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Background: Active immunotherapy is an effective, long-lasting, cheap, and safe approach to suppress
cancer progression; however, the key issue is to develop appropriate tumour vaccines. Oncoproteins are
up-regulated under various stress conditions and promote cell survival. Oncoproteins and their immuno-
genic domains could serve well as tumour vaccines and prime the hosts’ active anti-tumour immunity.
Methods: Proteomic and bioinformatic analyses were performed to identify potential tumour associated
antigens (TAAs). Then, peptides derived from CD151 were designed and synthesized according to the ma-
jor histocompatibility complex (MHC) I binding and immunogenicity. Cytotoxicity assay, flow cytometry,
immunohistochemistry, and in vivo bioluminescence imaging were performed to assess the active anti-
tumour immunity triggered by CD151 peptides in H22 primary hepatoma and experimental 4T1 breast
cancer lung metastasis models.
Findings: CD151 was identified as an ideal TAA based on proteomic and bioinformatic analyses. CD151
peptides as tumour vaccines triggered active anti-tumour immunity against H22 hepatoma and the lung
metastasis of 4T1 breast cancer in two mouse models through the activation of CD8*IFNy* lympho-
cytes and the subsequent targeted cytotoxicity. Further, the peptides suppressed the negative regula-
tors, myeloid-derived suppressor cells. Survival was prolonged for mice with lung metastases from CD151
peptide-immunised groups.
Interpretation: The up-regulated oncoproteins in 8 Gy-irradiated tumour cells are good candidates for
designing immunogenic peptides as tumour vaccines. Anti-tumour active immunity primed by peptides
from CD151 may be an effective and safe approach to suppress cancer progression.
© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research in context
Evidence before this study

Active immunity generated by potent vaccines is effective

Abbreviations: TAA, tumour associated antigen; IR, irradiation; TCGA, The Cancer
Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontol-
ogy; DLBCL, Diffuse large B-cell lymphoma; GBM, glioblastoma multiforme; HNSC,
head and neck squamous cell carcinoma; KIRP, kidney renal papillary cell carci-
noma; LGG, brain low-grade glioma; LIHC, liver hepatocellular carcinoma; PAAD,
pancreatic adenocarcinoma; THYM, thymoma; CARs, Chimaeric antigen receptors;
MHC, major histocompatibility complex; CAR, chimeric antigen receptor; FCM, flow
cytometry; IFN, interferon; LDH, lactate dehydrogenase; IHC, immunohistochem-
istry; MDSC, myeloid-derived suppressor cell; THPA, The Human Protein Atlas.
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against deadly infectious diseases. Lack of tumour vaccines is re-
lated to the difficulties in the discovery of tumour-specific anti-
gens. An alternative is to use tumour-associated antigens, i.e. on-
coproteins, to suppress cancer progression.

Added value of this study

We used 8Gy irradiation to upregulate the expression of a
panel of oncoproteins, which were involved in tumour cell survival,
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anti-apoptosis, metastasis, and angiogenesis. Of these, CD151 ex-
pression was significantly higher in tumours than in normal tissues
and associated with low differentiation, late stage, and poor prog-
nosis. Two peptides derived from CD151 triggered active immune
responses by enhancing CD8*IFNy* lymphocytes, which were cy-
totoxic against both H22 hepatoma cells and 4T1 breast cancer
cells in vitro and suppressed the primary tumour or lung metas-
tasis in vivo.

Implications of all the available evidence

Anti-tumour active immunity primed by peptides from onco-
proteins/TAAs could serve as an effective, long-lasting, cheap, and
safe way to suppress cancer progression.

1. Introduction

Immunotherapy has received tremendous attention for the
treatment of cancer [1]. Antibodies and immune checkpoint in-
hibitors are revolutionising cancer treatment [2]. However, only a
few patients exhibit objective tumour responses with long-term
survival benefits [3]. One of the mechanisms for treatment failure
may involve the downregulation or loss of antigen presentation,
which confers tumour cells the ability to become ‘invisible’ and
avoid immune attack [4]. Tumour-associated antigens (TAAs) are
regarded as foreign antigens, which contribute to immune recog-
nition and trigger anti-tumour immune responses [5]. TAA-derived
peptide vaccines are potential tumour immunotherapy regimens
which elicit endogenous tumour-specific T-cell responses and have
been proved to provide clinical benefits with low toxicity in many
phase I and II clinical trials [6-10]. However, effective TAA-based
peptide vaccines are limited. Therefore, a novel and effective can-
cer peptide vaccine may increase immunotherapy strategies and
sensitise patients to the effects of immune checkpoint inhibitors.

Functionally, most TAAs could promote tumour malignant be-
haviour and hence are described as oncoproteins [11]. At the
early stage of cancer, oncoproteins (such as over-expressed Her2,
EGFR, Bcl2, etc.) could enhance the proliferation of cells and sup-
press apoptosis, leading to uncontrolled cell growth [12,13]. At
the progression stage, more oncoproteins (such as over-expressed
VEGF, HGF, c-MET, ICAM, etc.) are involved in angiogenesis, vas-
cularization, invasion, migration, and metastasis [14-16]. During
chemotherapy and radiotherapy, the stress from drug and radiation
stimulates a variety of oncoproteins via the activation of signal-
ing cascades (such as PI3K/AKT/mTOR, NF-«B, etc.); these oncopro-
teins regulate cell proliferation, survival, and metabolism against
the treatment-induced stress [17,18]. Hence, oncoproteins and re-
lated pathways are the targets of anti-tumour drugs.

While drug companies are spending billions to develop block-
ers of oncoproteins and related pathways, we believe that onco-
proteins as vaccines is an effective, long-lasting, cheap, and safe
strategy to ‘wake up’ the host immune system against cancer pro-
gression.

In the present study, we employ proteomic and bioinformatic
approaches to show that 8 Gy irradiation (IR) up-regulated a panel
of oncoproteins in cancer cells; these oncoproteins may serve as
IR-induced endogenous ‘tumour vaccines’ and regulate immune re-
sponses. Of these, the tetraspanin oncoprotein CD151 was signifi-
cantly overexpressed in several tumour cell lines and tumour tis-
sues as compared to the adjacent normal tissues. CD151 is an on-
coprotein that plays an important role in cancer progression and is
associated with poor prognosis [19,20]. To suppress the malignant
functions of CD151, we used the corresponding peptides to acti-
vate the host immunity against the progression of both primary
4T1 breast tumour growth and lung metastasis in mouse models.

Immunisation with CD151 peptide vaccines activated CD8* inter-
feron (IFN)-y* lymphocytes, killed cancer cells, reduced the nega-
tive regulators myeloid-derived suppressor cells (MDSCs), and pro-
longed the survival of tumour-bearing mice. Our results indicate
that CD151 peptides triggered active immune responses against tu-
mour progression.

2. Materials and methods

2.1. Label-free quantitative proteomics for IR-induced differentially
expressed proteins

After 8Gy IR, the lysate from H22 cells was collected at 48h.
Label-free quantitative proteomics was performed to screen differ-
entially expressed proteins using the service of Allied Protein Tech-
nology Co. Ltd. (China).

2.2. Clinical database analysis to reveal the association of CD151
with tumour malignant behaviour

The expression data of CD151 in different types of cancers
were obtained from Gene Expression Profiling Interactive Analy-
sis (GEPIA; http://gepia.cancer-pku.cn/) [21], and Cancer Cell Line
Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle/about)
[22].

The gene expression data and clinical information of hep-
atoma were obtained from The Human Protein Atlas (THPA; https:
/[www.proteinatlas.org) [23], and The Cancer Genome Atlas (TCGA)
database (https://tcga-data.nci.nih.gov/tcga/). In total, 374 tumour
tissue and 50 adjacent normal tissues were obtained, and anal-
ysed by R software. This project was conducted in accordance with
the guidelines provided by the TCGA (http://cancergenome.nih.gov/
publications/publicationguidelines).

2.3. Design of CD151 peptides for priming active immunity

To improve the efficacy of CD151 peptide vaccines, two
databases (SYFPEITHI: http://www.syfpeithi.com/ and IEDB: http:
/[www.iedb.org/) were used to design CD151 peptides. SYFPEITHI
is a database for T-cell epitope prediction [24]. The prediction of
T-cell epitopes is based on published motifs derived from pool
sequencing and analysis of individual natural ligands, and espe-
cially considers amino acids in anchor and auxiliary anchor po-
sitions, as well as other frequent amino acids. CD151 peptidel is
designed based on SYFPEITHI database. IEDB is another popular
database for peptide vaccine design, containing information on im-
mune epitopes [25]. CD151 peptide2 is designed based on IEDB
database. The amino acid sequences of the two peptides were:
N’-IYKVEGGCI-C' and N'-DWQDSEWIRSG-C'. They were synthesised
with N-terminal acetylation and C-terminal amidation to prevent
degradation by peptidases using the service of Top-peptide Biotech
LLC (Shanghai, China).

2.4. Immunisation with CD151 peptides

Female ICR or BABL/c mice (22-25g, Slaccas Experimental An-
imal LLC, license# SCXK 2012-0002, Shanghai, China) were ran-
domly divided into two groups as follows: (1) phosphate-buffered
saline [PBS]-Freund’s adjuvant-immunised group (n=10); and (2)
CD151 peptide-immunised group (n=10). In brief, 200 ug of each
peptide was dissolved in 0.1 mL PBS, mixed, emulsified with an
equal volume of Freund’s complete adjuvant, and subcutaneously
injected into the four feet and eight spots on the back of each
mouse [26]. PBS with an equal volume of Freund’s adjuvant was
used as the control group. On day 10 and 20 after first priming,
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the mice were boosted with the second and third immunisation
with PBS or peptide mixed with Freund’s incomplete adjuvant.

Animal experiments were approved by Fujian Medical Univer-
sity Institutional Animal Ethical Committee (FJMU IACUC #2018-
075). The applicable institutional guidelines for the care and use of
animals were followed.

2.5. Flow cytometry (FCM) analysis for CD8TIFNy T t lymphocytes

On day 24 after immunisation, some mice were sacrificed.
Splenic lymphocytes from control and CD151 peptide-immunised
mice were harvested with Ficoll separation method. After stimu-
lation with CD151 peptides (10 ug/mL), lymphocytes were blocked
with 10 ug/mL brefeldin A (Beyotime, Cat #S1536, China) for 2h
and stained with allophycocyanin (APC)-anti-mouse CD8 (Biole-
gend, Cat #100712, San Diego, CA) for 1h. The cells were cen-
trifuged at 350 x g for 5min, fixed with 4% paraformaldehyde-
PBS for 15 min, permeabilised with 0.1% Triton-PBS, spin-washed,
and stained with phycoerythrin (PE)-anti-mouse IFNy (Biolegend,
Cat #505808, San Diego, CA) for 1h at 4°C. The double-stained
CDS8*IFNy* T lymphocytes were analysed with BD Accuri™ (6
Flow Cytometer (BD Inc, Piscataway, NJ).

2.6. Cytotoxicity assay

To test the cytotoxic function of spleen lymphocytes obtained
24 days after immunisation, these cells were co-cultured with H22
or 4T1 tumour cells at different ratios (tumour cell to lymphocyte:
1:1; 1:10; 1:20, or 1:50) in 96-well round bottom plates in trip-
licates in serum-free RPMI-1640 medium containing 50 ng/mL of
CD3 mAb and 20 U/mL of mouse IL-2 (PeproTech, Cat #200-02, US)
for 2 days. The cytotoxicity was evaluated from the amount of lac-
tate dehydrogenase (LDH) released in the medium using an LDH
Release Assay Kit (Beyotime, Cat #C0016, China). Percentage cyto-
toxicity was calculated as follows: LDH level in each well/total LDH
released from the same number of cells lysed after two freeze-
thaw cycles.

2.7. Imaging of co-cultures of 4T1 cancer cells and lymphocytes

The imaging of cell-cell contacts between GFP-positive 4T1
cells and lymphocytes obtained 24 days after immunisation in co-
culture was performed under a fluorescence inverted microscope
(IX71-F22FL/PH, Olympus, Japan).

2.8. Primary tumour model and measurement of tumour growth

A total of 1 x 106 H22 hepatoma cells in 0.2 mL PBS were sub-
cutaneously injected into the back of H22 mice on day 25 after
immunisation. The tumour size in each mouse from either control
or CD151 peptide-immunised group was measured with a digital
calliper twice per week. Tumour volume was calculated as follows:
long diameter x short diameter?/2. Tumour growth curve was ob-
tained by plotting tumour volume against time. At the end of the
experiment, the tumours from each group were harvested, imaged,
and weighed.

2.9. Experimental metastasis model and live imaging of lungs

Alive 1 x 108 4T1 breast cancer cells transfected with cDNAs of
GFP and luciferase in 0.3 ml PBS were intravenously injected into
the tail vein of BABL/c mice on day 25 after immunisation. Two
weeks later, the tumour growth of 4T1 experimental lung metas-
tases was measured with the IVIS Lumina III living imaging sys-
tem (PerkinElmer, USA) and the total flux photon (P/S) was mea-
sured. At the end of the study, lung metastases of each mouse were
counted under dissecting microscope.

2.10. Ficoll seperation and MDSCs staining

Monocytes were isolated using Ficoll density gradient cen-
trifugation (Solarbio, Cat #P8620, China) according to the man-
ufacturer’s instruction. Then, 106 monocytes were labeled with
fluorochrome-labeled Ab targeting murine CD11b (Biolegend, Cat
#101228, San Diego, CA) and GR-1 (Biolegend, Cat #108423, San
Diego, CA) for 1h at 4°C washed, resuspended in 1% formalin, and
analyzed via flow cytometry.

2.11. Survival curve analysis

The number of BABL/c mice with lung metastases was counted
every day and recorded. The survival percentage in each group was
calculated as (the number of survived mice/the number of total
studied mice) x 100 and was plotted against time.

2.12. Quantitative real-time PCR

Total mRNA was isolated from tumour tissue using Trizol (Invit-
rogen, Cat #15596026, UK), and cDNA was synthesised from 100 ng
of total RNA using the PrimeScript™ RT reagent Kit with gDNA
Eraser (TaKaRa, Cat #RR047A, Japan). Q-PCR was performed with
GoTaq qPCR Master Mix (Promega, Cat #A6001, USA) and Applied
Biosystems 7500 Real-Time PCR Systems. All samples were normal-
ized to B-actin mRNA levels. The primer sequences were:

CD151: Forward: 5'-AGCCACGGCCTACATCTTAGT-3';
Reverse: 5'-TTCCGTCGCTCCTTGAAAGTG-3/;
B-actin: Forward: 5'-GGCTGTATTCCCCTCCATCG-3/;
Reverse: 5'-CCAGTTGGTAACAATGCCATGT-3'.

2.13. Western blot analysis

In brief, 40ng of protein per sample was analyzed on a 12%
gel by SDS-PAGE, and transferred into a nitrocellulose membrane.
Then, the bands were blocked with 5% BSA, incubated with anti-
mouse CD151 (Abcam, Cat #ab185684, UK) at 4 °C for 12 h, washed
3 times for 15min each in TBST at room temperature, incubated
with horseradish peroxidase-conjugated (HRP) secondary antibody
(Abcam, Cat #ab205718, UK) for 2h at room temperature, and
washed 3 times for 15 min each in TBST. The bands were exposed
using a FlourChemE system (Protein Simple, US) according to the
manufacturer’s instructions. The scanned bands were further ana-
lyzed by the Image] software to obtain densitometry values.

2.14. Immunohistochemistry (IHC) analysis

The H22 and 4T1 tumours harvested from PBS control and
CD151 peptide-immunised groups were fixed with 10% formalin
overnight and processed into 5-um-thick paraffin sections. The
slides were stained with haematoxylin and eosin (HE) or subjected
to IHC with anti-mouse CD8 (Abcam, Cat #ab203035, UK), followed
by HRP secondary antibody (Abcam, Cat #ab205718, UK) and DAB
treatment. Images were obtained under a microscope (BX43, Olym-
pus, Japan) at a magnification of 200x.

2.15. Hemogram and biochemical indexes

Briefly, a 200l blood sample from each mouse was collected
and subjected to automatic animal blood cell analyzer (BC-2800
Vet, China) for hemogram detection. Biochemical indexes detection
was performed using Roche automatic biochemical analyzer P800.

2.16. Statistical analysis

Student’s t-test and Log-rank test were used for statistical anal-
ysis. P < 0.05 was considered statistically significant.
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3. Results

3.1. Defining potential oncoproteins/TAAs induced by radiation via
proteomic analysis

Previous studies have demonstrated that tumour cells could re-
lease large amounts of TAAs following high dose and low fractiona-
tion radiation (8 Gy dose per fraction), which increased the genera-
tion of tumour antigen-specific effector cells [27-29]. IR could also
enhance tumour immunogenicity, such as by increasing expression
of MUC-1 and CEA, that ultimately enhances cell killing by cyto-
toxic T lymphocytes [30,31]. Therefore, proteins upregulated by IR
may be ideal TAAs.

To define the protein alterations of H22 cancer cells, the lysates
from non-IR and IR cells were collected and subjected to label-
free relative quantitative proteomic analysis. In total, 209 differen-
tially expressed proteins were detected after radiation, including
103 up-regulated proteins and 106 down-regulated proteins (|log2
fold change| > 1 and p < 0.05) (Fig. 1a). The full list of differen-
tially expressed proteins is supplied in supplementary table 1.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis showed that the differentially expressed proteins
were mainly enriched in prostate cancer, hormone (thyroid, renin-
angiotensin, progesterone, etc.), and stress (such as papillomavirus
infection) related signal pathways (Fig. 1b).

Gene Ontology (GO) function analysis revealed the association
of these differentially expressed proteins with metabolic process,
cellular process, and response to stimuli (Fig. 1c). As shown in
Fig. 1d, the IR-induced differentially expressed proteins in immune
system process were mainly involved in response to interferon-
gamma (such as HLA-C, MED1, QARS, TRIM25 and STX4), type I
interferon signaling pathway (such as ISG20, SAMHD1, IFIT1 and
HLA-C), antigen processing and presentation of exogenous pep-
tide antigens (HLA-C, KIF3B, KIF11, KIF23 and CTSL). The radiation
stress-induced alterations included changes in the expression of
oncoproteins involved in several processes which is indicative of
their potential as TAAs.

3.2. Identification of CD151 as an ideal target for peptide-based
cancer immunotherapy

To achieve effective and safe peptide-based cancer vaccines,
it is important to identify appropriate TAAs as targets. The ideal
TAAs must have three characteristics to be effective molecular tar-
gets: over-expression in tumours; oncogenicity, and immunogenic-
ity. Here, we identified CD151 as an ideal TAA according to pro-
teomics and bioinformatic analysis.

Firstly, CD151 is overexpressed on various tumours, including
gastric cancers, hepatocellular carcinoma, and clear cell renal cell
carcinoma [32-34]. Here, we found that more types of cancers
express high levels of CD151, including diffuse large B-cell lym-
phoma (DLBCL), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney renal papillary cell car-
cinoma (KIRP), brain low-grade glioma (LGG), liver hepatocellu-
lar carcinoma (LIHC), pancreatic adenocarcinoma (PAAD), and thy-
moma (THYM), through analysis of GEPIA (Fig. 2a).

Secondly, as shown in Fig. 2b, the expression of CD151 was dif-
ferential in various cancer cell lines via using CCLE database. Of
these, liver cancer cell lines were one of the top hits.

Thirdly, analysis of liver hepatocellular carcinoma data from
THPA (Fig. 2c) and TCGA (Fig. 2d) revealed that CD151 was sig-
nificantly overexpressed in tumour tissues compared with normal
tissues, and over-expression of CD151 was associated with high tu-
mour grade (Fig. 2e), and advanced stage (Fig. 2f).

This data suggest that CD151 is likely to be involved in malig-
nant behaviour and may be an ideal TAA. Considering its location

on cell surface [32-34], CD151 could serve as an ideal target and
facilitate the production of TAA-derived vaccines for cancer im-
munotherapy.

3.3. CD151 peptides trigger active immunity and inhibit primary
tumour growth of H22 hepatoma

To explore the applicability of CD151 as a target for active im-
munotherapy, two peptides derived from CD151 were synthesised.
The sequences of the two peptide vaccines are highly conserved in
human and mice, indicating its potential translatability to human
cancer (Fig. 3a).

In brief, 200 ug of each peptide was mixed and emulsified with
an equal volume of Freund’s adjuvant and subcutaneously injected
into ICR mouse at day 1, day 10 and day 20. PBS with an equal vol-
ume of Freund’s adjuvant was used as the control group (Fig. 3b).
24 days after the first immunisation, the elicited immune response
against CD151 was evident from the increase in the peptide-
stimulated active CD8*IFNy ™ T lymphocytes (Fig. 3c) and the as-
sociated cytotoxicity on CD151-overexpressing H22 hepatoma cells
(Fig. 3d). 25 days after priming, 10 H22 hepatoma cells were sub-
cutaneously injected into the back of ICR mouse. The H22 tumour
growth in the CD151 peptide-immunised mice was greatly sup-
pressed as compared with that in the control mice (immunised
with PBS-Freund’s adjuvant), as evident from a retarded growth
curve, smaller tumour size, and lower tumour weight (Fig. 3e and
f). Together, these data demonstrate the capability of CD151 pep-
tides to trigger an active immune response to inhibit growth of
primary H22 hepatoma via the activation of T lymphocytes.

As tumours often mutate or downregulate tumour antigens to
avoide an immune attack, we further analyzed CD151 expression
on the tumour cells after peptide vaccination. As shown in the sup-
plementary Fig. 1a and b, we did not see a difference in CD151 ex-
pression between the control and CD151 peptide group after pep-
tide vaccination, indicating that CD151 was not downregulated at
the end of experiment.

We also designed another peptide vaccine derived from the
screen (CTH peptides). CTH was the top one in the screen, but not
overexpressed in hepatoma (supplementary Fig. 2a). However, con-
sidering the limited efficacy (supplementary Fig. 2b and 2c) and
serious side effects of CTH peptides, such as loss of weight, in-
flammation at injection site, glomeruloatrophy and renal hypofunc-
tion (supplementary Fig. 2d-2g), we focused on CD151 peptides
research.

3.4. CD151 peptides suppress experimental 4T1 lung metastases via
triggering active immune responses

To test whether CD151 peptide-triggered active immune re-
sponses were universal against different types of tumours in differ-
ent models, an experimental metastasis model of 4T1 breast cancer
cells (stable and double transfected with GFP and luciferase cDNAs)
was used. Similarly, the immunisation with CD151 peptides was
performed in BABL/c mice (Fig. 4a). Indeed, the peptide-stimulated
active CD8FIFNy* T lymphocytes were increased (Fig. 4b). In the
co-cultures of 4T1 tumour cells and lymphocytes from peptide-
immunised mice, 4T1 tumour cells were closely surrounded by
lymphocytes, and this phenomenon was absent in the control
mice. Besides, CD8*IFNy* T lymphocytes had a strong cytotoxic
effect on CD151-overexpressing 4T1 cancer cells (Fig. 4c). The anti-
lung metastasis effect triggered by the CD151 peptides was further
confirmed by live imaging, demonstrating that the tumour growth
in the lung of CD151 peptide-immunised mice was much smaller
than that in the control mice which showed less flux photon
(Fig. 4d). At the end of the experiment, the harvested lungs from
CD151 peptide-immunised mice showed lower metastasis rate and
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Fig. 1. Defining potential oncoproteins/TAAs induced by radiation via proteomic analysis. Label-free relative quantitative proteomic analysis was performed to iden-
tify potential TAAs induced by radiation. (a) Volcano plot showing the distribution of 209 differentially expressed proteins quantified among non-IR and IR cells with the
threshold of |log2 Fold change|>1 and P<0.05. Red dots indicate up-regulated proteins and green dots indicate down-regulated proteins. The expression of CD151 is indi-
cated by the arrow. (b) The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed proteins. Y-axis shows KEGG pathway entry,
and X-axis shows the number of proteins annotated in the pathway. The intensity of the colour represents P-value. (c) Gene Ontology (GO) function analysis. Y-axis shows
the number of proteins annotated in the GO term. X-axis shows the GO pathway, which was mainly categorized as biological process (red), cellular component (orange)
and molecular function (purple). (d) The role of differentially expressed proteins induced by IR in immune system process were visualized in ClueGO (ver. 2.5.3) plugin of
Cytoscape (ver. 3.5.1).(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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fewer tumour nodules than those from the control mice (Fig. 4e).
Importantly, the CD151 peptide-triggered active anti-cancer immu-
nity could result in a prolonged survival (Fig. 4f), confirming the
effectiveness of CD151 peptide-activated immunity.

3.5. CD151 peptides enhance tumour infiltration of CD8 lymphocytes
and reduce MDSCs

To explore the cellular mechanisms underlying CD151 peptides
triggered anti-tumour effects, the alteration of anti-tumour sup-
pression cells, blood MDSCs, were stained with anti-mouse Gr-1-
APC and CD11b-PerCP and analyzed with FCM. The result showed
that the MDSCs were greatly reduced in CD151 peptides immu-
nised ICR and BABL/c mice (Fig. 5a). In addition, the [HC stain in-
dicated that the tumour infiltrated CD8* lymphocytes were higher
in both CD151 peptides immunised ICR and BABL/c mice than that
of controls in two mouse models (Fig. 5b).

3.6. Side-effects test of CD151 peptide vaccines

To evaluate the safety of CD151 peptide vaccines, the mouse
body weights, kidney weights, glomerular morphology, renal func-
tion, liver function, and various indices of blood were detected af-
ter immunisation.

As shown in the Fig. 6, there were no differences in the mouse
body weights (Fig. 6a), kidney weights (Fig. 6b), glomerular mor-

phology (Fig. 6¢), renal function (Fig. 6d), liver function (Fig. 6e),
and various indices of blood (Fig. 6f-j) between control group and
CD151 peptides group. These results demonstrated that CD151 pep-
tide vaccines were a safe approach to activate anti-tumour immune
response.

4. Discussion

Using a comparative proteomic approach and a set of bioin-
formatic analyses, here we demonstrate that IR stress could reg-
ulate the expression of several proteins in cancer cells involved in
metabolism, biological regulation, cell binding, and biogenesis. As
a reaction to IR stress, these altered proteins are likely to rescue
the cells from IR-induced apoptosis /death, promote cell survival
and proliferation, thereby serving as oncoproteins involved in ma-
lignant behaviour. These stress-induced oncoproteins may be re-
sponsible for imparting resistance to therapy, relapse, and metasta-
sis. Targeting these stress-induced oncoproteins by various means
has been an important goal in medical research [35]. As onco-
proteins may serve as TAAs, we chose a unique and specific im-
mune approach using synthetic peptides of CD151 as tumour vac-
cines. We found that, in both primary and metastasis models, this
vaccine-triggered active immune responses, i.e. induction of func-
tional CD8*IFNy ™ T cell infiltration/cytotoxicity and suppression
of MDSCs, and could effectively inhibit both tumour growth and
metastasis. Two cancer cell lines in two in vivo mouse models
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showed similar results, confirming the promising therapeutic value no generation of memory cells [37]. Active immunity is a pow-
of CD151 peptides as tumour vaccines. erful host weapon against diseases. Various vaccines successfully

The tetraspanin CD151 is overexpressed in various tumours help the human host to get rid of infectious diseases such as
and correlated with tumour progression, metastatic propensity and smallpox, measles, cholera, polio, plague, pertussis, typhoid fever,

poor survival of cancer patients [32,33]. The CD151-based anti- and meningococcal meningitis. In the battle against cancer, active
body has successfully inhibited the tumour growth, angiogenesis immunity is highly desirable. However, the discovery of tumour-
and metastasis in different xenograft cancer models [36]. How- specific antigens and effective utilisation of TAAs are challeng-

ever, passive immunity is limited for its short-term effects and ing [38]. The successful use of CD151 peptides to reduce tumour
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growth and metastasis is based on the following principles: (1) as
an oncoprotein/TAA, CD151 is induced by IR stress; (2) CD151 is
overexpressed in tumours as compared with normal tissues; (3)
CD151 expression is associated with cancer stages and progression,
which is considered to be barely lost in the process of tumour pro-
gression; (4) CD151 is expressed on cell surface [5]. These charac-
teristics suggest that CD151 is always targetable without becoming
‘invisible’ or avoiding an immune attack due to down-regulation or
loss of its TAA presentation.

CD151 peptide designed as a tumour vaccine needs to meet
MHC restriction [39]. Using the databases IEDB and SYFPEITHI, we

focused on the following characteristics: (1) outer surface of cell
membrane that may be accessible to immune cells; (2) MHC I-
binding capacity; (3) MHC I immunogenicity; (4) solubility for hap-
ten. These properties determined the ability of the peptides to
serve as a vaccine and consequently trigger an immune response.
The effectiveness of CD151 peptide as a tumour vaccine requires
two stages: priming and function. In priming stage, peptide immu-
nisation primes the host immune system to recognize CD151 as a
target. Then, in function stage, the active immunity would be able
to kill tumour cells with high CD151 expression. As priming re-
quires about 3 weeks, if CD151* cancer cells are inoculated before
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CD151 peptide priming, the fast replication of tumour cells will re-
sult in a heavy tumour burden and suppress anti-tumour immu-
nity (data not shown). Based on this time-delay from immunisa-
tion priming stage to effectiveness stage, clinically, the best result
of active immunotherapy would probably be achieved right after
the surgery to remove large tumour burden. This would facilitate
the generation of host anti-tumour immunity within 3 weeks with
no suppression from tumour burden.

Antibodies that block the interaction between PD-1 and PD-L1
and consequently modulate the host immunity have attracted at-
tention in immunotherapy research [40]. However, only a small
portion of cancer patients gain long-term benefits, partly owing
to the lack of infiltrated T cells [41-43]. The use of peptide vac-
cine generated from TAAs, such as CD151, could increase the infil-
trated T cells, which may sensitise patients to immune checkpoint
inhibitors.

A multitude of chimaeric antigen receptors (CARs) targeting an
array of TSAs/TAAs have been reported for their remarkable anti-
tumour effects in vitro or in vivo, including targeting cell surface
tumour antigens in hematologic malignancies and solid tumours
[44]. Immunotherapies with T cells expressing chimeric antigen
receptor (CAR-T) using CD19, CD20, CD30, and CD123 as targets
have been very successful in treating hematologic malignancies,
while prostate-specific membrane antigen (PSMA) CAR-T or EGFR-
vIII CAR-T against solid tumours have been less successful [45-48].
CD151 as surface oncoprotein/TAA might be a novel tumour target
for CAR-T immune treatment.

In summary, the peptide vaccines derived from IR stress-
induced oncoprotein/TAA could prime host anti-tumour immunity
and effectively reduce tumour growth and metastasis by increasing
functional CD8TIFNy ™ T cell infiltration/cytotoxicity and suppress-
ing MDSCs. This approach may expand immunotherapy strategies
and sensitise patients to immune checkpoint inhibitors.
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