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PD-L1 induction via the MEK-JNK-AP1 axis by a neddylation
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MLN4924 is a first-in-class small molecule inhibitor of NEDD8-activating enzyme (NAE), which is currently in several clinical trials for
anti-cancer applications. However, MLN4924 also showed some off-target effects with potential to promote the growth of cancer
cells which counteracts its anticancer activity. In this study, we found that MLN4924 increases the levels of PD-L1 mRNA and protein
in dose- and time-dependent manners. Mechanistic study showed that this MLN4924 effect is largely independent of neddylation
inactivation, but is due to activation of both ERK and JNK signals, leading to AP-1 activation, which is blocked by the small molecule
inhibitors of MEK and JNK, respectively. Biologically, MLN4924 attenuates T cell killing in a co-culture model due to PD-L1
upregulation, which can be, at least in part, abrogated by either MEK inhibitor or anti-PD-L1 antibody. In an in vivo BALB/c mouse
xenograft tumor model, while MLN4924 alone had no effect, combination with either MEK inhibitor or anti-PD-L1 antibody
enhanced the suppression of tumor growth. Taken together, our study provides a sound rationale for effective anticancer therapy
in combination of anti-PD-L1 antibody or MEK inhibitor with MLN4924 to overcome the side-effect of immunosuppression by
MLN4924 via PD-L1 induction.
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INTRODUCTION
Protein neddylation is an important biochemical process by which
the ubiquitin-like protein NEDD8 (Neural precursor cell-expressed
developmentally down-regulated gene 8) is covalently attached to
a substrate protein to affect its function, not degradation. Like
ubiquitylation, neddylation is catalyzed by three-step enzymatic
cascade of E1 NEDD8-activating enzyme (NAE), NEDD8-
conjuagating enzyme E2 and substrate-specific NEDD8-E3 ligases
[1–3]. The physiological substrates of neddylation are the cullin
family members and cullin neddylation is required for the activity
of cullin-RING ligases (CRLs); CRLs control the ubiquitylation of
~20% proteins doomed to be degraded via proteasome, thus
regulating many important biological processes [4]. In the past
decades, numerous studies have convincingly demonstrated that
the neddylation pathway and CRLs are significantly over-activated
in various types of human cancers, and have been validated as
attractive anti-cancer targets [5].
MLN4924 (also known as pevonedistat) is a first-in-class NAE

inhibitor reported in 2009 [6] with a mechanism involving the
formation of a steady-state covalent adduct between the ATP-
binding site of NAE and C-terminal of NEDD8, thus blocking
NEDD8 transferring to neddylation E2 [7], leading to inactivation
of the entire family of CRLs [6–8]. In many preclinical studies,
MLN4924 has demonstrated impressive anticancer activity, both

acting alone or in combination with chemotherapy, radiotherapy
and immunotherapy [5, 9], which led to a series of phase I/II/III
clinical trials in the treatment of patients with both hematologic
and solid malignancies, alone or in combination with various
chemotherapeutic agents [10–13]. However, recent preclinical
studies have shown that MLN4924 suffered from a number of off-
target effects, which compromises its anticancer activity [14].
T cells play an important role in the maintenance of the

immune system and in the anti-tumor immune response. Co-
inhibitory immune checkpoint proteins, such as cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), programmed death-1
(PD-1), and programmed death-ligand (PD-L1) are critical for
maintaining a balanced regulation of CD8+ T-cell activities, since
uncontrolled hyper-activation of these T cell population may result
in autoimmune reactions [15]. It is well-established that tumor-
associated immunosuppression is a major barrier for the success
of immunotherapy [16]. A critical mechanism underlying cancer-
associated immunosuppression is the aberrant expression
of PD-L1 on the surface of cancer cells. Engagement between
PD-1 receptor expressed on T cells and PD-L1 on tumor cells
contributes to the suppression of T cell activity and cytokine
release, eventually leading to immunosuppression [17]. Blockade
of PD-1 or PD-L1, therefore, is able to restore T cell functions and
potentiate therapeutic efficacy [18]. Multiple conventional and
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targeted chemotherapies could modulate anticancer immunity
and affect tumor-targeting immune responses. For example,
chemotherapy regimens, FLOT (5-FU, oxaliplatin, docetaxel) and
CROSS (carboplatin and paclitaxel) could promote an immune-
resistant phenotype through upregulation of inhibitory immune
checkpoint ligands and receptors, such as PD-1/PD-L1 [19]; PARP
inhibitor could enhance cancer-associated immunosuppression by
upregulating PD-L1 expression [20]; MAP kinase inhibitor is able to
potentiate antitumor T cells by blocking TCR-driven apoptosis [21].
Thus, the combination of cytotoxic or targeted anticancer
therapies with immune checkpoint blockade treatment would
result in more promising and potent anticancer effect.
Two recent studies showed that PD-L1 is induced by MLN4924

treatment in glioma cells [9, 22], suggesting that the levels of PD-
L1 are subjected to regulation by neddylation. PD-L1 was also
found to be a substrate of CRL3SPOP E3 ligase upon phosphoryla-
tion by cyclin D-CDK4 [23], whereas MLN4924 increased PD-L1
levels by inactivating CRL1FBXW7, leading to accumulation of c-
MYC, which trans-activated PD-L1 expression [9]. In this study, we
reported that in multiple human cancer cell lines, MLN4924
increased PD-L1 expression in dose- and time-dependent manners
mainly through the activation of transcription factor AP-1 via MEK
signals, leading to the establishment of a cancer-associated
immunosuppression environment. The blockade of PD-L1 via
anti-PD-L1 antibody or MEK inhibitor restored the attenuated
antitumor immunity, resulting in an enhanced tumor suppression
both in vitro co-culture and in vivo animal models. Our study
revealed a neddylation-independent side-effect of the neddyla-
tion inhibitor MLN4924, and provided a sound strategy for
effective combinational anti-cancer therapy.

RESULTS
MLN4924 enhances PD-L1 expression at both mRNA and
protein levels in dose- and time-dependent manners
Two previous studies showed that MLN4924 induced PD-L1
expression in glioblastoma cells [9, 22]. To determine whether this
is a general phenomenon, we extended the observation and
found that MLN4924 increased the levels of PD-L1 protein in
multiple human cancer cell lines, including esophageal and head
& neck cancer cells (Kyse70, UMSCC1, UMSCC38, UMSCC5,
UMSCC10, UMSCC11b, UMSCC17); pancreatic cancer cells (Moh1,
MIAPaCa2, BxPC3) and lung cancer cells (H358, H1792, H460,
A549, H1650, H1299) (Fig. S1A–E), as well as few murine cancer cell
lines, B16-F10, MC38 and CT26 (Fig. S1F), indicating a general
phenomenon. We then focused on H358 lung cancer cells and
BxPC3 pancreatic cancer cells with PD-L1 at relatively low basal
levels and inducible by MLN4924, and found MLN4924 increased
PD-L1 expression at both protein and mRNA levels in dose- and
time-dependent manners (Fig. 1A–D). A time-dependent induc-
tion of PD-L1 protein levels by MLN4924 was also seen in SK-MES-
1 lung cancer cells with low basal level of PD-L1 (Fig. S1G). Given
that the cell surface PD-L1 expressed on cancer cells mainly
dominates the anticancer immunosuppression [24], we deter-
mined whether the cell surface PD-L1 was increased after
MLN4924 treatment, using the fluorescence-labeled anti-PD-L1
antibody for FACS analysis. Significantly, cell surface PD-L1 levels
were indeed increased upon MLN4924 treatment in dose- and
time-dependent manners (Fig. 1E, F). Collectively, these results
showed that MLN4924, when applied for cancer treatment, would
upregulate PD-L1 expression on cancer cell surface with potential
to trigger anticancer immunosuppression, as a major side-effect.

PD-L1 induction by MLN4924 is largely neddylation-
independent, but the ERK1/2-JNK pathway-dependent
Given that MLN4924 is a specific NAE inhibitor [6, 7], we
determined if siRNA-based knockdown of NAE would achieve the
same PD-L1 increase. Surprisingly and unexpectedly, knockdown

of either NAE1 or UBA3 or both had a minor effect on PD-L1 levels
and minor effect on MLN4924-induced PD-L1 increase (Figs. 2A, B
and S2A, B). Moreover, unlike MLN4924, the proteasome inhibitor
MG132 had minor effect on PD-L1 levels, while having equal
capacity in causing accumulation of c-MYC, a classical substrate of
CRL1, followed by proteasome degradation (Figs. 2C and S2C),
suggesting (1) that PD-L1 accumulation by MLN4924 was not
completely attributable to the blockage of neddylation-CRL
pathway, (2) the possible involvement of another neddylation-
independent mechanism.
Our previous study showed that MLN4924 had an off-target

effect of inducing EGFR dimerization to activate EGFR and its
downstream pathways, including the PI3K/AKT and MAPK signal-
ing pathways [14, 25]. Indeed, in both H358 lung cancer and BxPC3
pancreatic cancer cells, MLN4924 induced PD-L1, and at the same
time the phosphorylation of ERK1/2, AKT and JNK kinases as well as
c-FOS in dose- and time- dependent manners (Figs. 2D and S2D),
indicating the activation of these signaling pathways. Consistently,
MLN4924-induced elevation of both PD-L1 protein and mRNA was
largely abrogated by MEK inhibitor (trametinib), JNK inhibitor
(SP600125), as well as knockdown of ERK1/2, or c-JUN, but not by
AKT inhibitor (MK2206) (Figs. 2E, F and S2E, F), indicating that the
activation of ERK1/2-JNK pathways, but not the AKT pathway
mediates the induction of PD-L1 by MLN4924. Interestingly, MEK
inhibitor-induced abrogation of PD-L1 induction could not be
blocked by either proteasome inhibitor MG132 or the lysosome
inhibitor CQ (Figs. 2G and S2G), indicating that MAPK pathway
upregulation of PD-L1 occurs at the transcriptional level and not
through the proteasomal or lysosomal degradation pathways. In
order to determine whether MLN4924 induction of PD-L1 through
ERK1/2-JNK pathway is in a dose-dependent manner, we first
generated MLN4924 IC50 curve in both H358 and BxPC3 cells
(Fig. S3A, B), and then measured PD-L1 induction by MLN4924 at
the broad range of concentrations (IC20/40/60/80) in the absence or
presence of MEK inhibitor/JNK inhibitor. The results showed that
inhibitors of MEK or JNK abrogated MLN4924 induction of PD-L1
across all tested concentrations (Fig. S3C–F). Our results showed
that the ERK1/2-JNK axis plays the major role in MLN4924
induction of PD-L1 in a manner largely independent of MLN4924
concentrations in both H358 and BxPC3 cells, whereas the
neddylation-CRL ubiquitylation-degradation pathway [9, 23] plays
a minor role under our experimental conditions.

AP-1 activity controls the MLN4924 induction of PD-L1
The MAPK-regulated c-JUN/c-FOS heterodimer is the prototypic
activator protein 1 (AP-1) member [26], which binds to the AP-1
binding site to transactivate target gene expression [27]. We next
focused on potential transcriptional regulation of PD-L1 by AP-1.
Indeed, the tandem AP-1 binding sites were reported at the highly
conserved enhancer element of the PD-L1 gene [28, 29]. In a ChIP-
coupled PCR assay, we found that c-JUN indeed bound to the PD-
L1 enhancer sequence and the binding was significantly enhanced
by MLN4924 treatment in both H358 and BxPC3 cells (Figs. 3A, B
and S4A, B). To assess the activity of the AP-1 enhancer element,
we conducted the luciferase-based transcriptional assay, using
the pGL3 luciferase plasmids containing either the PD-L1 promoter
element (PDL1-P) or the promoter element plus the AP-1-
containing enhancer element (PDL1-P+ E). The results showed
that the AP-1-containing enhancer element increased PD-L1
promoter-driven luciferase activity in an AP-1 dependent manner
(Fig. 3C), and such luciferase activity was significantly increased
after MLN4924 treatment for 24 h in both human cancer cell lines
(H358, BxPC3) (Figs. 3D and S4C) and a murine colon cancer cell
line CT26 (Fig. 3E). Moreover, prolonged MLN4924 treatment
(48 h) also increased the PD-L1 promoter-driven luciferase activity
in both H358 and BxPC3 cells (Fig. S4D, E). Collectively, MLN4924
increases PD-L1 expression through AP-1 activation and in an AP-1
dependent manner.
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MLN4924 attenuates cytotoxic effect of Jurkat T cells through
PD-L1 induction
To understand the potential biological consequence of PD-L1
upregulation by MLN4924, we asked whether MLN4924 induction
of PD-L1 in cancer cells would negatively affect the viability and

function of T cells, and performed a co-culture assay of the Jurkat
T cells with cancer cells with or without MLN4924 pretreatment
(Figs. 4A and S5A, top panel). As expected, cancer cells with
MLN4924-pretreatment had a higher PD-L1 expression. Interest-
ingly, Jurkat cells co-cultured with MLN4924-pretreated cancer

Fig. 1 MLN4924 increases PD-L1 expression at both mRNA and protein levels in dose- and time-dependent manners. A–D MLN4924
treatment increases PD-L1 protein levels and mRNA levels in dose- and time-dependent manners. H358 and BxPC3 Cells were treated with
various concentrations of MLN4924 for the indicated time periods, followed by IB with the indicated Abs (A, B), or followed by qRT-PCR
analysis (C, D). E, F MLN4924 treatment increases the cell surface PD-L1 levels in dose- and time-dependent manners. H358 and BxPC3 Cells
were treated with various concentrations of MLN4924 for the indicated time periods, followed by FACS analysis. MFI Median Fluorescence
Intensity; p < 0.05 (*).
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cells underwent apoptosis, although the effect is minor, as
evidenced by minor increased levels of cleaved-PARP and cleaved
caspase-3 (Figs. 4A and S5A), suggesting that PD-L1 induction by
MLN4924 in cancer cells indeed triggers the killing of co-cultured
Jurkat cells.
Next, we determined the killing effect of activated Jurkat cells

on cancer cells with or without MLN4924 pretreatment and

found that the Jurkat cells activated by co-stimulation of PHA
(Phytohaemaglutinin) and PMA (phorbol myristate acetate) [30]
indeed effectively killed co-cultured cancer cells, but the effect
was much compromised upon MLN4924 pretreatment (Figs. 4B
and S5B), indicating that MLN4924-pretreated cancer cells became
resistant to the killing induced by activated Jurkat cells. We then
determined if this resistance was mediated by PD-L1 upregulation,
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and found that the killing effect of Jurkat cells against MLN4924-
pretreated cancer cells was completely restored upon inclusion of
anti-PD-L1 antibody (Figs. 4B and S5B). All these results supported
the notion that MLN4924 induction of PD-L1 on the surface of
cancer cells, on one hand, triggers T cell death, and on the other
hand, inhibits the cytotoxic activity of the T cells against the
cancer cells, leading to resistance of cancer cells to T cell killing,
which is re-sensitized by anti-PD-L1 antibody, indicating a causal
role of PD-L1.

MEK inhibitor enhances cytotoxic effect of Jurkat cells on
MLN4924-pretreated cancer cells
Given that MEK inhibitor trametinib abrogated the MLN4924-
induced PD-L1 upregulation (Fig. 2E), we next determined whether
MEK inhibitor would also re-sensitize MLN4924-pretreated cancer
cells to Jurkat cell killing. Indeed, MEK inhibitor significantly inhibited
PD-L1 expression in cancer cells pretreated with MLN4924, along
with inhibition of apoptosis of co-cultured Jurkat cells (Figs. 5A, B
and S6A). Consequently, MEK inhibitor re-sensitized MLN4924-
pretreated cancer cells to the killing induced by activated Jurkat
cells (Figs. 5C and S6B). It appears that the PD-L1 induction by
MLN4924 plays a causal role, at least in part, for MEK inhibitor
resensitization of tumor cells to T cell-mediated killing.

Combination of MLN4924 with MEK inhibitor or anti-PD-L1
antibody enhanced tumor suppression in a synergistic BALB/c
xenograft tumor model
It has been reported that chemotherapy-induced PD-L1 upregula-
tion contributes to drug resistance due to PD-L1 induced immune-
suppression [31]. Given MLN4924 upregulated PD-L1 expression
through activation of MEK, we hypothesized that this MLN4924
side-effect would compromise its anti-cancer activity, and by
blocking PD-L1, MEK inhibitor or anti-PD-L1 antibody should
overcome this side-effect. To test this hypothesis in vivo, we
generated a xenograft CT26 mouse colon cancer model in
immune-competent synergistic BALB/c mice. We first confirmed
that in CT26 cells, MLN4924 indeed induced PD-L1 at both mRNA
and protein levels as well as ERK1/2 activation, which can be
blocked by MEK/JNK inhibitors (Figs. 6A, B and S7A). While
MLN4924 hardly inhibited CT26 tumor growth, and either MEK
inhibitor or anti-PD-L1 antibody moderately restricted tumor
growth, the combination of MLN4924 with MEK inhibitor or
particularly with anti-PD-L1 antibody significantly enhanced
suppression of tumor growth (Figs. 6C–E and S7B).
We next determined tumor infiltration of immune cells in each

treatment group. Tumor tissues were resected, lysed for Western
blotting or single cell suspension prepared for FACS profiling.
Western blot analysis of the tumor lysis showed that MLN4924-
treated tumors had in general upregulated PD-L1 expression,
which was lower in MEK inhibitor-treated tumors (Fig. S7C). The
FACS analysis of tumor mass revealed that while tumor-infiltrating

T-cell populations, including CD3+, CD3+/CD4+, CD3+/CD8+ cells
were significantly lower upon MLN4924 treatment, the combina-
tion with MEK inhibitor or anti-PD-L1 antibody restored the
cytotoxic T-cell population (Fig. 6F–H). Consistently, MLN4924
treatment also significantly decreased the absolute number of
Granzyme B+ and IFNγ+ cells, while the combination with MEK
inhibitor or PDL1 antibody significantly boosted the Granzyme
B+ and IFNγ+ cells (Fig. S7D–G). Collectively, these results
indicate that MLN4924 enhances cancer-associated immunosup-
pression through upregulation of PD-L1, thus compromising its
anti-cancer activity, which is overcame by either MEK inhibitor or
anti-PD-L1 antibody via PD-L1 targeting.

DISCUSSION
MLN4924 was first reported in 2009 as a potent small molecule
inhibitor of neddylation activating enzyme, thus blocking the
entire neddylation modification and inactivating the entire family
of CRLs, which requires cullin neddylation for their enzymatic
activities [6, 32]. Given that both neddylation modification and
CRLs are over-activated in many types of human cancers,
MLN4924 has shown in preclinical studies promising anti-cancer
activities in a variety of human cancer cell lines [5], leading to its
advancement to multiple Phase I-III clinical trials as a single agent
or in combination with chemotherapies in the treatment of both
hematological malignancies and solid tumors [33]. Notably,
MLN4924 was approved by the FDA in 2020 as the breakthrough
therapy based upon the survival benefits when administrated with
azacitidine in patients with higher-risk myelodysplastic syndromes
(MDS)/chronic myelomonocytic leukemia (CMML) or low-blast
acute myeloid leukemia (AML) [34]. However, several studies have
shown that MLN4924 has some off-target side-effects (for review
see [14]), which could compromise its anti-cancer activity.
In this study, we found that MLN4924 increased PD-L1 levels in

dose- and time-dependent manner, which is a general phenom-
enon, as seen in multiple human cancer lines (Fig. S1A–G). Our
mechanistic study revealed that this could be yet another
potential off-target effect of MLN4924 through activation of AP-
1 via the ERK1/2 and JNK signaling pathways. Our conclusion is
supported by the following lines of evidence: (1) MLN4924 caused
a dose- and time-dependent induction of PD-L1 mRNA, suggest-
ing a regulation at the transcriptional level; (2) MLN4924 activated
ERK1/2 and JNK, while inducing PD-L1, and MLN4924 induction of
PD-L1 can be abrogated by the inhibitors of MEK or JNK as well as
by knockdown of ERK1/2 or c-JUN, indicating a MEK/JNK
dependent mechanism; (3) Abrogation of MLN4924 induction of
PD-L1 by MEK inhibitor could not be blocked by proteasome
inhibition, suggesting a degradation-independent mechanism; (4)
PD-L1 transcriptional activation was dependent of AP-1 binding
on the enhancer fragment. Thus, in addition to previously
reported PD-L1 regulation in a manner dependent of neddylation

Fig. 2 MLN4924 induction of PD-L1 is neddylation-independent, but ERK1/2-JNK pathway-dependent. A Knockdown of NAE1 or UBA3 had
a minor effect on PD-L1 levels. H358 and BxPC3 cells were transfected with siRNAs targeting NAE1, UBA3 or control siCont for 48 h, followed
by IB with the indicated Abs. B NAE1 or UBA3 knockdown had a minor effect on MLN4924-induced PD-L1 induction. H358 cells were
transfected with indicated siRNAs for 24 h, then cells were treated with the indicated concentrations of MLN4924 for 24 h, followed by IB with
the indicated Abs. C Proteasome inhibitor MG132 had minor effect on PD-L1 levels. H358 cells were treated with MLN4924 (0.5 μM) for 24 h or
MG132 (10 μM) for 8 h or MG132(1 μM) for 24 h, followed by IB with the indicated Abs. D MLN4924 induced the phosphorylation of ERK1/2,
AKT, JNK and c-FOS in dose- and time-dependent manners. H358 cells were treated with various concentrations of MLN4924 for the indicated
time periods, followed by IB with the indicated Abs. E MLN4924-induced elevation of both PD-L1 protein (Top) and mRNA (Bottom) can be
largely abrogated by MEK inhibitor (trametinib) or JNK inhibitor (SP600125). H358 cells were treated with either MLN4924 or indicated
inhibitors or both, followed by IB with the indicated Abs. F MLN4924 induction of both PD-L1 protein (Left) and mRNA (Right) can be largely
abrogated by knockdown of ERK1/2, or c-JUN. H358 cells were transfected with siRNAs targeting ERK1/2, c-JUN or control siRNA, followed by
treatment with MLN4924 (0.5 μM) for 24 h, then for IB with the indicated Abs. G MEK inhibitor-induced abrogation of PD-L1 induction
occurred at the transcriptional level. H358 cells were treated with MLN4924 alone or combined with indicated inhibitors, followed by IB with
the indicated Abs. MEKi MEK inhibitor (trametinib), JNKi JNK inhibitor (SP600125), AKTi AKT inhibitor (MK2206), MG132 proteasome inhibitor,
CQ (chloroquine) lysosome inhibitor, se short exposure, le long exposure.
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and CRL1/3 [9, 23], PD-L1 induction by MLN4924 is also mediated
by its off-target effect via activation of the MEK-JNK-AP1 axis. It is
worth-noting that increase of PD-L1 protein levels is more than
that of mRNA levels after MLN4924 treatment at the early stage

(Fig. 1A–D), suggesting that neddylation-dependent (via blocking
ubiquitylation and degradation) plays a major role, whereas
neddylation-independent (via transcription activation by the MEK-
JNK-AP1 axis) occurs later.

Fig. 3 AP-1 activity controls the MLN4924 induction of PD-L1 expression. A, B c-JUN bound to the PD-L1 enhancer sequence and the
binding was significantly enhanced by MLN4924 treatment. H358 cells were treated with MLN4924 (0.5 μM) for 24 h, followed by ChIP-coupled
PCR assay. The results were represented as % input (A) and Fold Enrichment (B). C AP-1-containing enhancer element increased PD-L1
promoter-driven luciferase activity. Constructs include the empty pGL3 vector, the pGL3 vector with the promoter cloned upstream of the
luciferase gene alone (PDL1-P), the promoter with the wild-type enhancer cloned downstream of the luciferase gene (PDL1-P+ E).
D, E MLN4924 induction of PD-L1 depends on AP-1 binding site. H358 (D) and CT26 (E) cells were transfected with the indicated plasmids for
24 h, and then treated with MLN4924 (0.5 μM) for 24 h, followed by luciferase-based transcriptional assay. Shown are mean ± SEM of three
independent experiments. p < 0.05 (*), p < 0.01 (**).
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Although two recent studies have shown that MLN4924
treatment induces cancer-associated immunosuppression by upre-
gulating PD-L1 expression in glioma cells [9, 22], our current study
provided several lines of new finding: (1) PD-L1 induction can be
achieved through activation of the MEK-JNK-AP1 axis by MLN4924,
which is neddylation-independent; (2) MLN4924 induction of PD-L1

is a general phenomenon seen in multiple cancer cell lines derived
from a variety of cancer types, likely through both neddylation-
dependent (ubiquitylation and degradation) and independent
(transcriptional activation) manners; (3) MLN4924 induction of PD-
L1 has negative impact on its anticancer activity, which can be
overcome by co-treatment with either MEK inhibitor or PD-L1 Ab.

Fig. 4 MLN4924 attenuates cytotoxic effect of Jurkat cells through PD-L1 induction. A Jurkat cells co-cultured with MLN4924-pretreated
cancer cells underwent apoptosis. Sub-confluent H358 cells were treated with MLN4924 (0.5 μM) for 24 h. After medial removal and PBS
washing, suspension of Jurkat cells was added and cultured for 24 h. H358 and Jurkat cells were then harvested, separately, for IB with the
indicated Abs. B MLN4924-pretreated cancer cells became resistant to the killing by activated Jurkat cells. H358 cells were treated with
MLN4924 (0.5 μM) for 24 h, co-cultured with PHA/PMA-activated Jurkat cells with or without anti-PD-L1 antibody (PD-L1 ab) for 24 h, followed
by crystal violet staining of viable adhered H358 cells and photography. Shown are mean ± SEM of three independent experiments.
p < 0.05 (*), p < 0.01 (**).
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PD-L1 is a major inhibitory checkpoint that negatively regulates
the T-cell functions [15, 35, 36]. Cancer cells with high expression
of PD-L1 evade T-cell anti-cancer immunity through the PD-L1/
PD-1 blocking axis. As such, the therapeutic antibodies against

PD-L1 or PD-1 have shown impressive anti-cancer efficacies in the
treatment of various types of human cancers [37]. PD-L1
upregulation by cancer cells in response to drug exposure is
likely to be a general phenomenon and is part of a pro-survival

Fig. 5 MEK inhibitor enhances cytotoxic effect of Jurkat cells on MLN4924-pretreated cancer cells. A, B H358 cells were treated with either
MLN4924 (0.5 μM) or indicated inhibitors or both for 24 h, then co-cultured with Jurkat cells for 24 h. The H358 and Jurkat cells were separately
harvested for IB with the indicated Abs. C H358 cells were treated with either MLN4924 (0.5 μM) or indicated inhibitors or both for 24 h, co-
cultured with PHA/PMA-activated Jurkat cells for 24 h, followed by crystal violet staining and photography. Shown are mean ± SEM of three
independent experiments. p < 0.05 (*), p < 0.01 (**). NC negative control without Jurkat co-culture nor drug treatment.
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Fig. 6 Enhanced tumor suppression by combination MLN4924 with MEK inhibitor or anti-PD-L1 antibody in xenograft tumor model.
A, B MLN4924 treatment increases PD-L1 mRNA and protein levels in dose- and time-dependent manners. CT26 cells were treated with
various concentrations of MLN4924 for indicated time periods, followed by IB and qRT-PCR analysis. C, D Tumor growth rate. Top: drug
treatment regimen. Bottom: tumor growth rate after 6 indicated treatments (Control, MLN4924, MEKi, PD-L1 ab, MLN4924+MEKi,
MLN4924+ PD-L1 ab) at each individual (C) or group level (D). E The weight of tumors after harvesting at the end of experiment. F–H FACS
profiling of tumor infiltrated T-cell population: Single cell suspension of tumor mass was prepared from each treatment group, and subjected
to FACS profiling with indicated Abs. The data were quantified and statistically analyzed. MEKi MEK inhibitor (trametinib), PD-L1 ab anti-PD-L1
antibody; p < 0.05 (*), p < 0.01 (**); NS not significant.
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program. As such, delivery of chemotherapeutic treatment with
immune checkpoint inhibitors may result in a more optimal
outcome [38]. It has been shown that PD-L1 expression is
subjected to regulation at the multiple levels, including
transcription, post-transcription, and post-translational modifica-
tions (for review, see [39]). Notably, an AP-1 binding cis-element
was identified in the enhancer region of PD-L1 (+4785 to +5056
from transcription start site), and the MAPK signal appeared to
upregulate PD-L1 expression depending on the AP-1 activity
[28, 29]. Consistently, we found that MLN4924 induction of PD-L1
expression is in a manner dependent of this cis-element, further
supporting the transcriptional regulation of PD-L1 expression in
an AP-1 dependent manner. We also acknowledged that other
transcription factors or oncogenic pathways may contribute to
PD-L1 transcription, in addition to MYC, EGFR, PTEN/PI3K and
MAPK [39, 40].
In the tumor microenvironment, PD-L1 is also expressed on

various myeloid cell types [41], which contributes to immune
escape by binding to PD-1 [42, 43]. Various anticancer therapies,
including chemotherapy, radiotherapy, hormone- and targeted-
therapies were able to modulate the recruitment of myeloid-
derived suppressor cells, their activity and PD-L1 expression,
resulting in immunosuppression [44]. Furthermore, cytotoxic
chemotherapeutic agent cyclophosphamide can drive the
expansion of myeloid cells, which exhibited the immunosup-
pressive function by tolerating CD4+ effector cells through the
PD-1/PD-L1 axis [45]. Our previous study has shown that
MLN4924 has immunosuppressive effect by suppressing the
release of proinflammatory cytokines from dendritic cells, and
mitigating dendritic cells-mediated T cell stimulation [46]. Here
we showed that MLN4924 could compromise the immune
function by inducing PD-L1 expression on cancer cells. It is
reasonable to speculate that MLN4924 also induces PD-L1
expression on myeloid cells to cause immunosuppression. We,
therefore, pursued this potential “side-effects” of MLN4924
biologically using both in vitro and in vivo tumor models. In an
in vitro experiment with co-culture of T-cells and cancer cells, we
observed that MLN4924 induction of PD-L1 in cancer cells
triggered apoptosis of co-cultured Jurkat cells, which was
abrogated by MEK inhibitor via blocking PD-L1 upregulation.
On the other hand, activated T cells killed cancer cells, which
was blocked by MLN4924 pretreatment. This MLN4924 blockage
was reversed by either anti-PD-L1 antibody or MEK inhibitor.
Thus, through PD-L1 induction, MLN4924 indeed negatively
regulated anti-cancer activity of T cells, which can be abrogated
by PD-L1 targeting.
We further tested this off-target “side-effect” of MLN4924 using

an in vivo synergistic BALB/c mouse xenograft tumor model.
Unlike in many immune-deficient nude-mice xenograft tumor
models in which MLN4924 showed impressive anti-tumor activity
by targeting neddylation and CRLs [47–49], MLN4924 had no
effect on tumor growth in this immunocompetent syngeneic
tumor model, indicating that its immune suppressive activity, as
evidenced by induction of PD-L1 and reduction of toxic T cells in
tumor tissues, counteracted its regular anti-cancer effect as a
neddylation inhibitor [6, 32]. This notion is further supported by
the observation that the combination of MLN4924 with either MEK
inhibitor or PD-L1 (either one blocked immune-suppression) had
enhanced anti-cancer activity, as compared to MLN4924 treat-
ment alone. Taken together, MLN4924 conferred resistance of
cancer cells to T cells-mediated cytotoxicity by inducing PD-L1 and
the immune checkpoint, which is abrogated by blocking MEK
pathway-regulated PD-L1 transcription or anti-PD-L1 antibody
shown in both in vitro and one CT26 in vivo model. Human PD-L1
has 70% amino acid identity to its mouse orthologue. It was
reported that human and mouse PD-L1 share enough sequence
homology to allow for the interaction of the mPD-L1 with the
hPD-1 protein, forming a functional immune checkpoint [50],

which suggested that the results based on mouse models may
have an application in humans. Thus, our study provided a sound
rationale for effective anticancer therapy by the combination of
MLN4924 with either MEK inhibitor or anti-PD-L1 antibody in
future MLN4924-based clinical trials.

CONCLUSIONS
In summary, our study fits the following working model of
MLN4924 induction of PD-L1 in a manner largely independent of
neddylation-CRLs: MLN4924 activates MEK1/2-ERK1/2 and MKK4/
7-JNK kinases via triggering EGFR dimerization [25] to induce
c-FOS and c-JUN, respectively, leading to AP-1 activation.
Activated AP-1 then binds to its cis-element in the PD-L1 enhancer
sequence to transactivate PD-L1 expression. Accumulated PD-L1
then induces cancer-association immune evasion to counteract
anti-cancer activity of MLN4924. This process can be blocked by
the inhibition of MEK1/2 (trametinib), JNK (SP600125) or anti-PD-
L1 antibody (Fig. 7), suggesting the importance of combinational
therapy for MLN4924-based cancer treatment.

MATERIALS AND METHODS
Cell lines and cell culture
H520, H1703, H2170, H358, H1792, H460, H1650, Het-1A, Kyse70, Kyse520,
BxPC3, MC38, CT26 and Jurkat cells were maintained in RPMI 1640 media
with 10% FBS and 1% penicillin-streptomycin. A549, H1299, SK-MES-1,
MIA-PaCa2, PANC1, Capan1, M-Panc96, ID8, ID8-luci, B16-F0, B16-F10,
Moh1 and UMSCCs were maintained in Dulbecco’s Modified Eagle’s Media
(DMEM) with 10% FBS and 1% penicillin-streptomycin. Capan1 was
maintained in Iscove’s Modified Dulbecco’s Medium with 10% FBS and 1%
penicillin-streptomycin.

Antibodies and reagents
The human PD-L1 (13684) Rabbit mAb, c-JUN (60A8) Rabbit mAb (9165S),
Phospho-JNK (Thr183/Tyr185) (81E11) Rabbit mAb (4668T), Phospho-c-JUN
(Ser63) II Antibody (9261S), NAE1 Rabbit mAb (14321S), p-ERK1/2 Rabbit
mAb (4376S), ERK1/2 Mouse mAb (9106S), p-AKT Rabbit mAb (4060S), AKT
Rabbit mAb (4691S), β-CATENIN Rabbit mAb (8480S), Cleaved-PARP Rabbit
mAb (9541S) Cleaved-Caspase3 Rabbit mAb (9661S) and Phospho-c-FOS
(Ser32) (5348T) were purchased from Cell Signaling Technology. UBA3
(ab124728) Rabbit mAb was purchased from Abcam. Mouse PD-L1

Fig. 7 Working model. MLN4924 activates MEK1/2-ERK1/2 and
MKK4/7-JNK kinases to induce c-FOS and c-JUN, respectively,
leading to AP-1 activation. Activated AP-1 then binds to its cis-
element in the PD-L1 enhancer sequence to transactivate PD-L1
expression. Accumulated PD-L1 contributes to cancer-associated
immune evasion to counteract anti-cancer activity of MLN4924. This
process can be inhibited by the inhibitor of MEK1/2 (trametinib), JNK
(SP600125) and anti-PD-L1 antibody.
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antibody (MAB90781-100) was purchased from R&D Systems. APC-
conjugated anti-human PD-L1 (329708), APC anti-mice CD3 (100235), FITC
anti-h/m Gramzyme B (515403), PE anti-mIFN-γ (505808), FITC-anti-mCD4
(10509), PE anti-mCD8a (100707), Fixation Buffer (420801) and Permeabi-
lization Wash Buffer (10×) (421002) were purchased from Biolegend.
Collagenase (C0130-500MG), β-ACTIN Mouse mAb (A5441) was purchased
from Sigma. MEK inhibitor (trametinib) and JNK inhibitor (SP600125) were
purchased from MedChem Express. AKT inhibitor (MK2206) and MLN4924
(S7109) were purchased from Selleck.

Cell surface PD-L1 measurement
For tumor cell surface PD-L1 measurement, cells were collected and
suspended in 100 µL of cell staining buffer and then incubated with APC-
conjugated anti-human anti-PD-L1 antibody at room temperature for half
an hour. Cells were then washed and stained in the staining buffer before
analyzed by FACS.

Quantitative real-time PCR
Total RNA was isolated by using TRIzol reagent (15596026, Thermo Fisher
Scientific). cDNA was generated by reverse transcription using the Maxima
First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Fisher Scientific) as
previously described [51]. The primers used for qPCR are as follows: the
human PD-L1-Forward: ATTTGGAGGATGTGCCAGAG, Reverse: CCAGCAC
ACTGAGAATCAACA. The mouse Pd-l1-Forward: GCTCCAAAGGACTTGT
ACGTG, Reverse: TGATCTGAAGGGCAGCATTTC. Relative mRNA levels were
normalized to GAPDH levels. The human GAPDH-Forward: AAGGTGAA
GGTCGGAGTCAA, Reverse: AATGAAGGGGTCATTGATGG. The mouse Gapdh-
Forward: CCTGGA GAAACCTGCCAAGTATG, Reverse: GGTCCTCAGTGTAGCC
CAAGATG). The samples were run in triplicates.

Transfection of siRNAs
Cells were transfected with siRNAs (synthesized by Dharmacom, Lafayette,
CO), using Lipofectamine 2000 (Invitrogen) according to the manufac-
turer’s instructions. The sequences of siRNA targeting UBA3 or NAE1 and
scrambled control siRNA (siCont) are as follows:
si-Cont: 5′-AUUGUAUGCGAUCGCAGAC-3′,
si-UBA3#1: 5′-GCUACCAGAACACUGTAUU-3′,
si-UBA3#2: 5′-GCUUCUCUGCAAAUGAAAU-3′,
si-NAE1#1: 5′-CCAGGAGTATCTAACTATCAA-3′,
si-NAE1#2: 5′-GCATGTCACAAACTTCAGCAA-3′.
The siRNAs of c-JUN (sc-29223) were purchased from Santa Cruz

Biotechnology. The siRNAs of p44/42 MAPK (ERK1/2) (6560S) were purchased
from Cell Signaling Technology.

Western blotting
Cells were lysed in cell lysis buffer contained with protease inhibitor
cocktail. Proteins were separated on 7.5–12.5% SDS-polyacrylamide gels.
Immunoblot analysis was conducted as described previously [52].

Cell viability assay
Cells were seeded at 5000 per well in 96-well culture plates. MLN4924 was
added to complete growth medium at concentrations ranging from 0.001
to 10 μM. After 72 h, Cell viability was measured using Cell Counting Kit-8
(CCK-8, MedChem Express) according to the manufacturer’s instructions
and inhibitory concentrations were calculated.

Chromatin immunoprecipitation (ChIP)
The pGL3 luciferase constructs containing either the PD-L1 promoter alone
(PDL1-P), or the promoter plus the candidate enhancer (PDL1-P+ E) were
kindly provided by Margaret A. Shipp from Dana-Farber Cancer Institute
and Harvard Medical School [28]. The ChIP assay was conducted by using
the SimpleChIP® Plus Enzymatic Chromatin IP Kit (9005, CST). In brief, cells
were treated with or without MLN4924 for 48 h and fixed by adding
formaldehyde into the culture medium to a final concentration of 1%. Fixed
cells were washed and sonicated in a Branson 250 sonicator to produce
genomic DNA fragments (100–400 bp). Then samples were immunopreci-
pitated with primary antibody of c-JUN (9165, CST) and protein A beads
overnight at 4 °C. The beads were washed/eluted and phenol/chloroform-
extracted and ethanol-precipitated. Finally, DNA was resuspended in 40 μL
of water and applied for qPCR analysis. The sequence for PD-L1-ChIP
primers are as follows: forward primer, 5′-TCACATTTCAAGCAGGATG
ACTAAA-3′; and reverse primer, 5′-TGACTCACAGCCACTCTTCCA-3′.

Co-culture study and T cell killing assay
Sub-confluent H358 or BxPC3 cells were treated with MLN4924 (0.5 μM)
for 24 h. After medial removal and PBS wash, suspension of Jurkat (T
lymphocyte cell line) cells (2×10E6) was added and co-cultured for 24 h.
H358/BxPC3 and Jurkat cells were then harvested, separately for IB
analysis. In T cell killing assay, H358 or BxPC3 cells were pretreated with
MLN4924 for 24 h before co-culturing with Jurkat cells, pre-activated by
phytohemagglutinin (PHA)/PMA at 10:1 ratio (Jurkat cells vs. cancer cells)
in 24-well plates for 24 h. The suspension of Jurkat cells was then
collected for Western blotting, whereas attached H358 or BxPC3 cells
were either for Western blotting or stained with 0.5% crystal violet and
photographed.

The in vivo xenograft tumor model and drug treatment
regimen
Animal studies were conducted and processed according to the guide-
lines established by the Zhejiang University Committee on Use and Care
of Animals. The sample size of the animal experiment was based on the
preliminary experiments and similar well-designed experiments, and no
statistical method was used. BALB/C mice (6–8-week-old female, Jackson
Laboratory) were subcutaneously injected with 1 × 107 CT26 mouse colon
cancer cells. One week after the injection, tumor-bearing mice were
randomly divided into six groups after equalizing the average tumor size:
IgG control antibody treatment (Vehicle group), MLN4924 treatment
group, MEK inhibitor treatment group; MLN4924 and MEK inhibitor
treatment group; anti-PD-L1 antibody treatment group and MLN4924 plus
anti-PD-L1 antibody treatment group. Mice were injected intraperitoneally
with 15 mg/kg MLN4924 (dissolved by 5% DMSO+ 30% PEG 300+ 5%
Tween 80+ ddH2O) or vehicle once a day, 5 days a week for 3 weeks. MEK
inhibitor (trametinib) was intragastrically administrated with 1 mg/kg daily
for 21 days. The anti-mouse anti-PD-L1 antibody (75 μg, 10 F.9G2, Bio X
Cell, USA) or control rat IgG2b (LTF-2, Bio X Cell) was injected
intraperitoneally every 4 days for a total of 5 injections. Tumor volumes
were measured three times a week and calculated using the formula:
length × width2 × 0.5.

Single-cell generation from mouse tumor tissues and flow
cytometry analysis
Mice tumor tissues were minced and digested with 5 ml collagenase
(2 mg/ml) in DMEM for 1 h at 37 °C. Cells were collected by centrifuga-
tion and filtered through a 70 μm strainer before being lysed in a red
blood cell lysis buffer for 5 min. Cells were then filtered through a 40 μm
strainer in PBS with 2% BSA and then fixed in Fixation Buffer (420801,
Biolegend) in the dark for 20 min at room temperature. The fixed cells
were suspended in Intracellular Staining Perm Wash Buffer (421002,
Biolegend) and centrifuged twice to permeabilize the cells. The
permeabilized cells were then co-stained with antibodies against CD3
(100236, Biolegend), CD4 (100510, Biolegend) and CD8 (100708,
Biolegend) or co-stained with antibodies against CD3, granzyme B
(515403, Biolegend) or IFN γ (505808, Biolegend). The corresponding
isotype IgGs were used for controls. After incubating with corresponding
antibodies for 30 min at room temperature, cells were washed and
analyzed by flow cytometry.

Statistical analysis
The statistical significance of the differences was determined using t-test
and one-way analysis of variance (ANOVA) for pairwise and group-wise
comparisons, respectively, in GraphPad PRISM version 6 (GraphPad). The
results were expressed as the mean ± SEM from at least three independent
experiments. The tumor growth rates were estimated and compared using
linear mixed regression models, in which the nested random effects were
used to account for the longtidunal measurements of two tumors within
each mouse, analyses were performed using R (version 4.0.1) [53]. For all
analyses, statistical significance was defined using two-sided P values as
p < 0.05 (*), p < 0.01 (**).

DATA AVAILABILITY
The datasets used and analyzed during the current study are available from the
corresponding author on reasonable request.
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