether the difference between simple and
complex models can be interpreted as a problem with simple
models, which is beyond the scope of this article and an
exciting future direction of research.

Materials and Methods

Empirical Data Acquisition
We selected eight large-scale empirical data sets distributed
across the tree of life. Species groups, data types, sequence
lengths, sequence counts, calibration counts, branch rate
model, the number of partitions, and the original substitution
models used in the majority of partitions are summarized in
table 1. These studies used complex substitution models (e.g.,
GTRþC) along with one or multiple partitions, and none of
the studies selected the JC or Poisson models as the best
model for any partitions. All empirical data were analyzed
initially in MCMCTree (Yang 2007) to estimate the divergence
times, except the “Spiders” data that were analyzed in RelTime
and then reanalyzed in MCMCTree by Mello et al. (2017). In all
analyses, we used the published topologies. We obtained the
published divergence times and CrIs from the original studies,
except for “Mammals A” and “Eukaryotes & Prokaryotes” data
sets. Because the original studies of these two data sets did not
provide CrIs of Bayesian time estimates, we reproduced time-
trees for these two data sets with the same settings as used in
the original studies with MCMCTree (v4.9h).

Because analyses of long sequences can require long com-
putational times, mainly in ML branch length calculations, we
used the original alignments when they were shorter than
10,000 sites (see table 1). Otherwise, we randomly selected
10,000 sites from the original alignments (10 K data sets) for
all phylogenetic analyses. The exception was the “Plants” data,
for which the original study (Morris et al. 2018) showed that
similar time estimates were obtained by using the full align-
ment (856,439 sites) and a trimmed subsample with high site
coverage (2,217 sites). We, therefore, used the 2,217 sites data
for the “Plants” data set. The subsampled alignments were
used in all following analyses of simple and complex models.
All empirical data sets are available at https://doi.org/10.6084/
m9.figshare.11873874, last accessed March 9, 2020.

Relationship between Bayesian Time Estimates Using
Simple and Complex Models
We estimated divergence times in MCMCTree (v4.9h) using
simple models with topologies and calibrations from the orig-
inal studies. All MCMCTree analyses were conducted using

the approximate likelihood calculation. The substitution
models used in the original studies were employed as the
complex models (table 1). JC and Poisson models without
the assumption of rate variation across sites under the
gamma distribution were used as the simple model for nu-
cleotide and amino acid sequences, respectively. For the
“Plants” data, we also estimated divergence times using
Kimura 2-parameter (K2) (Kimura 1980), Hasegawa–
Kishino–Yano (HKY) (Hasegawa et al. 1985), and Tamura–
Nei (TN) (Tamura and Nei 1993) models with and without a
gamma parameter for accounting for rate variation across
sites, and the GTR model without a gamma parameter. We
used a single partition in all simple and complex model anal-
yses, although multiple partitions might be used in the orig-
inal studies. However, we used 29 partitions for the
“Eukaryotes & Prokaryotes” data analysis since the original
research (Betts et al. 2018) showed a strong influence of
partitioning on time estimation. We used the same rate mod-
els, prior settings (e.g., tree prior and overall rate prior), and
calibration constraints and densities as published in the orig-
inal studies for all analyses. Two independent runs were con-
ducted to ensure convergence and that ESS values were>200
after removing 10% burn-in samples for each run.

We first examined whether the use of a single partition and
subsampled alignments would significantly impact the time
estimates generated by the complex model analysis.
Therefore, we compared the published times obtained using
the full data sets and multiple partitions with times estimated
using the subsampled alignments and a single partition.
Concordant time estimates were found in all empirical data
sets (supplementary fig. S7, Supplementary Material online).
Thus, we considered the effect of data subsampling and par-
titioning to be small for the empirical data sets analyzed. Our
observations are consistent with studies showing that site
subsampling has a limited impact on the accuracy and pre-
cision of time estimates (dos Reis and Yang 2013; Zhu et al.
2015). Therefore, we used the divergence times, and CrIs
obtained using the subsampled alignments, the original com-
plex substitution model, and a single partition as the infer-
ences from complex models when a reanalysis was needed.
We then compared them with the results obtained using the
subsampled alignments, simple models, and a single partition
to eliminate any site-subsampling bias, and observed good
linear relationships (fig. 3a). We also found similar linear
trends in direct comparisons between time estimates from
simple models and published times for all data sets (results
not shown), indicating that the length of sequences has lim-
ited impact on the robustness of time estimates to substitu-
tion model complexity. We also computed the mean of
relative absolute error between times estimated under simple

and complex models for each data set by using 1
n

Pn

i

tsi
�tci

tci
%,

where tc_i and ts_i is the node time estimated under the
complex and simple model for node i, respectively, and n is
the number of nodes. Although we only used MCMCTree for
inferring Bayesian divergence times, we expect results to be
similar when using other Bayesian dating software, for
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example, BEAST2 (Bouckaert et al. 2014), because previous
studies have shown that different Bayesian dating software
packages tend to generate similar time estimates when priors
and calibration constraints are consistent (Warnock et al.
2012, 2015).

Influence of Calibrations on the Relationship of
Bayesian Times between Simple and Complex Models
We re-estimated divergence times in MCMCTree (v4.9h) us-
ing both simple and complex models without any internal
calibrations to examine whether the use of many calibrations
constrained the final time estimates and concealed bias
caused by the use of simple models. In this case, only the
age of root was constrained. A single partition and the sub-
sampled alignments were used in the analysis. All other priors,
including the root calibration, were the same as those used in
the original studies. We also investigated whether the use of
root calibration caused a linear relationship between time
estimates under simple and complex models. We performed
Bayesian analysis for each data set using a single internal cal-
ibration that was randomly selected from all the internal
calibrations used in the original study and only the maximum
constraint (tmax) for the root. The use of only a maximum
constraint for the root resulted in a diffused uniform density
[0, tmax].

Testing the Need for Multiple-Hits Correction in
Pairwise Distance Estimation
We tested whether the concordance of times between simple
and complex models arose because minimal multiple-hits
correction was needed, which was often true for data sets
that contained recently diverged or slow-evolving taxa (Nei
and Kumar 2000). We estimated pairwise sequence distances
using simple and complex models in MEGA X (Kumar et al.
2018). We used TN and Jones–Taylor–Thornton (Jones et al.
1992) models with a gamma parameter estimated by the ML
method as the complex model for nucleotide and amino acid
data sets, respectively.

Testing the Relationship of Divergence Times
Estimated Using Simple and Complex Models for a
Non-Bayesian Approach
We estimated divergence times using the RelTime method
(Tamura et al. 2012, 2018) in MEGA X. A single partition was
used in these analyses. No calibrations are required for
RelTime analyses. To directly compare the dates estimated
by RelTime when no calibrations are used, we normalized
time estimates to the sum of node ages. This normalization
is simply a post hoc scaling of relative times and is not the
same as assigning calibrations in the Bayesian approaches in
which the tree prior interacts with calibration probability
densities. Outgroups were removed in the time comparisons
because RelTime does not produce time estimates for
sequences in the outgroup.

Testing the Relationship of Branch Lengths and Node-
to-Tip Distances Estimated Using Simple and
Complex Models
For each data set, we estimated ML branch lengths using both
simple and complex models and the published topology in
MEGA X. A single partition was used in all ML analyses. We
compared the branch lengths estimated using simple and
complex models to obtain the relationship. We then calcu-
lated the node-to-tip distances using the resulting ML tree.
For each node, the node-to-tip distance is the sum of the
lengths of all paths from this node to all descendent tips
divided by the total number of descendant tips.

Testing Relationships of Branch Lengths and Node-to-
Tip Distances for Different Branches and Sequence
Divergences
For each data set, we compared branch lengths and branch
times estimated using simple complex models for short, in-
termediate, and long branches. Branch length categories were
assigned by comparing individual branch length to the mean
branch length across a given tree. Long branches were longer
than 1 SD from the mean value of all branches. Short
branches were those with lengths shorter than the mean
value. The remaining branches were classified as intermediate
branches. We also compared node-to-tip distances from sim-
ple and complex models for shallow, intermediate, and deep
nodes based on the timetree inferred using the complex
model and no internal calibrations. The shallow region is
the period spanning from 0 My to 30% of the root age. The
deep region for all data sets, except for the “Eukaryotes &
Prokaryotes” data, is the period spanning from 70% of the
root age to the root age. For the “Eukaryotes & Prokaryotes”
data, the deep region is the period spanning from 50% of the
root age to the root age because all internal nodes are youn-
ger than 70% of the root age. The remaining timespan
belongs to the intermediate region for all data sets. We com-
puted the slopes of node-to-tip distances and of divergence
times for nodes that were located in shallow, intermediate,
and deep divergences regions.

Testing the Linearity of Relationships among
Substitution Model Complexity, Number of Ingroup
Sequences, and the Dispersion of Branch Lengths
We first randomly sampled ten ingroup sequences from the
full “Plant” data set (99 ingroupþ 4 outgroup sequences). We
then used “expanded sampling” to generate data sets with 20,
30, 40, 50, 60, 70, 80, and 90 ingroup sequences, so that the
larger data sets always contained the sequences in the smaller
data sets. For example, we kept ten sampled sequences and
sampled another ten sequences to generate a data set with 20
ingroup sequences. We repeated this procedure 20 times, so
we had 20 replicates for each number of ingroup sequences.
We estimated branch lengths for each replicate using JC, K2,
HKY, TN, GTR, and the model used in the original study, GTR
þ C. We compared the branch lengths estimated using the
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simpler models with those estimated using the GTR þ C
model and computed the coefficient of determination of
linear regression through the origin (R2). Therefore, for each
subsampled category, we had 20 R2 of branch lengths com-
pared between analyses using the GTR þ C and a corre-
sponding simpler model.

Testing the Relationship of Branch Lengths and Times
Estimated Using the Simple Model and Models That
Are Non-time-Reversible and Non-stationary
To examine whether the linear relationships of divergence
times and branch lengths between simple and complex mod-
els are unique phenomena for models in GTR class, we com-
pared the ML branch lengths estimated using the simple
model (JC) and models that are non-time-reversible or
non-stationary for all nucleotide data sets. We obtained the
branch lengths under non-time-reversible (i.e., unrestricted)
model (model ¼ 10) (Yang 1994) and non-stationary model
(nhomo ¼ 3) with a single partition in baseml (v4.9h) (Yang
2007). Because the direct usage of non-time-reversible and
nonstationary models is not allowed in MCMCTree for esti-
mating divergence times, we obtained time estimates using
the RelTime method with the ML trees produced by baseml
and without calibrations. We then normalized time estimates
produced by RelTime to the sum of node ages to obtain the
relationship.

Simulation
To assess the impact of sparse taxon sampling and long
branches on divergence time estimation between simple
and complex models, we conducted a computer simulation.
We used a completely unbalanced tree with 16 tips as the
model timetree (root age ¼ 3 time units, supplementary fig.
S6a, Supplementary Material online) and simulated sequen-
ces under the strict clock with different mean rates. All
sequences were simulated using SeqGen (Grassly et al.
1997) under the GTR þ C (a ¼ 0.25) model with
5,000 bp and a biased base composition (T¼ 0.25, C¼ 0.33,
A¼ 0.31, and G¼ 0.11). We set the mean evolutionary rate of
0.1 substitutions per site per time unit as the baseline case
(1�) to make the simulated distribution of pairwise sequence
distances (estimated under the TN þ C model) to be similar
to that produced from the analysis of all eight empirical data
sets analyzed (1� in supplementary fig. S6b, Supplementary
Material online). Then we accelerated the mean rate to be 2-,
4-, 6-, 8-, and 10 times faster. For the fastest rate simulated
(10�), the median of pairwise sequence distances was 4.7
substitutions per site, which is much larger than the empirical
value (supplementary fig. S6b, Supplementary Material
online).

We inferred divergence times using MCMCTree (v4.9h)
using the GTRþC and the JC model. Because the likelihood
ratio test rejected the assumption of the strict clock
(P< 10�20) when the JC model was used due to uneven
underestimation of branch lengths, we relaxed the molecular
clock when estimating divergence times. We used three dif-
ferent calibration strategies to investigate the impact of cal-
ibration positions on time inference: a precise calibration at a

shallow node (o–p divergence in supplementary fig. S6a,
Supplementary Material online) and a diffused root calibra-
tion; a precise calibration at a middle node (j–p divergence)
and a diffused root calibration; and a precise root calibration.
All priors (e.g., mean evolutionary rate) were set to be as the
true values in all Bayesian analyses. Simulated data sets and
prior settings are available at https://doi.org/10.6084/m9.fig-
share.11873874, last accessed March 9, 2020.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Data Availability Statement
All empirical and simulated data sets are deposited to
Figshare: https://doi.org/10.6084/m9.figshare.11873874.
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