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SUMMARY
COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. To
expedite integrated and collaborative COVID-19 research, we completed multi-omics analysis of hospitalized
COVID-19 patients, includingmatched analysis of thewhole-blood transcriptome, plasmaproteomicswith two
complementary platforms, cytokine profiling, plasma and red blood cell metabolomics, deep immune cell phe-
notyping by mass cytometry, and clinical data annotation. We refer to this multidimensional dataset as the
COVIDome. We then created the COVIDome Explorer, an online researcher portal where the data can be
analyzed and visualized in real time. We illustrate herein the use of the COVIDome dataset through a multi-
omics analysis of biosignatures associated with C-reactive protein (CRP), an established marker of poor prog-
nosis in COVID-19, revealing associations between CRP levels and damage-associated molecular patterns,
depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the COVIDome
Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide.
INTRODUCTION

Throughout the course of the COVID-19 pandemic, researchers

around the world have made significant progress in the under-

standing of diverse aspects of the condition, including the epide-

miology of SARS-CoV-2 infection and the underlying molecular,

cellular, and physiological processes dysregulated in COVID-19

patients. This included completion of sophisticated genetic, mo-

lecular, and cellular analyses, as well as the launching of myriad

clinical trials. In many instances the rapid pace of discoveries

has been facilitated by the assembly of large collaborations.

Another factor accelerating thepaceof research is thewidespread

useofpre-print collectionswherepapersunderpeer reviewcanbe

accessed freely ahead of publication. However, we posit that the

speed of research is being hampered by the lack of widely acces-

sible,analysis-readypublicdatasets thatcouldbeanalyzed in real-

time by experts and non-experts alike. Although great progress
This is an open access article under the CC BY-N
has been made in publication policy in terms of ensuring that the

data fueling published discoveries are made accessible through

public data repositories, most datasets remain inaccessible to

broad audiences and can be downloaded and re-analyzed only

by experts. To further accelerate research at a global scale, we

created a multidimensional dataset derived from hospitalized

COVID-19 patients versus COVID-19-negative controls, known

as the COVIDome dataset, andmade it readily accessible through

a user-friendly platform, the COVIDome Explorer researcher

portal.

The COVIDome dataset includes demographics and clinical

data, along with matched analysis of the whole blood transcrip-

tome via RNA sequencing (RNA-seq) (measuring 16,000+

RNAs), analysis of the plasma proteome by complementary

SOMAscan assays (measuring 4,800+ epitopes),mass spectrom-

etry (MS) (400+ abundant proteins), and multiplexed cytokine

profiling (80+ immune modulatory factors), analysis of the plasma
Cell Reports 36, 109527, August 17, 2021 ª 2021 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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and red blood cell metabolomes by MS, deep immune phenotyp-

ing by mass cytometry (MC) (measuring 100+ immune cell types),

and seroconversion assays. All datasets are publicly accessible

through a user-friendly, analysis-ready researcher portal dubbed

the COVIDome Explorer (https://medschool.cuanschutz.edu/

covidome/).Herein,wedescribehow thedatasetsweregenerated

and analyzed, and explain how to use the COVIDome Explorer for

rapid hypotheses testing, hypothesis generation, and real-time

discoveries by experts and non-experts.We illustrate the prowess

of the COVIDome dataset by completing amulti-omics analysis of

biosignatures associated with varying levels of C-reactive protein

(CRP), a clinical marker of poor prognosis in COVID-19 (Liu et al.,

2020; Xu et al., 2020). This analysis revealed that high CRP levels

associate with damage-associated molecular patterns (DAMPs),

depletion of key members of the serpin family of serine protease

inhibitors, and metabolic changes indicative of mitochondrial

dysfunction.

RESULTS

The COVIDome: A multi-omics dataset for the study of
COVID-19
In order to investigate variations in the endotype of COVID-19

patients, we completed a multi-omics assessment of 105

research participants, including 73 hospitalized COVID-19 pa-

tients versus 32COVID-19-negative controls (Figure 1A). The de-

mographics and clinical characteristics of this cohort are

described in Table S1. All COVID-19-positive participants were

hospitalized due to moderate symptoms, but none had devel-

oped severe clinical disease requiring intensive care unit (ICU)

admission at the time of blood collection. Of note, some anno-

tated comorbidities were more prevalent in the control group;

however, the available clinical data do not distinguish between

‘‘history of’’ and ‘‘present at admission,’’ somewhat limiting the

interpretation of these data. COVID-19 positivity was defined

from results of PCR and/or antibody testing within 14 days of

the research blood draw (see STAR Methods). Blood samples

were analyzed by a matched multi-omics assessment of the

transcriptome via RNA-seq of whole blood, plasma proteomics

using two alternative platforms (MS and SOMAscan), cytokine

profiling using multiplexed immunoassays for 80+ immune fac-

tors using Meso Scale Discovery (MSD) assays, plasma and

red blood cell (RBC) metabolomics via MS, immune cell pheno-

typing via MC, and seroconversion assays for detection of

antibodies against SARS-CoV-2 nucleocapsid and spike poly-

peptides (Figure 1A). Importantly, all datasets were generated

from different fractions of the same blood draw from each

research participant, enabling effective cross-platform analyses.

To generate the transcriptome dataset, whole blood was

collected in PAXgene RNA tubes, and RNA was extracted and

subjected to next-generation sequencing (see STAR Methods).

Analysis of the transcriptome dataset using DESeq2 (Love

et al., 2014) identified 2,299 differentially expressed genes

(DEGs) in the bloodstream of the COVID-19 patients (Figure 1B).

Examples of significantly upregulated DEGs include specific

immunoglobulin sequences (e.g., IGHV1-24), indicative of sero-

conversion, as well as interferon-stimulated genes (ISGs) (e.g.,

MX1), indicative of an antiviral transcriptional response. An inter-
2 Cell Reports 36, 109527, August 17, 2021
active volcano plot similar to that in Figure 1B enabling real-time

data visualization can be found in the Transcriptome dashboard

of the COVIDome Explorer at https://covidome.shinyapps.io/

Transcriptome/. DESeq2 results can be found in Table S2A.

To generate the SOMAscan proteomics dataset, plasma was

analyzed with SOMAmer technology to measure the abundance

of 4,800+ epitopes corresponding to 3,000+ unique proteins (see

STAR Methods). Using a linear model adjusting for age and sex,

we identified 970 differentially abundant epitopes in the plasma

of COVID-19 patients (Figure 1C). Examples of significantly upre-

gulated proteins include many ISGs, such as ISG15 and IFIT3

(interferon-induced protein with tetratricopeptide repeats 3) (Fig-

ure 1C). To generate the MS proteomics dataset, the same

plasma aliquot used for SOMAscan proteomics was analyzed

by MS (see STAR Methods). This approach enabled the quanti-

fication of 412 abundant proteins in plasma (Figure 1D). The MS

proteomics dataset is highly complementary to the SOMAscan

proteomics dataset, as it enables detection of many abundant

proteins for which SOMAmer reagents are not available. For

example, analysis of the MS proteomics dataset using a linear

model adjusting for age and sex identified 74 differentially abun-

dant proteins, including clear upregulation of immunoglobulin

sequences not detected by the SOMAscan but which were

also detected as upregulated in the transcriptome dataset

(e.g., IGHV1-24, IGLV3-1) (Figure 1D). Interactive volcano plots

and box-and-whisker plots for the two proteomics datasets

can be generated in the Proteome dashboard of the COVIDome

Explorer at https://covidome.shinyapps.io/Proteome/. Results

of the linear models described herein can be found in Table

S2B (SOMAscan proteomics) and Table S2C (MS proteomics).

To generate the cytokine profile dataset, the same aliquot of

plasma used for the proteomics analyses was employed tomea-

sure the levels of a selected list of immunemodulatory factors via

multiplexed immunoassays using MSD assays. A linear model

adjusting for age and sex revealed many cytokines differentially

abundant in the bloodstream of COVID-19 patients, such as

CXCL10 (C-X-C motif chemokine ligand 10, interferon-inducible

protein 10 [IP10]) and interleukin (IL)-10 (Figure 1E). Interactive

volcano plots and box-and-whisker plots for this dataset can

be generated in the Cytokine dashboard of the COVIDome Ex-

plorer at https://covidome.shinyapps.io/Cytokines/. Results of

the linear model for MSD data can be found in Table S2D.

To investigate metabolic dysregulation in COVID-19, we

completed parallel targeted analyses of the RBC and plasma

metabolomes using ultra-high-pressure liquid chromatography

coupled to MS (UHPLC-MS) (see STAR Methods). RBC and

plasma metabolomic signatures inform about different meta-

bolic and physiological processes, with both common and

unique metabolites measured in each matrix. Analysis of the

RBC metabolome revealed 35 differentially abundant metabo-

lites in COVID-19 patients, such as upregulation of kynurenine,

a sign of activation of the interferon (IFN)-inducible kynurenine

pathway of tryptophan catabolism (Thomas et al., 2020), and

xanthine, a sign of dysregulated purine metabolism (Figure 1F).

Identical analysis of the plasma metabolome revealed many

differentially abundant metabolites in COVID-19 patients,

including kynurenine and xanthine as well (Figure S1). Interactive

volcano plots and box-and-whisker plots for the two

https://medschool.cuanschutz.edu/covidome/
https://medschool.cuanschutz.edu/covidome/
https://covidome.shinyapps.io/Transcriptome/
https://covidome.shinyapps.io/Transcriptome/
https://covidome.shinyapps.io/Proteome/
https://covidome.shinyapps.io/Cytokines/
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Figure 1. The COVIDome dataset

(A) Schematic of experimental approach. Blood samples were collected and processed for multi-omics analysis. Created with graphic elements fromBioRender.

com.

(B–G) (Left) Volcano plot indicating the impact of COVID-19, and (right) sina plots with boxes indicating median and interquartile range of representative features

for (B) whole blood transcriptome, (C) plasma SOMAscan proteomics, (D) plasmamass spectrometry (MS) proteomics, (E) plasma cytokine profiling, (F) red blood

cell MS metabolomics, and (G) mass cytometry of peripheral blood mononuclear cells (PBMCs). In the volcano plots, the vertical dashed midlines indicate no

change in COVID-19 patients versus controls, and the horizontal dashed lines indicate the statistical cutoff of q < 0.1 (false discovery rate of 10% [FDR10]). The

numbers at the top left and right of each volcano indicate the number of features passing the statistical cutoff. In the sina plots, q values were calculated with

DESeq2 (transcriptome, adjusted for age and sex) or linear models adjusting for age and sex (all other datasets). Sample sizes range from 30 to 31 for COVID-19-

negative controls and from 65 to 71 for COVID-19-positive patients, depending on the platform.
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metabolomics datasets can be generated in the Metabolome

dashboard of the COVIDome Explorer at https://covidome.

shinyapps.io/Metabolome/. Results of the linear models for me-

tabolomics can be found in Table S2E (RBC metabolomics) and

Table S2F (Plasma metabolomics).

Lastly, we completed a comprehensive map of peripheral im-

mune cell lineages using MC, which enabled the identification

and curation of 100+ immune cell subsets (see STAR Methods).

Toward this end, we utilized peripheral blood mononuclear cells
(PBMCs) purified by Ficoll gradient from the same blood draw

used for all other datasets and stained them with a panel of 40

metal-coupled antibodies designed to quantify many major and

minor lymphoidandmyeloid subsets (seeSTARmethods). Inorder

to quantify differences in immune cell subsets within their parent

lineage, we created seven different immune maps, stemming

from (1) all live cells, (2) CD3+ T cells (all T cells), (3) CD4+ T cells,

(4) CD8+ T cells, (5) CD19+ B cells, (6) CD11c+ monocytes

(CD3�CD19�CD56�), and (7) CD1c+ myeloid dendritic cells
Cell Reports 36, 109527, August 17, 2021 3
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Figure 2. The COVIDome Explorer researcher portal

Schematic illustrating the design of the COVIDome Explorer researcher portal and its various functionalities. Created with graphic elements fromBioRender.com.
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(mDCs) (CD3�CD19�CD56�). Using a linear model adjusting for

age and sex, we identified many immune cell types with signifi-

cantly different frequencies among all live cells in COVID-19-pos-

itive patients, such as increased frequencies of plasmablasts and

decreased frequencies of CD1c+ mDCs (Figure 1G). Interactive

volcano plots and box-and-whisker plots for the seven immune

maps can be generated in the Immune Maps dashboard of

the COVIDome Explorer at https://covidome.shinyapps.io/

ImmuneMaps/. Results of the linear models for each immune line-

age can be found in Tables S2G–S2M.

In sum, the COVIDome dataset includes major data types for

the study of diverse biological processes dysregulated in hospi-

talized COVID-19 patients.
The COVIDome Explorer: An online portal for real-time
data analysis, visualization, and sharing
To facilitate quick and broad access to the COVIDome dataset,

we created a user-friendly online portal, dubbed the COVIDome
4 Cell Reports 36, 109527, August 17, 2021
Explorer, which can be accessed online at covidome.org (see

overview in Figure 2).

After data curation and quality control, each of the COVIDome

datasets was linked at the sample level with a unique identifier,

enabling cross-referencing among platforms. Then, each of the

datasets was imported into applications developed using R, R

Studio, and the R-based web application framework Shiny.

Each application includes custom-developed features that

enable rapid query, visualization, and download of data, in an

interactive environment (see STAR Methods). The COVIDome

Explorer hosts six dashboards: Cohort, Transcriptome, Prote-

ome, Cytokines, Metabolome, and Immune Maps. Each dash-

board runs within its own isolated and protected environment,

hosted on the cloud-based Platform-as-a-Service (PaaS) envi-

ronment ‘‘shinyapps.io.’’ When a user navigates to a specific

dashboard via URL, individual instances of the Shiny application

are instantly deployed to the shinyapps.io hosting platform, al-

lowing for interaction and analysis throughout the duration of

the user’s session. The Cohort dashboard is a simple description

https://covidome.shinyapps.io/ImmuneMaps/
https://covidome.shinyapps.io/ImmuneMaps/
http://covidome.org
http://BioRender.com
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of the research cohort involved. The other dashboards are orga-

nized in a similar fashion and present similar options for analysis.

This similarity allows users to become familiar with one dash-

board, and then rapidly adapt to the use of the other dashboards.

Each of the five analytical dashboards contains four tabs: Over-

view, Effect of COVID-19 status, Effect of Seroconversion, and

Cross Omics Correlates. The Overview tab provides a summary

of the approach, a brief explanation on how to use the dash-

boards, and, in some instances, links to data files that would

guide users, such as catalogs of proteins, metabolites, cyto-

kines, and immune cells present in each dataset. The Overview

tab also points to publications that provide further detail about

the methodology employed. The Effect of COVID-19 status tab

enables users to investigate differences between the COVID-

19-negative control cohort and COVID-19-positive patients.

The Effect of Seroconversion tab enables users to investigate

differences among COVID-19 patients with low versus high titers

of anti-SARS-CoV-2 antibodies. A detailed description of the

metrics of seroconversion employed and the definition of

‘‘sero-low’’ versus ‘‘sero-high’’ groups can be found in a recent

publication illuminating how seroconversion stages COVID-19

into distinct pathophysiological states (Galbraith et al., 2021).

Upon entry into a given dashboard, users must select from a

menu of options before data can be displayed. For the Proteome

and Metabolome dashboards the first option is the choice of

Platform: MS versus SOMAscan for the Proteome, Plasma

versus Red Blood Cells for the Metabolome. For the Immune

Maps dashboard, the first choice is to select one of seven parent

lineages: Live Cells, CD3+ T, CD4+ T, CD8+ T, CD19+ B cells,

Monocytes, Myeloid DCs. Next, users can choose a statistical

test (linear model with age and sex adjustment; Kolmogorov-

Smirnov test, Student’s t test, or Wilcoxon test) and an Adjust-

ment Method for multiple hypotheses correction (None, Bonfer-

roni, Benjamini-Hochberg [false discovery rate, FDR]). Users

with a pre-formed hypothesis in mind interested in searching

for a specific feature of interest (e.g., specific mRNA, protein,

or immune cell type) may opt out of a multiple hypothesis adjust-

ment method. In contrast, users exploring the data in an unbi-

ased fashion should select an adjustment method to account

for multiple hypotheses testing. Two other filters are sex (both,

Male, Female) and Age (All, 21 & Over), which enable users to

visualize all or a fraction of the dataset. At this stage, users can

‘‘Apply filters and generate plot,’’ which would then lead to the

appearance of an interactive volcano plot displaying the results.

Users can then ‘‘mouse over and click’’ individual features in the

volcano plot to display a box-and-whisker plot for that specific

feature. Alternatively, users can use the searchable menus to

find a feature of interest. Once an individual feature has been

selected, live links to external databases become available,

including PubMed, GeneCards, GTEx, NCBI, and Wikipedia,

thus allowing users to navigate away from the COVIDome Ex-

plorer and learn more about a gene, protein, cytokine, metabo-

lite, or immune cell type of interest. Of note, both volcano plots

and box-and-whisker plots can be downloaded as scalable vec-

tor graphics (.svg) files.

In each dashboard, the data being visualized can be accessed

through the ‘‘Aggregated Data’’ or ‘‘Sample Level Data’’ tabs,

two distinct interactive spreadsheets. In these tabs, users can fil-
ter by fold change and p value, sort by any of the columns visible

(e.g., gene/protein name, fold change, p value), and search for

individual features. Users can then download the data as a

comma-separated values file (.csv), Microsoft Excel spread-

sheet (.xlsx), or pdf files.

Altogether, the COVIDome Explorer dashboards enable data

access and analysis by a broad range of users with different de-

grees of bioinformatics and biostatistics literacy, from those sim-

ply interested in a group comparison for a single protein, to those

interested in sophisticated offline analyses of the downloaded

datasets.

The COVIDome Explorer enables cross-omics
integration and discoveries
To enable cross-platform discoveries, we created a ‘‘Cross

Omics Correlates’’ tab in each dashboard that allows users

to explore relationships among features both within and

across COVIDome datasets for COVID-19-positive patients. To

examine connections among features, the Cross Omics Corre-

lates dashboard performs Spearman correlations using age-

and sex-adjusted data. When a user accesses the Cross Omics

Correlates tab, they navigate to a landing page with numbered

instructions for use on the left as well as a ‘‘Take Tutorial’’ option.

First, the user selects a query platformwhen applicable (e.g., MS

Proteome versus SOMAscan Proteome); second, the user se-

lects a query feature; third, the user selects a comparison plat-

form; and fourth, the user clicks the ‘‘Generate Volcano Plot’’

button. This renders a volcano plot with correlation data for all

features in the comparison platform versus the query feature,

where Spearman rho values are represented along the x axis

and Benjamini-Hochberg adjusted q values are represented

along the y axis. An optional fifth step allows users to visualize

XY scatterplots for analyte pairs of interest. For example, the

mRNA encoding the viral restriction factorMX1, which is upregu-

lated in the whole blood transcriptome of COVID-19-positive in-

dividuals (Figure 1B), is strongly correlated with many plasma

proteins measured by SOMAscan (Figure 3A). Among the most

positively correlated proteins are numerous other ISGs including

CXCL10 and IFIT3 (Figure 3A). MX1 protein is also strongly corre-

lated with MX1 mRNA levels (Figures 3A and 3B). This same

method can be applied to any other pairwise cross-omics com-

parison. For instance, levels of the metabolite kynurenine in

RBCs are positively correlated with plasma levels ofWARS (tryp-

tophanyl-tRNA synthetase 1) and NADK (nicotinamide adenine

dinucleotide kinase), two enzymes involved in tryptophan meta-

bolism (Figures 3C and 3D). WARS is an ISG that may be upre-

gulated as a compensatory mechanism for kynurenine

pathway-mediated tryptophan depletion (Sarkar et al., 2007;

Adam et al., 2018), and NADK is a kinase that converts NAD+

produced by the kynurenine pathway into NAD phosphate

(NADP) (Castro-Portuguez and Sutphin, 2020). The Cross Omics

Correlates can also be used to compare immune cell subsets

with gene expression data. For example, plasmablasts, which

are among the most upregulated immune cells in COVID-19-

positive individuals, are positively correlated withmany immuno-

globulin genes in the whole blood transcriptome, such as IGKV4-

1, IGHV6-1, and IGLC2, indicative of B cell differentiation toward

plasmablasts producing specific immunoglobulin sequences
Cell Reports 36, 109527, August 17, 2021 5
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Figure 3. Cross-omics correlations enabled by the COVIDome Explorer

(A, C, and E) (Top) Volcano plots for Spearman correlations between (A)MX1mRNA levels and SOMAscan proteomics, (C) kynurenine levels from red blood cell

(RBC) metabolomics and SOMAscan proteomics, and (E) plasmablast frequency and transcriptomics. The horizontal dashed lines indicated the statistical cutoff

of q < 0.1 (FDR10). Numbers in the left and right quadrants indicate the number of features passing the statistical cutoff.

(B, D, and F) (Bottom) Scatterplot for correlations of (B)MX1mRNA levels with MX1 protein levels, (D) RBC kynurenine levels with WARS protein levels in plasma,

and (F) plasmablast frequency with IGKV4-1 mRNA levels. Points are colored by density; lines represent linear model fit with 95% confidence interval. Sample

sizes range from 65 to 71 depending on the platform.
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targeting SARS-CoV-2 (Figures 3E and 3F). These examples

demonstrate the ability of the COVIDome dataset, in concert

with the COVIDome Explorer, to reveal potentially biologically

meaningful relationships among features across diverse -omics

datasets.

CRP levels associate with DAMPs
To illustrate the utility of the matched multidimensional COVI-

Dome datasets, we analyzed multi-omics biosignatures associ-

ated with varying levels of CRP, an acute phase protein whose

elevation in circulation has been consistently associated with

poor prognosis in COVID-19. Repeatedly, higher CRP levels at

the time of hospitalization and/or a rapid rise in CRP levels during

hospitalization have been associated with increased probability

of developing severe COVID-19 pathophysiology (Mousavi-Na-

sab et al., 2020; Mueller et al., 2020; Sharifpour et al., 2020).

As expected, CRP is also elevated in our cohort of COVID-19 pa-

tients as measured by MS proteomics, as well as other acute

phase proteins such as ferritin (FTL) (Figure 4A). To identify bio-

signatures associated with CRP levels among COVID-19-posi-

tive patients, we calculated Spearman correlations between
6 Cell Reports 36, 109527, August 17, 2021
CRP values measured by MS and all features in all COVIDome

datasets, which revealed myriad mRNAs, proteins, and metabo-

lites significantly associated with CRP levels (Figures S2A–S2F;

Tables S3A–S3F). This analysis exercise confirmed known asso-

ciations, such as positive correlations between CRP levels and

the levels of serum amyloid proteins SAA1 and SAA2, the acute

phase protein LBP (lipopolysaccharide binding protein), and the

cytokines IL-6 and IL-10 (Figure 4B; Figures S2B and S2D) (Jain

et al., 2011). Notably, there were no significant associations

between CRP levels and frequencies of immune cell types,

neither among all live cells nor within major lymphoid and

myeloid lineages, with the sole exception of increased fre-

quencies of inflammatory subsets of monocytes (Figures S2G–

S2H; Tables S3G–S2M).

In order to investigate associations between CRP levels and

underlying pathophysiological processes, we first performed

Metascape pathway enrichment analysis of the positively

correlated proteins measured by SOMAscan. Somewhat

expectedly, this analysis revealed enrichment of several groups

of proteins associated with immune activation, such as signa-

tures associated with systemic lupus erythematosus (SLE, e.g.,
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Figure 4. CRP levels correlate with damage-associated molecular patterns

(A) Sina plots showing values for CRP and ferritin light chain (FTL) measured by MS proteomics comparing COVID-19-negative (�) to COVID-19-positive (+)

patients. Data are presented as modified sina plots with boxes indicating median and interquartile range.

(B) Scatterplots displaying correlations between CRP levels versus SAA1, LBP, and IL-10. MSD,Meso Scale Discovery assay. Points are colored by density; lines

represent linear model fit with 95% confidence interval.

(C) Metascape pathway enrichment analysis of proteins detected by SOMAscan proteomics that are significantly and positively correlated with CRP.

(D) Scatterplot displaying correlations between CRP levels and representative factors from systemic lupus erythematosus (CXCL10) and positive regulation of

Th2 cytokine (IL-6) signatures. Points are colored by density as in (B); lines represent linear model fit with 95% confidence interval.

(E) Heatmap displaying changes in circulating levels of proteins in the DNA Methylation signature that are significantly positively correlated with CRP levels. The

left column represents Spearman rho values for correlation with CRP levels, while the right columns display median Z scores for each feature for COVID-19-

(legend continued on next page)
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CXCL10), positive regulation of T helper 2 (Th2) cytokines (e.g.,

IL-6), acute inflammatory response, cytolysis (composed mostly

of complement subunits), and the IFN-g-mediated signaling

pathway (Figures 4C and 4D). Interestingly, this analysis also

identified protein signatures associated with DNA methylation

and response to heat. The DNA methylation group is comprised

of 19 features including chromatin-associated factors (e.g.,

DNMT3L, DPY30, SUDS3, RBBP4, RBBP5) and several histones

(Figure 4E). For example, H2AFZ (H2AZ) is significantly corre-

lated with CRP and elevated in the plasma of COVID-19 patients

(Figure 4F). The Response to Heat signature has 12 features, 4 of

which are heat shock proteins (HSPs) (HSPA1A, HSPA1B,

HSP90AA1, HSPH1) including HSPA1A (HSP72), which is both

significantly correlated with CRP and elevated in COVID-19 (Fig-

ures 4G and 4H). Interestingly, both histones andHSPs can func-

tion as DAMP molecules whose presence in the bloodstream is

consistently associated with tissue damage and trauma, and

which in turn function as ligands for amplification of innate im-

mune signaling (Huang et al., 2011). Circulating histones can

be released from dying cells in the liver and they have been

shown to drive downstream damage to both pulmonary and he-

patic endothelial cells (Kawai et al., 2016). Histones in the blood-

stream could also be interpreted as a sign of netosis and forma-

tion of neutrophil extracellular traps (NETs) (Papayannopoulos,

2018). HSPs have also been identified as DAMPs produced by

a number of tissues upon injury, including liver (Martin-Murphy

et al., 2010) and kidney (Sabapathy et al., 2020), further exacer-

bating inflammation at the damaged tissue.

Notably, analysis of the correlations between CRP levels and

mRNAs measured in the whole blood transcriptome identifies

several histone mRNAs among the top correlations (Figure S2A;

Table S3A). In fact, the most positively correlated mRNA is

H2BC12, one of the H2B-encoding genes, and the fifth most

correlated gene is H2AC19, one of the H2A-encoding genes,

both of which are elevated in the whole blood transcriptome of

COVID-19-positive patients (Figure S2I). Given that the mRNAs

captured in this transcriptome analysis are derived from circu-

lating immune cells and that histonemRNAs are transcribed dur-

ing the S phase of the cell cycle, this could be interpreted as a

sign of stronger immune cell activation and proliferation in pa-

tients with higher CRP levels.

Altogether, these results indicate that highCRP levels inCOVID-

19 associate not only with activation of inflammatory pathways,

but also with elevated DAMPs, indicative of tissue damage.

CRP levels associate with depletion of key protective
serpins
Analysis of the proteins negatively correlated with CRP levels

revealed that in both proteomics datasets the most anti-corre-
negative (�) versus COVID19-positive patients (+). Z scores were calculated from

standard deviation of COVID-19-negative samples. Asterisks indicate a significa

(F) (Top) Scatterplot for correlation of CRP with H2AFZ. Points are colored by d

(Bottom) Sina plot for H2AFZ with boxes indicating median and interquartile rang

(G) Heatmap displaying changes in circulating levels of proteins in the response

(H) Data for HSPA1A as described for (F).

q values in (F) and (H) are derived from linear models. Sample sizes range from 30

patients, depending on the platform.
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lated proteins are SERPINA5 (protein C inhibitor [PCI], plasmin-

ogen activator inhibitor 3 [PAI3]) and SERPINA4 (Kallistatin),

two members of the serpin family of serine protease inhibitors

(Figures 5A and 5B; Figures S2B, S2C, and S3; Tables S3B

and S3C). Both SERPINA5 and SERPINA4 play protective roles

during vascular and organ injury (Chao et al., 2016; Suzuki,

2008), but the mechanisms driving these protective effects

remain to be elucidated. SERPINA5 is a multifunctional serpin

that can act as both a procoagulant via inhibition of activated

protein C and thrombin, but also as an anticoagulant by inhib-

iting several coagulation factors including plasma kallikrein

(KLK) (KLKB1 [kallikrein B1]) (Meijers et al., 1988), tissue kalli-

kreins (Ecke et al., 1992), prothrombin, and factors XI and Xa,

among others (Suzuki, 2008). SERPINA4/Kallistatin is a potent

inhibitor of tissue-specific kallikreins (Chao et al., 2016).

Notably, both of these serpins converge on inhibition of kalli-

kreins, a family of serine proteases involved not only in control

of coagulation and fibrinolysis, but also production of vasoac-

tive kinin peptides, such as bradykinin, as well as activation

of the complement cascade (Irmscher et al., 2018; Ricklin

and Lambris, 2007). Therefore, we investigated whether CRP

levels correlated significantly with dysregulation of components

of the interconnected coagulation and complement cascades

(Table S3N). Indeed, CRP correlated negatively with circulating

levels of both the plasma kallikrein KLKB1 and the tissue kalli-

krein KLK13, which are depleted in COVID-19 (Figures 5D and

5E), and positively with numerous complement subunits upre-

gulated in COVID-19 including C9, C5, C3, and C2, among

others (Figures 5C, 5F, and 5G).

Altogether, these results indicated that the prognostic value

of high CRP levels in COVID-19 could be potentially tied to

the accompanying depletion of important protective serpins

and consequent dysregulation of the coagulation, fibrinolysis,

and complement cascades, both of which have been involved

in the etiology of severe COVID-19 pathology (Lo et al., 2020).

CRP associates with dysregulated mitochondrial
metabolism in peripheral blood cells
Next, we investigated associations between CRP levels and

metabolic changes detected in the plasma and RBC metabolo-

mics datasets (Figure S2E and S2F; Tables S3E and S3F). Anal-

ysis of the top positive correlations revealed multiple associa-

tions indicative of dysregulated mitochondrial metabolism in

patients with elevated CRP. Three different carbon sources

for the tricarboxylic acid (TCA) cycle were positively correlated

with CRP, including the branched chain amino acids leucine

and isoleucine, pyruvate, and several acyl-carnitines (e.g., O-

dodecenoyl-carnitine, tetradecenoyl carnitine, O-dodecanoyl-

carnitine) (Figure 6A; Tables S3E and S3F). Lactate, which
the adjusted values for each SOMAmer in each sample, based on themean and

nt difference between COVID-19 patients and the control group.

ensity as in (B); lines represent linear model fit with 95% confidence interval.

e.

to heat group as described for (E).

to 31 for COVID-19-negative controls and from 69 to 71 for COVID-19-positive
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Figure 5. CRP levels correlate with depletion of protective serpins

(A and B) Correlation analysis of CRPwith SERPINA5 (A) and SERPINA4 (B). (Left) Scatterplot for correlation of CRP with the indicated SOMAmer reagent. Points

are colored by density; lines represent linear model fit with 95% confidence interval. (Right) Sina plot for indicated SOMAmer reagent with boxes indicating

median and interquartile range.

(C) Heatmap displaying changes in circulating levels of complement and coagulation proteins significantly correlated with CRP levels with an absolute rho value

greater than 0.3. The left column represents Spearman rho values, while the right columns display median Z scores for each feature for COVID-19-negative

(legend continued on next page)
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can be oxidized to pyruvate by lactate dehydrogenase, was

also positively correlated with CRP (Figure 6A). Increases in

lactate and pyruvate can be interpreted as increased glycolysis

in patients with high CRP, perhaps driven by hypoxia leading to

carbon flow from pyruvate to acetyl-coenzyme A (CoA).

Increased glycolysis is a metabolic consequence of both im-

mune cell activation and hypoxemia (Makowski et al., 2020;

Frauwirth et al., 2002; Michalek et al., 2011; Jellusova, 2020;

van Teijlingen Bakker and Pearce, 2020). Importantly, each of

these three classes of metabolites represent entry points to

the TCA cycle, and elevated levels of these features are consis-

tent with mitochondrial dysfunction and decreased activity in

the TCA cycle and the electron transport chain (ETC).

Given that these metabolic associations between CRP and

plasma metabolites could be due to metabolic dysregulation

in peripheral blood cells and/or various host tissues, we asked

whether these associations could be explained by gene

expression changes in circulating blood cells by analyzing the

whole blood transcriptome dataset. We used the Ingenuity

Pathway Analysis (IPA) software to identify gene sets enriched

among the RNAs positively and negatively correlated with CRP,

with a focus on metabolic pathways. Strikingly, the most

significantly enriched metabolic pathway among negatively

correlated mRNAs is oxidative phosphorylation (OXPHOS) (Fig-

ure 6B; see Figure S4A for positively correlated gene sets). The

OXPHOS gene signature is comprised of 54 genes including

many components of the ETC, such as reduced nicotinamide

adenine dinucleotide (NADH):ubiquinone oxidoreductase sub-

units, cytochrome c complex subunits, and ATP synthase sub-

units, among others (Figure 6C). For example, expression of

NDUFV3 (NADH:ubiquinone oxidoreductase subunit V3, com-

plex I, mitochondrial respiratory chain, 10-kDa subunit) and

COX4I1 (cytochrome c oxidase subunit 4I1) are both negatively

correlated with CRP levels and significantly decreased in

COVID-19 patients, as is the mitochondrially encoded cyto-

chrome c oxidase III (MT-CO3) (Figure 6D). Therefore, accumu-

lation of TCA carbon sources in plasma could be linked to

decreased gene expression of ETC components in circulating

blood cells. Interestingly, we noticed that the mRNAs encoding

the glucose transporter SLC2A3 (GLUT3) and the monocarbox-

ylate transporter SLC16A3 (monocarboxylate transporter 4

[MCT4]) were both positively and significantly correlated with

CRP in the whole blood transcriptome of COVID-19 patients

(Figure S4B). Increases in surface expression of SLC2A3 have

been noted during activation of diverse lymphocytes, neutro-

phils, and platelets, and they are thought to mediate increased

glucose uptake to fuel cell activation (Simpson et al., 2008).

SLC16A3 catalyzes the bidirectional transport across the

plasma membrane of many monocarboxylates such as lactate,

pyruvate, as well as branched-chain oxo acids derived from

leucine, valine, and isoleucine. In innate immune cells, lactate

is produced and exported in large amounts via SLC16A3 during

pro-inflammatory responses, and its expression is upregulated
controls (�) versus COVID-19-positive patients (+). Z scores were calculated from

standard deviation of COVID-19-negative samples. Asterisks indicate a significa

(D–G) Scatterplots and sina plots as in (A) for KLKB1, KLK13, C9, and C3, respect

30 to 31 for COVID-19-negative controls and from 69 to 71 for COVID-19-positiv
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in activated macrophages (Weiss and Angiari, 2020). Further-

more, SLC16A3 expression is necessary for macrophage acti-

vation, as its deletion results in intracellular accumulation of

lactate and decreased glycolysis (Weiss and Angiari, 2020).

Altogether, the metabolic changes associated with CRP could

be understood, in part, as the byproduct of metabolic remodel-

ing of circulating blood cells, whereby decreased expression of

OXPHOSgenes and increased expression of glucose andmono-

carboxylate transporters would lead to increased glucose up-

take, decreased OXPHOS, and consequent accumulation of

glycolysis end products (lactate, pyruvate) and other carbon

sources for the TCA cycle (branched-chain amino acids, acyl

carnitines).
DISCUSSION

The global health crisis imposed by the COVID-19 pandemic has

inspired new approaches for rapid collaboration, open access to

manuscripts under review, and data sharing. Herein, we

describe the rapid creation of a user-friendly researcher portal

enabling easy access and real-time analysis of matched multi-

omics datasets for COVID-19. The first batch of biospecimens

for the COVIDome project was received by this team in July

2020, and the COVIDome Explorer was publicly launched in

November 2020, thus spanning only 5 months from sample pro-

cessing to portal launch. Between November 2020 and June

2021, more than 800 unique users from 36 countries had utilized

the portal according to session data gathered from Google Ana-

lytics. Currently, the second batch of samples is being subjected

to identical multi-omics analyses. Importantly, the COVIDome

Explorer can easily ingest datasets from other teams to be dis-

played in its dashboards, which would then enable the compar-

ison of results across different studies.

With the advent of multi-omics platforms, it is now possible to

rapidly investigate hundreds of molecular, cellular, and physio-

logical processes from a single biospecimen. Such a systems

biology approach enables the integration of findings across

different methodologies and layers of biological information to

expedite the pace of discovery into the etiology of amedical con-

dition. In this report, we illustrate the power of this approach by

exploring biosignatures associated with CRP, a well-character-

ized marker of inflammation across numerous medical condi-

tions, including COVID-19. Although it is well established that

CRP levels and trajectory have prognostic value in COVID-19

(Mousavi-Nasab et al., 2020; Mueller et al., 2020; Sharifpour

et al., 2020), the exact pathophysiological processes associated

with this clinical biomarker of inflammation remain to be fully

elucidated. What exactly is being revealed by high baseline

levels and/or rapid elevation of CRP in COVID-19? Our analysis

demonstrates that, in addition to the well-established links be-

tween CRP and other markers of inflammation and immune ac-

tivity, CRP levels associate with DAMPs, depletion of protective
the adjusted values for each SOMAmer in each sample, based on themean and

nt difference between COVID-19 patients and the control group.

ively. q values in each are derived from linear models. Sample sizes range from

e patients, depending on the platform.
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Figure 6. CRP levels correlate with dysregulated mitochondrial metabolism in blood cells

(A) Scatterplot displaying correlations between CRP levels and indicated metabolites. Points are colored by density; lines represent linear model fit with 95%

confidence interval.

(B) Histogram displaying the results of Ingenuity Pathway Analysis (IPA) of metabolic pathways for mRNAs measured in the whole blood transcriptome analysis

that are significantly and negatively correlated with CRP.

(C) Heatmap displaying expression changes in mRNAs in the oxidative phosphorylation (OXPHOS) IPA signature from (B). The left column represents Spearman

rho values for correlations with CRP, while the right columns display median Z scores for each feature for COVID-19-negative controls (�) versus COVID-19-

positive patients (+). Z scores were calculated from the adjusted RPKM (reads per kilobase transcript per million mapped reads) values for each mRNA in each

sample, based on the mean and standard deviation of COVID-19-negative samples. Asterisks indicate a significant difference between COVID-19 patients and

the control group.

(legend continued on next page)
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serpins, and dysregulation of mitochondrial metabolism in blood

cells in COVID-19.

The association between CRP and DAMPs reveals that CRP

levels inform about the extent of tissue damage in COVID-19.

High levels of CRP associate with increased circulating levels

of intracellular proteins released into the bloodstream during

organ damage (e.g., histones, HSPs), which can further exacer-

bate the inflammatory phenotype. In turn, increased tissue

damage could be conceptually tied to the clear depletion of

the protective serpins SERPINA4 and SERPINA5, the most

anti-correlated proteins with CRP in our proteomics datasets.

SERPINA4/5 depletion could lead to exacerbated, harmful

levels of activity within the coagulation system, kallikrein-kinin

system, and complement cascade, all of which can contribute

to COVID-19 pathology. Depletion of SERPINA5 could unleash

a protease storm within the coagulation cascade, leading to

coagulopathies and thromboembolism in COVID-19 (Becker,

2020). Given that both SERPINA4 and SERPINA5 inhibit

KLKs, the serine proteases driving production of the vasoactive

peptide bradykinin, their depletion could contribute to the so-

called ‘‘bradykinin storm’’ in COVID-19 linked to accumulation

of fluids in the lungs and respiratory failure (Garvin et al.,

2020). Lastly, since KLKs also activate the complement

cascade, SERPINA4/5 depletion could lead to harmfully high

levels of complement activity and consequent tissue damage

by the membrane attack complex (MAC). Of note, all of these

processes are suitable to pharmacological modulation and

are the focus of many ongoing clinical trials testing the efficacy

of blood thinners (Rentsch et al., 2021), kinin receptor antago-

nists (van de Veerdonk et al., 2020), and complement inhibitors

(Mastellos et al., 2021) in COVID-19. Therefore, we posit that

CRP could serve as a biomarker to stratify the patient cohorts

in these clinical trials to assess potential differences between

individuals with varying CRP levels. We also hypothesize that

SERPINA4 and/or SERPINA5 administration could be a valid

therapeutic strategy in COVID-19 to reduce organ damage,

especially in patients with high CRP levels (Rau et al., 2007; Su-

zuki, 2008).

Interpretation of the association between CRP levels and

markers of dysregulated mitochondrial metabolism must

consider a combination of metabolic effects on circulating

blood cells and host tissues. Plasma metabolomics can inform

about metabolic alterations in the peripheral immune cell reper-

toire, platelets and RBCs, but also about dysregulated meta-

bolism in various organs. CRP levels correlated with increased

levels of three different carbon sources for the TCA cycle:

branched chain amino acids (leucine, isoleucine), end products

of glycolysis (lactate, pyruvate), and acyl carnitines, all of which

could be explained by decreased activity in the TCA cycle and

ETC. Indeed, when analyzing the transcriptome of circulating

immune cells, the top gene signature negatively associated

with CRP was OXPHOS, with expression of many components
(D) (Left) Scatterplots for correlations between CRP and the indicated mRNAs. P

confidence interval. (Right) Sina plots for indicated mRNAs with boxes indicating

Sample size is 30 for COVID-19-negative controls and from 65 to 71 for COVID-

(E) Summary of findings indicating dysregulation of mitochondrial metabolism in

graphic elements from BioRender.com.
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of the ETC being downregulated in patients with high CRP.

Furthermore, these changes were accompanied by increased

mRNA expression of the glucose transporter SLC2A3 and the

monocarboxylate transporter SLC16A3, which can be associ-

ated with activation of different immune cell subsets (Weiss

and Angiari, 2020; Simpson et al., 2008). Dysregulation of mito-

chondrial metabolism is increasingly appreciated in COVID-19

(Burtscher et al., 2020). Notably, disruption of the TCA cycle

has been reported downstream of inflammatory stimulation

via a mechanism shunting citrate to succinate, driving addi-

tional inflammation, largely in myeloid cells (Tannahill et al.,

2013; Mills et al., 2016; Makowski et al., 2020). Importantly,

downregulation of OXPHOS and ETC genes has been demon-

strated in the liver in the case of hepatitis C infection (Gerre-

sheim et al., 2019), and in the diaphragm, liver, and peripheral

blood during sepsis (Callahan and Supinski, 2005; Weiss et al.,

2014; Eyenga et al., 2014).

In sum, the COVIDome datasets and the COVIDome Explorer

facilitate rapid hypothesis generation and testing, revealing un-

expected associations between diverse molecular, cellular,

and pathophysiological processes in COVID-19, even for well-

studied factors such as CRP.
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Antibodies

Anti-Human CD45 Fluidigm Cat# 3089003B; RRID: AB_2661851

Anti-Human CD57 Biolegend Cat# 322302; RRID: AB_2661815

Anti-Human CD11c BD bioscience Cat# 555390; RRID: AB_395791

Anti-Human CD16 eBioscience Cat# 16-0167-85; RRID: AB_11040983

Anti-Human CD196 (CCR6) Biolegend Cat# 353402; RRID: AB_10918625

Anti-Human CD19 Fluidigm Cat# 3142001B; RRID: AB_2651155

Anti-Human CD123 Fluidigm Cat# 3143014B; RRID: AB_2811081

Anti-Human CCR5 Fluidigm Cat# 3144007A; RRID: AB_2892770

Anti-Human IgD Fluidigm Cat# 3146005B; RRID: AB_2811082

Anti-Human CD1c Miltenyi Cat# 130-108-032; RRID: AB_2661165

Anti-Human CD38 Biolegend Cat# 303502; RRID: AB_314354

Anti-Human CD127 Fluidigm Cat# 3149011B; RRID: AB_2661792

Anti-Human CD86 Fluidigm Cat# 3150020B; RRID: AB_2687852

Anti-Human ICOS Biolegend Cat# 313502; RRID: AB_416326

Anti-Human CD141 Biolegend Cat# 344102; RRID: AB_2201808

Anti-Human Tim3 Fluidigm Cat# 3153008B; RRID: AB_2687644

Anti-Human TIGIT Fluidigm Cat# 3154016B; RRID: AB_2888926

Anti-Human CD27 Fluidigm Cat# 3155001B; RRID: AB_2687645

Anti-Human CXCR3 Fluidigm Cat# 3156004B; RRID: AB_2687646

Anti-Human CD45RA Biolegend Cat# 304102; RRID: AB_314406

Anti-Human PD-1 Biolegend Cat# 329941; RRID: AB_2563734

Anti-Human PDL1 Fluidigm Cat# 3159029B; RRID: AB_2861413

Anti-Human CD14 Fluidigm Cat# 3160001B; RRID: AB_2687634

Anti-Human Tbet Fluidigm Cat# 3161014B; RRID: AB_2858233

Anti-Human Ki67 Fluidigm Cat# 3162012B; RRID: AB_2888928

Anti-Human CD33 Fluidigm Cat# 3163023B; RRID: AB_2687857

Anti-Human CD95 Fluidigm Cat# 3164008B; RRID: AB_2858235

Anti-Human Foxp3 Biolegend Cat# 14-4774-82; RRID: AB_467552

Anti-Human Eomes Biolegend Cat# 14-4877-82; RRID: AB_2572882

Anti-Human CCR7 Fluidigm Cat# 3167009A; RRID: AB_2858236

Anti-Human CD8a Fluidigm Cat# 3168002B; RRID: AB_2892771

Anti-Human CD25 Fluidigm Cat# 3169003B; RRID: AB_2661806

Anti-Human CD3 Fluidigm Cat# 3170001B; RRID: AB_2811085

Anti-Human CXCR5 Fluidigm Cat# 3171014B; RRID: AB_2858239

Anti-Human IgM Fluidigm Cat# 3172004B; RRID: AB_2810858

Anti-Human HLA-DR Fluidigm Cat# 3173005B; RRID: AB_2810248

Anti-Human CD4 Fluidigm Cat# 3174004B; RRID: AB_2687862

Anti-Human CCR4 R&D Cat# MAB1567-500; RRID: AB_2892772

Anti-Human CD56 Miltenyi Cat# 130-113-312; RRID: AB_2726090

Anti-Human CD11b Fluidigm Cat# 3209003B; RRID: AB_2687654

Critical commercial assays

U-PLEX Biomarker Group 1 (hu) 71-Plex Meso Scale Discovery (MSD) Cat# K15081K

V-PLEX Vascular Injury Panel 2 Human Kit Meso Scale Discovery (MSD) Cat# K15198D

(Continued on next page)
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V-PLEX Angiogenesis Panel 1 Human Kit Meso Scale Discovery (MSD) Cat# K15190D

PAXgene Blood RNA Tubes PreAnalytiX/QIAGEN Cat# 762165

PAXgene Blood RNA Kit QIAGEN Cat# 762164

Universal Plus mRNA-Seq with

NuQuant; Human Globin AnyDeplete

Tecan Cat# 0521-A01

Deposited data

RNaseq This paper NCBI Gene Expression Omnibus GSE167000

Proteomics (mass spectrometry) This paper PRIDE Partner Repository; entry PXD022817

SOMAscan� Proteomics; MSD

Cytokine Profiles; and Sample Metadata

This paper Mendeley; https://doi.org/10.17632/2mc6rrc5j3.1

Metabolomics data This paper Metabolome Workbench; Project ID PR001110

Mass cytometry data This paper Flow Repository: https://flowrepository.org/

id/RvFrSYioKeUdYHXdkTD9TQPAXt4Pq

dkB5eie82h11JgAGSCQIneLKpcKd81Nzgwq.

Software and algorithms

R R Foundation for

Statistical Computing

v4.0.1; RRID:SCR_001905

RStudio RStudio, Inc. v1.3.959; RRID:SCR_000432

Bioconductor N/A v3.11; RRID:SCR_006442

Tidyverse collection of packages for R N/A N/A; RRID:SCR_019186

limma package for R N/A v3.44.3; RRID:SCR_010943

CellEngine Primity Bio Inc. N/A

bcl2fastq Illumina, Inc. v2.20.0.422; RRID:SCR_015058

FASTQC N/A v0.11.5; RRID:SCR_014583

FastQ Screen N/A v0.11.0; RRID:SCR_000141

bbduk/BBTools N/A v37.99; RRID:SCR_016968

fastq-mcf./ea-utils N/A v1.05; RRID:SCR_005553

HISAT2 N/A v2.1.0; RRID:SCR_015530

Human genome reference fasta N/A GRCh38; RRID:SCR_014966

Human genome annotation GTF file Gencode v33; RRID:SCR_014966

Samtools N/A v1.5

HTSeq-count N/A v0.6.1; RRID:SCR_005514

DESeq2 package for R N/A v1.28.1; RRID:SCR_015687

Hmisc package for R N/A v4.4-0

ggplot2 package for R N/A v3.3.1; RRID:SCR_014601

rstatix package for R N/A v0.6.0

ComplexHeatmap package for R N/A v2.4.2RRID:SCR_017270

ggforce package for R N/A v0.3.1

COVIDome Explorer Code Zenodo https://doi.org/10.5281/zenodo.5081091

COVIDome Explorer Code Zenodo https://doi.org/10.5281/zenodo.5081093
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed and will be fulfilled by the Lead Contact, Joaquin

Espinosa (joaquin.espinosa@cuanschutz.edu).

Materials availability
This study did not generate new unique reagents.
Cell Reports 36, 109527, August 17, 2021 e2

mailto:joaquin.espinosa@cuanschutz.edu
https://doi.org/10.17632/2mc6rrc5j3.1
https://flowrepository.org/id/RvFrSYioKeUdYHXdkTD9TQPAXt4PqdkB5eie82h11JgAGSCQIneLKpcKd81Nzgwq
https://flowrepository.org/id/RvFrSYioKeUdYHXdkTD9TQPAXt4PqdkB5eie82h11JgAGSCQIneLKpcKd81Nzgwq
https://flowrepository.org/id/RvFrSYioKeUdYHXdkTD9TQPAXt4PqdkB5eie82h11JgAGSCQIneLKpcKd81Nzgwq
https://doi.org/10.5281/zenodo.5081091
https://doi.org/10.5281/zenodo.5081093


Resource
ll

OPEN ACCESS
Data and code availability
All data generated for this manuscript is made available through the online researcher gateway of the COVIDome Project, known as

the COVIDome Explorer, which can be accessed at covidome.org. The RNaseq data have been deposited in NCBI Gene Expression

Omnibus, with series accession number GSE167000. The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository (Perez-Riverol et al., 2019) with the dataset identifier

ProteomeXchange: PXD022817. The mass cytometry data has been deposited in Flow Repository: FR-FCM-Z367. The metabolo-

mics data have been deposited in the Metabolomics Workbench: PR001110. All code required to run the COVIDome Explorer ap-

plications can be found at https://github.com/cusom/CUSOM.COVIDome.Shiny-Apps (Zenodo https://doi.org/10.5281/zenodo.

5081091) and https://github.com/cusom/CUSOM.ShinyHelpers (Zenodo https://doi.org/10.5281/zenodo.5081093). Any additional

information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Research participants were recruited and consented for participation in the COVID Biobank of the University of Colorado Anschutz

Medical Campus [ColoradoMultiple Institutional ReviewBoard (COMIRB) Protocol # 20-0685]. Data was generated fromdeidentified

biospecimens and linked to demographics and clinical metadata procured through the Health Data Compass of the University of

Colorado under COMIRB Protocol # 20-1700. Participants were hospitalized either at Children’s Hospital Colorado or the University

of Colorado Hospital. Blood samples were taken at variable times during hospital stays, with 75% of samples obtained within 4 days

of admission and 90% within 10 days. COVID-19 status was defined by a positive PCR reaction using samples obtained from nasal

swabs in most (~95%) cases and/or antibody test. Of the COVID-19-positive patients, 88%were SARS-CoV-2-positive by PCR, and

the remaining 12% by antibody test. Cohort characteristics can be found in Table S1.

METHOD DETAILS

Blood processing
Blood samples were collected into EDTA tubes, PAXgene RNA, and sodium heparin tubes. After centrifugation, EDTA plasma was

used for MS proteomics, SOMAscan� proteomics, as well as multiplex immunoassays using MSD technology for both cytokine pro-

files and seroconversion assays. From sodium heparin tubes, PBMCs were obtained by the Ficoll gradient method before cryopres-

ervation and assembly of batches for MC analysis (see below).

Whole blood transcriptome
RNA was purified from PAXgene Blood RNA Tubes (PreAnalytiX/QIAGEN) using a PAXgene Blood RNA Kit (QIAGEN), according to

the manufacturer’s instructions. RNA quality was assessed using an Agilent 2200 TapeStation and quantified by Qubit (Life Technol-

ogies). Globin RNA depletion, poly-A(+) RNA enrichment, and strand-specific library preparation were carried out using a Universal

Plus mRNA-Seq with NuQuant, Human Globin AnyDeplete (Tecan). Paired-end 150 bp sequencing was carried out on an Illumina

NovaSeq 6000 instrument by the Genomics Shared Resource at the University of Colorado Anschutz Medical Campus.

Plasma proteomics by mass spectrometry
Plasma samples were digested in S-Trap filters (Protifi, Huntington, NY) according to the manufacturer’s procedure. Briefly, a dried

protein pellet prepared from organic extraction of patient plasma was solubilized in 400 ml of 5% (w/v) SDS. Samples were reduced

with 10mMDTT at 55�C for 30min, cooled to room temperature, and then alkylated with 25mM iodoacetamide in the dark for 30min.

Next, a final concentration of 1.2% phosphoric acid and then six volumes of binding buffer [90% methanol; 100 mM triethylammo-

nium bicarbonate (TEAB); pH 7.1] were added to each sample. After gentle mixing, the protein solution was loaded into an S-Trap

filter, spun at 2000 rpm for 1 min, and the flow-through collected and reloaded onto the filter. This step was repeated three times,

and then the filter was washed with 200 mL of binding buffer 3 times. Finally, 1 mg of sequencing-grade trypsin (Promega) and

150 mL of digestion buffer (50 mM TEAB) were added onto the filter and digestion carried out at 47�C for 1 h. To elute peptides, three

stepwise buffers were applied, 200 mL of each with one more repeat, including 50 mM TEAB, 0.2% formic acid in H2O, and 50%

acetonitrile and 0.2% formic acid in H2O. The peptide solutions were pooled, lyophilized and resuspended in 1 mL of 0.1% FA.

20 ml of each sample was loaded onto individual Evotips for desalting and then washed with 20 mL 0.1% FA followed by the addition

of 100 mL storage solvent (0.1% FA) to keep the Evotips wet until analysis. The Evosep One system (Evosep, Odense, Denmark) was

used to separate peptides on a Pepsep column, (150 mm internal diameter, 15 cm) packed with ReproSil C18 1.9 mm, 120A resin. The

system was coupled to a timsTOF Pro mass spectrometer (Bruker Daltonics, Bremen, Germany) via a nano-electrospray ion source

(Captive Spray, Bruker Daltonics). The mass spectrometer was operated in PASEF mode. The ramp time was set to 100 ms and 10

PASEF MS/MS scans per topN acquisition cycle were acquired. MS and MS/MS spectra were recorded from m/z 100 to 1700. The

ion mobility was scanned from 0.7 to 1.50 Vs/cm2. Precursors for data-dependent acquisition were isolated within ± 1 Th and frag-

mented with an ion mobility-dependent collision energy, which was linearly increased from 20 to 59 eV in positive mode. Low-abun-

dance precursor ions with an intensity above a threshold of 500 counts but below a target value of 20000 counts were repeatedly

scheduled and otherwise dynamically excluded for 0.4 min. Raw data file conversion to peak lists in the MGF format, downstream
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identification, validation, filtering and quantification were managed using FragPipe version 13.0. MSFragger version 3.0 was used for

database searches against a Human isoform-containing UniProt fasta file (version 08/11/2020) with decoys and common contam-

inants added. The identification settings were as follows: Trypsin, Specific, with a maximum of 2 missed cleavages, up to 2 isotope

errors in precursor selection allowed for, 10.0 ppm as MS1 and 20.0 ppm as MS2 tolerances; fixed modifications: Carbamidomethy-

lation of C (+57.021464 Da), variable modifications: Oxidation of M (+15.994915 Da), Acetylation of protein N-term (+42.010565 Da),

Pyrolidone from peptide N-term Q or C (�17.026549 Da). The Philosopher toolkit version 3.2.9 (build 1593192429) was used for

filtering of results at the peptide and protein level at 0.01 FDR. Label-free quantification was performed by AUC integration with

matching between all runs using IonQuant.

Plasma proteomics by SOMAscan assays
125 mL EDTA plasmawas analyzed by SOMAscan� assays using previously established protocols (Gold et al., 2012). Briefly, each of

the 4800+ SOMAmer� reagents binds a target peptide and is quantified on a custom Agilent hybridization chip. Normalization and

calibration were performed according to SOMAscan� Data Standardization and File Specification Technical Note (SSM-020) (Gold

et al., 2012). The output of the SOMAscan� assay is reported in relative fluorescent units (RFU).

Cytokine profiling and seroconversion by multiplex immunoassay
Multiplex immunoassays MSD assays were performed on EDTA plasma aliquots following manufacturer’s instructions (Meso Scale

Discovery,MSD). A list of immune factorsmeasured byMSD can be found in Table S2D.Values were extrapolated against a standard

curve using provided calibrators. Seroconversion assays against SARS-CoV-2 proteins and the control protein from the Flu A Hong

Kong H3 virus were performed in a multiplex immunoassay using the IgG detection readout according to manufacturer’s instructions

(MSD). Relative values were extrapolated against a standardized curve consisting of pooled COVID-19 positive reference plasma

(Johnson et al., 2020).

Mass cytometry analysis of immune cell types
Cryopreserved PBMCs were thawed, washed twice with Cell Staining Buffer (CSB) (Fluidigm), and counted with an automated cell

counter (Countess II - Thermo Fisher Scientific). Extracellular staining on live cells was done in CSB for 30min at room temperature, in

3-5̂ 106 cells per sample. Cells were washed with 1X PBS (Fluidigm) and stained with 1mL of 0.25 mM cisplatin (Fluidigm) for 1 min at

room temperature for exclusion of dead cells. Samples were then washed with CSB and incubated with 1.6% PFA (Electron Micro-

scopy Sciences) during 10 min at room temperature. Samples were washed with CBS and barcoded using a Cell-IDTM 20- Plex Pd

Barcoding Kit (Fluidigm) of lanthanide-tagged cell reactive metal chelators that will covalently label samples with a unique combina-

tion of palladium isotopes, then combined. Surface staining with antibodies that work on fixed epitopes was performed in CSB for

30 min at room temperature (see Table S4 and Key resources table for antibody information). Cells were washed twice with CSB and

fixed in Fix/Perm buffer (eBioscience) for 30 min, washed in permeabilization buffer (eBioscience) twice, then intracellular factors

were stained in permeabilization buffer for 45 min at 4�C. Cells were washed twice with Fix/Perm Buffer and were labeled overnight

at 4�Cwith Cell-ID Intercalator-Ir (Fluidigm) for DNA staining. Cells were then analyzed on a Helios instrument (Fluidigm). To make all

samples comparable, pre-processing of mass cytometry data included normalization within and between batches via polystyrene

beads embedded with lanthanides as previously described (Finck et al., 2013). Files were debarcoded using the MATLAB Debarco-

derTool (Zunder et al., 2015). Then normalization again between batches relative to a reference batch based on technical replicates

(Schuyler et al., 2019). Gating was performed using CellEngine (Primitybio) as previously described (Galbraith et al., 2021).

Mass spectrometry-based metabolomics of plasma and red blood cells
Samples were thawed on ice and extracted via a modified Folch method (chloroform/methanol/water 8:4:3), which completely

inactivates other coronaviruses, such as MERS-CoV. Briefly, 20 mL of sample was diluted in 130 mL of LC-MS grade water,

600 mL of ice-cold chloroform/methanol (2:1) was added, and the samples were vortexed for 10 s. Samples were then incubated

at 4�C for 5 minutes, quickly vortexed (5 s), and centrifuged at 14,000 g for 10 minutes at 4�C. The top (i.e., aqueous) phase was

transferred to a new tube for metabolomics analysis and flash frozen. The bottom (i.e., organic) phase was transferred to a new

tube for lipidomics analysis, then dried under N2 flow.

Analyses were performed using a Vanquish UHPLC coupled online to a Q Exactive high resolution mass spectrometer (Thermo

Fisher Scientific, Bremen, Germany). Samples (10 uL per injection) were randomized and analyzed in positive and negative electro-

spray ionizationmodes (separate runs) using a 5-minute C18 gradient on a Kinetex C18 column (Phenomenex) as described (Nemkov

et al., 2019). Data were analyzed usingMaven (Princeton University, Princeton, NJ, USA) in conjunction with the KEGG database and

an in-house standard library.

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing, statistical analysis, and plot generation for all datasets was carried out using R (R 4.0.1 / Rstudio 1.3.959 / Bio-

conductor v 3.11) (Huber et al., 2015, R Core Team, 2020, RStudio Team, 2020), as detailed below.
Cell Reports 36, 109527, August 17, 2021 e4
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Analysis of transcriptome data
RNaseq data yield was ~40-80 3 106 raw reads and ~32-71 3 106 final mapped reads per sample. Reads were demultiplexed and

converted to fastq format using bcl2fastq (bcl2fastq v2.20.0.422). Data quality was assessed using FASTQC (v0.11.5) (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) and FastQ Screen (v0.11.0, https://www.bioinformatics.babraham.ac.uk/projects/

fastq_screen/). Trimming and filtering of low-quality reads was performed using bbduk from BBTools (v37.99) (Bushnell et al., 2017)

and fastq-mcf. from ea-utils (v1.05, https://expressionanalysis.github.io/ea-utils/). Alignment to the human reference genome

(GRCh38) was carried out using HISAT2 (v2.1.0) (Kim et al., 2019) in paired, spliced-alignment mode with a GRCh38 index with a

Gencode v33 annotation GTF, and alignments were sorted and filtered for mapping quality (MAPQ > 10) using Samtools (v1.5) (Li

et al., 2009). Gene-level count data were quantified using HTSeq-count (v0.6.1) (Anders et al., 2015) with the following options

(–stranded = reverse –minaqual = 10 –type = exon–mode = intersection-nonempty) using a Gencode v33 GTF annotation file. Differ-

ential gene expression in COVID-19-positive versus COVID-19-negative was evaluated using DESeq2 (version 1.28.1) (Love et al.,

2014) in R (version 4.0.1), using q < 0.1 (FDR < 10%) as the threshold for differentially expressed genes.

Analysis of MS-proteomic data
Raw Razor intensity data were filtered for high abundance proteins by removing those with > 70% zero values in both COVID-19-

negative and COVID-19-positive groups. For the remaining 407 abundant proteins, 0 values (8,363 missing values of 44,363 total

measurements) were replaced with a random value sampled from between 0 and 0.5x the minimum non-zero intensity value for

that protein. Data was then normalized using a scaling factor derived from the global median intensity value across all proteins / sam-

ple median intensity across all proteins (De Livera et al., 2012)

SOMAscan data
Normalized data (RFU) was imported and converted from aSOMAscan� .adat file using a customRpackage (SomaDataIO) for use in

all subsequent analysis.

Analysis of MSD cytokine profiling data
Plasma concentration values (pg/mL) for each of the cytokines and related immune factors measured across multiple MSD assay

plates was imported to R, combined, and analytes with > 10% of values outside of detection or fit curve range flagged. For each

analyte, missing values were replaced with either the minimum (if below fit curve range) or maximum (if above fit curve range) calcu-

lated concentration and means of duplicate wells used in all further analysis.

Analysis of LCMS-metabolomics data
Peak intensity data was imported to R. Across the 171metabolites, 0 values (486missing values of 21,033 total measurements) were

replaced with a random value sampled from between 0 and 0.5x the minimum non-zero intensity value for that metabolite. Data was

then normalized using a scaling factor derived from the global median intensity value across all proteins / sample median intensity

and used for downstream analysis. This normalization method has been widely employed for MS data, including on the MetaboA-

nalyst platform (Chong et al., 2019), and performs comparably to a number of other normalization methods (Välikangas et al., 2018).

Analysis of mass cytometry data
Cellpopulation frequencieswereexported fromCellEngineaspercentagesof variousparental lineagesandused for subsequentanalysis.

Differential abundance analysis
Differential abundance analysis for MS proteomics, SOMAscan� proteomics, MSD cytokine profiling, LCMS metabolomics, and

mass cytometry data was performed using linear models with log2 concentration as the outcome variable and age, sex, and

COVID-19 status as independent variables. Multiple hypothesis correction was performed with the Benjamini-Hochberg method us-

ing a false discovery rate (FDR) threshold of 10% (q < 0.1).

Correlation analysis
To identify features in each dataset that correlate with CRP levels in COVID-19-positive samples, Spearman rho values and p values

were calculated against values adjusted for Sex and Age using the removeBatchEffect function from the limma package (v 3.44.3)

from each dataset using the rcorr function from the Hmisc package (v 4.4-0), with Benjamini-Hochberg correction of p values and

an estimated false discovery fate threshold of 0.1. For visualization, XY scatterplots with points colored by local density were gener-

ated using a custom density function and the ggplot2 (v3.3.1) package (Wickham, 2016).

Data visualization
To visualize differences between COVID-19-negative samples and COVID-19-positive samples, Z-scores were calculated for each

feature based on the mean and standard deviation of COVID-19-negative samples, and visualized as heatmaps and/or modified sina

plots using the ComplexHeatmap (v2.4.2) (Gu et al., 2016), ggplot2 (v3.3.1), and ggforce (v0.3.1) packages (Pedersen, 2019).
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