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We discuss the behavior of statistical models on a novel class of complex “Hanoi” net-
works. Such modeling is often the cornerstone for the understanding of many dynamical
processes in complex networks. Hanoi networks are special because they integrate small-
world hierarchies common to many social and economical structures with the inevitable
geometry of the real world these structures exist in. In addition, their design allows exact
results to be obtained with the venerable renormalization group (RG). Our treatment will
provide a detailed, pedagogical introduction to RG. In particular, we will study the Ising
model with RG, for which the fixed points are determined and the RG flow is analyzed. We
show that the small-world bonds result in non-universal behavior. It is shown that a diversity
of different behaviors can be observed with seemingly small changes in the structure of
hierarchical networks generally, and we provide a general theory to describe our findings.

Keywords: renormalization group, critical phenomena, complex networks, Ising model, Hanoi networks

1. INTRODUCTION
The renormalization group (RG; Wilson, 1971; Wilson and Fisher,
1972) is by now a method found in any“classical”statistical physics
text book (Goldenfeld, 1992; Plischke and Bergersen, 1994). It
has allowed to categorize broad classes of equilibrium systems
into an enumerable set of universality classes, each characterized
by discrete features, such as their dimension and the symmetries
adhered to by their Hamiltonians (Goldenfeld, 1992; Plischke and
Bergersen, 1994). Such universality is made possible through the
property of “scaling” that is an inherent feature near phase tran-
sitions (Kadanoff, 1966), which these systems undergo in certain
regions of the space spanned by their physical parameters (cou-
plings). Scaling invariance entails that system-specific details on
the microscopic level become irrelevant, as the behavior over many
orders in the range of the interactions become self-similar. In
this framework, analogous behavior in a surprisingly wide set
of phenomena, such as the condensation of fluids, spontaneous
magnetization of materials, or the generation of particle mass in
the early universe, can be described in a single effective theory;
certainly a major intellectual accomplishment of modern physics
across all fields (Goldenfeld, 1992).

In the past 15 years, statistical physicist have increasingly
applied the ideas of critical phenomena and scaling to problems
outside of the immediate material realm, in newly emerging fields
such as “Econophysics,” “Sociophysics,” etc. (Mantegna and Stan-
ley, 1999; Barabasi, 2003; Kleinert, 2004). The considered systems
typically feature a large number of interacting agents sharing a
finite set of intrinsic properties on account of which they inter-
act. But unlike in a Euclidean defined arrangement of “actors” in a
physical system, such as atoms in a material, these systems possess a
more complex network of mutual interactions (which may even be
directed; Watts and Strogatz, 1998; Boccaletti et al., 2006; Doro-
govtsev et al., 2008). Thus, in many respects, the study of these

phenomena is inseparable from the understanding of the geome-
try of networks (Barthelemy, 2011). One major accomplishment
of these investigations is the realization that many of the networks
that are engineered by some natural or human activity themselves
exhibit emergent complex properties, for instance, as found in the
scale-free degree distribution of the internet.

But while these networks, or dynamical systems on them, may
behave critically, many of these phenomena were soon found to
be non-universal. For instance, in the preferential attachment
model for the world-wide net (Barabasi and Albert, 1999), the
value of the scaling exponent is tied to microscopic details of
the attachment rule. In this sense, it would seem unlikely that
any sweeping classification scheme could be devised to catego-
rize this amorphous pile of particulars. Here, we will attempt a
foray into such a scheme, albeit limited to those classical equi-
librium phenomena, but on a large set of different networks. We
suspect that our discussion might help to explain, for example,
a number of similar observations of traditionally obscure criti-
cal behaviors, such as infinite-order transitions, in very different
network models, in and out of equilibrium (Dorogovtsev et al.,
2008).

Our classification scheme is best introduced with a variety of
hierarchical networks on which RG is exact, and the critical phe-
nomena can be studied in great detail. Metric version of such
networks, such as that introduced in the Migdal-Kadanoff RG,
provide the classical text-book examples of RG and universal-
ity (Berker and Ostlund, 1979; Goldenfeld, 1992; Plischke and
Bergersen, 1994; Hinczewski and Berker, 2006). But in the advent
of complex networks, many hierarchical designs with non-metric
(i.e., small-world or scale-free) properties have been devised and
studied (Andrade et al., 2005; Hinczewski and Berker, 2006;
Hinczewski, 2007; Boettcher and Goncalves, 2008; Boettcher et al.,
2008). Our study shows that criticality in many of these models
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Boettcher and Brunson Renormalization group for critical phenomena

(percolation, Ising, etc.) is definitely non-universal but falls into a
few (here, three) generic regimes, each characterized by its degree
of singularity in, say, the correlation length at the critical point
(Boettcher and Brunson, 2011). One of these regimes is indeed an
infinite-order transition reminiscent of that described by Berezin-
skii and Kosterlitz and Thouless (BKT; Goldenfeld, 1992; Plischke
and Bergersen, 1994). It is flanked on one side by a transition
with a “weaker,” algebraic divergence, similar to the classical ones
of second order (but still non-universal), and on the other by a
regime with a fully essential singularity. These regimes are defined
through the relative strength of (non-Euclidean) long-range or
small-world bonds in one and the same network, with clear demar-
cations between these regimes as a function of that coupling
strength.

In the following Section 2, we describe the Hanoi networks.
The analysis of the phase diagrams and the RG flow for the Ising
ferromagnet on these networks is discussed in Sections 3 and 4.
In Section 5, we introduce families of interpolating networks to
reveal a more comprehensive set of regimes, each with its own
characteristic type of phase transition, and we conclude with a
discussion of our results in their implications in Section 7.

2. GEOMETRY OF THE HANOI NETWORKS
Each of the Hanoi network possesses a simple geometric backbone,
a one-dimensional line of sites n, 0 ≤ n ≤ N = 2k (k → ∞). Each
site is connected to its nearest neighbor, ensuring the existence of
the 1d-backbone. To generate the small-world hierarchy in these
networks, consider parameterizing any integer n (except for zero)
uniquely in terms of two other integers (i, j), i ≥ 0, via

n = 2i (
2j + 1

)
. (1)

Here, i denotes the level in the hierarchy whereas j ≥ 0 labels
consecutive sites within each hierarchy. For instance, i = 0 refers
to all odd integers, i = 1 to all integers once divisible by 2 (i.e., 2,
6, 10,. . .), and so on. Depending on its level of the hierarchy, any
site has also small-world (i.e., long-range) bonds to more-distant
sites along the backbone, according to some deterministic rule.
For example, we obtain a 3-regular network HN3 by connecting
also 1 to 3, 5 to 7, 9 to 11, etc., for i = 0, next 2 to 6, 10 to 14, etc.,
for i = 1, and 4 to 12, 20 to 28, etc., for i = 2, and so on, as depicted
in Figure 1.

While HN3 (and HN4 Boettcher et al., 2008) are of a fixed, finite
degree, we introduced here convenient generalizations of HN3 that
lead to new, revealing insights into small-world phenomena. First,
we can extend HN3 in the following manner to obtain a new planar
network of average degree 5, hence called HN5: In addition to the
bonds in HN3, in HN5 we also connect all even sites to both near-
est sites within the same level of the hierarchy i(≥1). The resulting
network remains planar but now sites have a hierarchy-dependent
degree, as shown in Figure 2. It is easy to show that the average
shortest path between any two sites increases ∼ √

N in HN3, and
logarithmically in HN5, with system size N.

3. ISING FERROMAGNET ON HN3
The RG consists of recursively tracing out spins level-by-level in
the hierarchy (Boettcher et al., 2008). In terms of Eq. (1), we

FIGURE 1 | Depiction of the 3-regular network HN3 on a semi-infinite

line, here drawn suggestively as a model for hierarchically organized

transport. Many goods and services are distributed in a small-world
hierarchical manner before they get delivered in a real-world geometry.

FIGURE 2 | Depiction of the planar network HN5, comprised of HN3

(black lines) with the addition of further long-range bonds

(green-shaded lines). Note that sites on the lowest level of the hierarchy
have degree 3, then degree 5, 7, etc., comprising a fraction of 1/2, 1/4, 1/8,
etc., of all sites, which makes for an average degree 5 in this network.

start by tracing out all sites with n odd, i.e., i = 0, then those
n which are divisible by 2 only once, i.e., i = 1, and so on. We
can always relabel all sites n after any RG step by n → n/2, so
that we trace out the respective odd-relabeled sites at any level.
It is apparent, for instance from Figure 1, that odd-labeled sites
are connected to their even-labeled nearest neighbors on the
backbone, say, by a coupling K 0(=βJ 0). At any level, each odd-
labeled site xn ± 1 is also connected to one other such site xn∓1

across an even-labeled site xn with n = 2(2j + 1) that is exactly
once divisible by 2. Let us call that coupling K 1(=βJ 1). The
basic RG step is depicted in Figure 3 and consists of tracing
out the two sites xn ± 1 neighboring the site xn for all j with
n = 2(2j + 1).

We can section the Ising Hamiltonian

−βH =
2k−2∑
n=1

(−βHn) + R (K2, K3, . . .) , (2)
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FIGURE 3 | Depiction of the (exact) RG step for the Ising model on

HN3. The step consists of tracing out odd-labeled variables xn ± 1 in the top
plot and expressing the renormalized couplings (L′, K ′

0) on the bottom in
terms of the old couplings (L, K 0, K 1). Note that the original network in
Figure 1 does not contain couplings of type (L, L′), but that they certainly
become relevant during the process.

where R contains all coupling terms of higher level in the
hierarchy, and each sectional Hamiltonian is given by

−βHn = K0 (xn−2xn−1 + xn−1xn + xnxn+1 + xn+1xn+2)

+ K1xn−1xn+1 + L0 (xn−2xn + xnxn+2) + 4I ,
(3)

where (K 0, K 1, L) are the unrenormalized couplings defined in
Figure 3 and I is a constant that fixes the overall energy scale
per spin. (There are effectively 4 spins involved in each graph-let,
as those at each boundary are equally shared with neighboring
graph-lets.) While couplings of the type L0 between next-nearest
even-labeled neighbors emerges that are not part of the network
initially in HN3, they do emerge during the RG step (other-
wise the system of recursion equations would not close), see
Figure 3.

To simplify the analysis, we introduce new variables similar to
inverse “activities” (Plischke and Bergersen, 1994),

C = e−4I , κ = e−4K0 , λ = e−4L0 , μ = e−2K1 , (4)

which ensure that the RG flow only contains algebraic functions
and, for the ferromagnetic model, remains confined within the
physical domain 0 ≤ κ , λ, μ ≤ 1. Thus, we rewrite Eq. (3) as

e−βHn = C−1κ
− 1

4 (xn−2xn−1+xn−1xn+xnxn+1+xn+1xn+2)

λ
− 1

4 (xn−2xn+xnxn+2)μ
− 1

2 xn−1xn+1 .
(5)

Tracing out the odd-labeled spins, we have to evaluate
∑

{xn−1=±1}

∑
{xn+1=±1}

e−βHn

= C−1μ
− 1

2 λ
− 1

4 (xn−2xn+xnxn+2)[
κ

− 1
4 (xn−2+2xn+xn+2) + μκ

− 1
4 (xn−2−xn+2)

+μκ
1
4 (xn−2−xn+2) + κ

1
4 (xn−2+2xn+xn+2)

]

= (
C ′)− 1

2
(
λ′)− 1

4 xn−2xn+2
(
κ ′)− 1

4 (xn−2xn+xnxn+2)

(6)

for the remaining spins in terms of the renormalized quantities C ′,
κ ′, λ′. Of the eight possible relations resulting from the combi-
nations xn − 2, xn, xn + 2 = ± 1, only three are independent. After
some algebra, we extract from those the RG recursions:

κ ′ = κλ
2 (1 + μ)

1 + 2μκ + κ2
,

λ′ = (1 + κ)2 (1 + μ)

2
(
1 + 2μκ + κ2

) ,

C ′ = C2 κμ

√
2 (1 + κ) (1 + μ)

3
2

√
1 + 2μκ + κ2

.

(7)

Note that for couplings in higher levels of the hierarchy it is
K ′

i = Ki+1 for i ≥ 1; correspondingly, these couplings, and hence,
μ, will not renormalize. Instead, they retain their “bare” value μ2

determined by the temperature, kT /J = − 2/ ln μ. In this sense, we
will use μ as a measure of temperature throughout.

Only half of the contribution to the renormalized energy scale
is originating with the sectional Hamiltonian in Eq. (5), since at
the next level two such sections are combined into one, making
C ′ ∝ C2. While we do not consider the recursions for C in this
paper, they are essential to reconstruct the free energy for each
system, and will be analyzed elsewhere (Boettcher and Brunson,
unpublished).

Equation (7) provide recursions order-by-order in the RG for
the evolution of the effective couplings characterizing increasingly
larger scales of the network. To facilitate this RG flow, we need to
specify initial conditions for a particular physical situation real-
ized in the unrenormalized, bare network. Here, we restrict our-
selves to networks with uniform bonds (although many interesting
choices are conceivable, such as distance-dependence; Kotliar et al.,
1983; Katzgraber, 2003; Hinczewski and Berker, 2006). For HN3
this implies that we chose J = 1 as our energy scale, such that
Ki = βJ = β and I = L0 = 0 initially, or in terms of Eq. (4);

C (0) = λ(0) = 1, κ(0) = μ2 = e−4β . (8)

Searching for fixed points K ′
0 = K0 = K ∗

0 and L′ = L = L∗, i.e.,
κ ′ = κ = κ∗ and λ′ = λ = λ∗ in Eq. (7), immediately provides the
trivial, high-temperature solution κ∗ = λ∗ = 1, i.e., K ∗

0 = L∗ = 0.
Further analysis yields only a line of (unstable) strong-coupling
fixed points,

κ∗ = 0, λ∗ = 1 + μ

2
, (9)
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extending from λ∗ = 1
2 for low temperatures, μ = 0, to λ∗ = 1 for

T → ∞, where μ = 1. Even at T = 0, only the renormalized back-
bone bonds K 0 provide strong coupling, the emerging long-range
bonds L0 only exert limited coupling strength.

Local analysis near the fixed points with the Ansatz

κn ∼ κ∗ + εn , λn ∼ λ∗ + δn , εn , δn � 1 (10)

reveals that the high-temperature fixed point is always stable and
corrections decay exponentially, where the exponential contains a

factor of 2
n
2 = √

N . At the low-temperature line of fixed points
in Eq. (9) we find

εn ∼ ε0 (1 + μ)2n , δn ∼ 1 − μ

1 + μ
ε0 (1 + μ)2n , (11)

which is divergent for all T > 0, i.e., 0 < μ ≤ 1, making the fixed
point at T = 0 unstable. For any fixed point, there is no linear
expansion possible that would yield critical exponents. For the
initial conditions in Eq. (8), corresponding to uniform couplings
throughout the unrenormalized network, the RG flow always
evolves to the high-temperature fixed point. Thus, the ferromagnet
on this network behaves similar to a 1d Ising model.

4. ISING FERROMAGNET ON HN5
As shown in Section 2, HN5 is basically an extension of HN3,
created by adding a new layer of links to each level of the hier-
archy. As is apparent from the foregoing discussion in 3, these
additions correspond precisely to new renormalizable operators
(here, the bonds L) that inevitably emerge during the RG of
HN3, see Figure 3. In HN5, these new operators are simply
deemed an original feature of the network, hence, maintaining
the RG as an exact procedure. Consequently, the RG itself hardly
changes, see Figure 4; it merely differs by one extra link in the
graph-let, L1, compared to that for HN3 in Figure 3. In Eq.
(3), it only adds the term L1xn − 2xn + 2 to the sectional Hamil-
tonian and, like L0 itself, L1 does not get traced over in the
calculation in Eq. (6). We can introduce these new bonds as yet
another free, non-renormalizing coupling in the RG and choose,
to wit,

L1 = yK1, i.e. e−4L1 = μ2y . (12)

This merely contributes a factor of μ
− y

4 xn−2xn+2 to the
unprimed side of Eq. (6), which correspondingly alters only the
recursion for λ′ in Eq. (7) by a factor of μ2y . Otherwise using the
same definitions as in Section 3, we obtain the RG recursions for
the Ising ferromagnet on HN5:

κ ′ = κλ
2 (1 + μ)

1 + 2μκ + κ2
,

λ′ = μ2y (1 + κ)2 (1 + μ)

2
(
1 + 2μκ + κ2

) ,

C ′ = C2 κμ

√
2 (1 + κ) (1 + μ)

3
2

√
1 + 2μκ + κ2

.

(13)

FIGURE 4 | Depiction of the (exact) RG step for the Ising model on

HN5. This step is identical to that for HN3 in Figure 3 aside from the extra
link L1 spanning between xn − 2 and xn + 2 (top), which contributes to the
renormalization of L′

0 (bottom).

Accordingly, due to the bare existence of the L1 bond, we will
have to change the initial conditions from Eq. (8) to

C (0) = 1, κ(0) = μ2 = e−4β , λ(0) = μ2y . (14)

Analyzing these recursions for fixed points, κ ′ = κ = κ∗ and
λ′ = λ = λ∗, we find that the addition of the extra long-range bond
has eliminated the high-temperature fixed point found in HN3. At
low temperatures, we find similar to Eq. (9) in HN3 a line of fixed
points

κ∗ = 0, λ∗ = μ2y

2
(1 + μ) , (15)

which here extends over the entire domain for the long-range
bonds, 0 ≤ λ∗ ≤ 1 for 0 ≤ μ ≤ 1. Note that although y represents a
continuous interpolation between HN3 and HN5, there is a singu-
lar limit at y → 0 toward an isolated point corresponding to HN3,
see Eq. (9). In the following, we only treat the case of couplings
that are homogeneous throughout the unrenormalized network,
y = 1. Consideration of the rich set of transitions occurring for
the family of networks parameterized by interpolating 0 < y ≤ 1 is
deferred to Section 5.

Dividing out the κ∗ = 0-solution, further analysis of Eq. (13)
for y = 1 reveals yet another line of fixed points given by

κ∗ = 1

2

[
− (1 − μ) μ +

√
(1 + μ)

(
μ3 − 3μ2 + 8μ − 4

)]
,

λ∗ = μ

4

[
2 − μ + μ2 +

√
(1 + μ)

(
μ3 − 3μ2 + 8μ − 4

)]
,

(16)
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which can be expressed most simply in closed form as

λ∗ = 1

2

[
κ∗ − 1 +

√
5 + 2κ∗ + 5(κ∗)2 + 4(κ∗)3

]
(17)

by eliminating μ. As we will see, these relations lead to physical
fixed points only within a limited range of the temperature μ. The
phase diagram for the backbone coupling κ in HN5 at y = 1 can
be found in Figure 5. Blue arrows indicate the RG flow for the
initial conditions in Eq. (14), which starts on the diagonal, repre-
senting all-equal bonds for the homogeneous network. For these
initial conditions, the flow always evolves toward smaller values of
κ , i.e., stronger coupling. But there is a notable transition where
the attained fixed-point jumps from the low-temperature branch
in Eq. (15) characterized by κ∗ = 0, i.e., a solidly frozen backbone,
to the branch given Eq. (17) on which κ∗ (as well as λ∗) becomes
finite. We obtain this transition point by evaluating Eqs. (16, 17)
for κ∗ = 0, which yields λ∗ = 1/2φ = 0.309017. . ., giving a critical
temperature of

μc = 1

φ
, or

kTc

J
= − 2

ln μc
= 4.15617384247 . . . , (18)

where φ =
(√

5 + 1
)

/2 = 1.6180339887 . . . is the “golden ratio”

(Boettcher and Goncalves, 2008). For bare couplings at this tem-
perature, marked by a blue dot in the (y = 1)-plot of Figure 5,
the RG flow marginally reaches the strong-coupling limit. In this
network, for these initial conditions the RG flow never reaches
an unstable fixed point such as the unstable portion of Eq. (15),
marked by a red-shaded line in Figure 5. As we will see below, this
situation will change when we weaken the impact of long-range
couplings.

5. INTERPOLATION BETWEEN HANOI NETWORKS
We have already observed in the construction of HN5 in Section
4 that it is easy to promote the L-couplings that inevitably emerge
during the RG to be associated with an actual bond in the network.
Here,we will fully exploit this fact to obtain a one-parameter family
of problems with various regimes of phase behaviors. In particu-
lar, we discover transitions between such regimes as a function of
the parameter that will allow us to clarify the connections between
the diverse set of behaviors that we have discovered in the previous
section.

In Section 4, we argued for the introduction of small-world
bonds with couplings Li and developed the RG recursions in (13)
assuming a relative strength of these couplings to those germane to
HN3 of the form in Eq. (12). Here, we will now consider the behav-
ior that results from varying the strength parameter y between the
two extremes already explored, y = 0 for HN3 in Section 3 and
y = 1 for HN5 in Section 4.

Analyzing these recursions in Eq. (13) for fixed points, we
already found the low-temperature fixed-point line in Eq. (15).
Dividing out this κ∗ = 0-solution, further analysis of Eq. (13)
reveals a line of fixed points,

κ∗ = 1

2

[
μy (1 + μ) − 2μ ±

√
Dy (μ)

]
,

λ∗ = μy

4

[
2 (1 − μ) + μy (1 + μ) ±

√
Dy (μ)

]
,

(19)

FIGURE 5 | Plot of κ∗ in Eq. (19) as a function of μ2 for y as defined

in Eq. (12). The generic cases are represented by y = 0.2 (top), y = 0.45
(middle), and the case of HN5 discussed in Section 4 for y = 1 (bottom), for
which the branch-point (BP) has “sunset” out of the physical regime. In all
cases, the dashed, green-shaded line indicates the initial conditions (IC) for
the RG flow in Eqs. (13, 14), κ (0) = μ2. For μ fixed, the RG flow must
proceed vertically, either up or down, to the nearest stable line of fixed
points. For low y (top), the IC crosses the unstable branch below BP (see
enlargement in the inset) which then can not be reached by the flow. Once
the IC cross above BP (middle), the flow must pass BP, unless BP sunsets
(bottom). For each case, the generic divergence is indicated for the
correlation length ξ at T →Tc, as derived in Section 6.
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abbreviating the discriminant

Dy (μ) = (1 + μ)
[
μ2y (1 + μ) − 4

(
1 − μy) (1 − μ)

]
. (20)

For y → 0, this solution degenerates into the high-temperature
fixed point of HN3. But for any finite y, these lines of fixed points
are non-trivial functions of μ, as depicted for κ∗(μ2) in Figure 5.
The dominant feature in these plots is the root-singularity in κ∗
with a branch-point-separating the upper stable and lower unsta-
ble line of fixed points. Essentially, three distinct generic regimes
can be discerned: (1) If the branch-point happens to lie below
of the physical regime, we observe a phase transition without
access to any unstable point (see bottom of Figure 5); a crit-
ical point akin to that for HN5 at y = 1 analyzed in Section 4
arises. If the branch-point rises into the physical regime, here for
y < yc = [ln(3/2)/ln2] = 0.584963. . ., then depending on whether
the initial conditions of the RG flow cross the critical line below
or above the branch-point, we find (2) a transition seemingly of
finite-order on intercepting the unstable lower branch (see top
of Figure 5) for which the RG flow never accesses the branch-
point singularity. If, in turn, the initial conditions cross above,
(3) a BKT-like transition results because the RG flow now must
pass the singularity (see middle of Figure 5), as we will show
below.

6. GENERAL CLASSIFICATION OF CRITICAL REGIMES
Instead of the rather tedious analysis of the critical regimes result-
ing from Eq. (19) for a coupled set of variables (which can be
found in Boettcher and Brunson, 2011), we rather take a step back
and assess the larger picture here. It turns out to be easy to devise
a simple theory1 that reproduces all the previously found fea-
tures in a generic way, thereby demonstrating the generality of this
classification, not only accounting for other hierarchical networks
(Andrade et al., 2005; Hinczewski and Berker, 2006; Hinczewski,
2007; Boettcher and Goncalves, 2008; Boettcher et al., 2008) but
also for any physical system described by parameter-dependent
renormalization group equations. Even systems on complex net-
works that have not been subjected to an RG treatment have been
found to exhibit the peculiar infinite-order transitions found here
(Dorogovtsev et al., 2008), and may eventually be related to this
classification.

It is sufficient to consider the RG recursion for a single cou-
pling, say, κn with some control parameter μ2, defined as in Eq.
(4), for instance. A conventional RG treatment (Goldenfeld, 1992;
Plischke and Bergersen, 1994) for a system on a regular lattice
leads to recursions that only depend on the evolving coupling
itself. There, any parameter dependence, such as on the temper-
ature for spin models or on the bond density for percolation
problems, is limited to the initial conditions of the RG, which
define the particular model being studied; they do not affect
the properties near the fixed points. In contrast, inserting such
a dependence influences the location of fixed points as well as
the behavior near them. As the example displayed in Figure 5

1Our approach is similar in spirit to Landau’s description of a mean-field phase tran-
sition found in any text book on critical phenomena (Goldenfeld, 1992; Plischke and
Bergersen, 1994).

suggests, even the very fixed point that controls the dynamics
may depend on the initial conditions, violating any conventional
sense of universality. Yet, if we assume that the most elementary,
generic fixed-point topology that deviates from the conventional
picture is represented by a root branch-point2, we can classify all
observed critical phenomena into just a few regimes. To wit, we
write

κn+1 = [
κb + 1 + f (μ)

]
κn + 2κbκ

2
n − κ3

n . (21)

This model of a generic RG recursion is cubic to ensure that,
after extracting the trivial strong-coupling fixed point κ̄ ≡ 0 3, the
remaining fixed-point equations produce a root branch-point,

κ̄± = κb ± √
f (μ), (22)

revealing the undetermined constant κb as the coupling strength
found at the branch-point, which we may choose freely to
place the branch-point inside (0 ≤ κb ≤ 1) or outside the phys-
ical regime. (Regarding Section 5, we could view κb = κb(y) as
the quantity that specifies the family of models considered.)
The function f (μ) captures the minimal parameter dependence
of the model, as expressed through the μ-dependence of both
branches of the fixed points κ̄± (μ) . Here, f (μ) is a monot-
one rising function on the physical interval 0 ≤ μ ≤ 1, which
may contain a zero, f (μb) = 0. Generically, it would have a sim-
ple Taylor expansion near μb, i.e., f (μb ± 	μ) ∼ ±	μf ′(μc) for
small 	μ.

In light of Figure 5, the first two panels correspond to the
case where both, κb and μb, are in the physical regime with a
visible branch-point (although the RG recursions there are far
more complicated); the last panel represents κb ≤ 0. The decisive
difference between those first two panels is whether the loca-
tion of the branch-point is above or below the line of initial
conditions. Depending on the model, the line of initial condi-
tions could be any monotone function of μ, possibly resulting
in different critical behaviors in the way they pass by identi-
cal branch-points, but it is more convenient to imagine this
line as a simple diagonal in the (μ2, κ)-plane and move the
branch-point instead. Within the physical regime, the lower
fixed-point branch κ̄−(μ) is always unstable while the upper
κ̄+(μ) remains stable, as a local analysis along each branch
readily reveals. Stable and unstable fixed-point lines merge at
the branch-point, where particularly interesting phenomena can
arise.

In the case that long-range, hierarchical effects are weakest,
as for the first panel in Figure 5, the branch-point is far on the
right, and may even be outside to the right and/or above of the
physical regime. Then, the initial conditions merely intersect the
unstable branch κ̄−(μ) at some point μc. The RG flow (ver-
tical blue arrows in Figure 5) for 0 ≤ μ < μc advances toward

2Of course, the simplest deviation from constant fixed points that are entirely inde-
pendent of the parameter would be a linear dependence. However, such dependence
can be subsumed into our model (by moving the branch cut far outside the physical
domain, for instance).
3For the weak-coupling fixed point it is sufficient to require that f (μ) is chosen such
that κ̄+(μ = 1) = 1 in (Eq. 22).
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strong coupling at κ̄ ≡ 0 , while for μc < μ ≤ 1 it flows toward
κ̄+(μ) , making μc the critical point. Note that κ̄+(μ) → 1 only
for μ → 1, reflecting the physical phenomenon of “patchiness”
(Boettcher et al., 2009): hierarchical, long-range couplings enforce
some semblance of order between otherwise uncorrelated (sub-
extensive) patches of locally connected degrees of freedom even in
the disordered regime; full disorder is often only reached at infi-
nite temperature, dilution, etc. Near μc, all the critical dynamics
of the system is then solely determined by the local properties of
the unstable critical point κ̄−(μc ) that has be (non-universally)
selected by the particular system via the initial conditions. As
in a conventional system, local analysis (Goldenfeld, 1992; Plis-
chke and Bergersen, 1994) similar to Eq. (10) but near κ̄−(μc )

with an Ansatz κn ∼ κ̄− + εn for εn � 1 on Eq. (21) provides,
e.g., the scaling exponent for the divergence of the correlation
length,

ξ ∼ |μ − μc |−ν , (23)

except that the exponent is non-universal, ν = ν(μc ) =
1/ log2(1 + 2κ̄−

√
f ) evaluated at the crossing point μc

(Boettcher and Brunson, 2011). The RG flow in this case
never passes sufficiently near the branch-point singularity to be
affected.

The other extreme, when long-range couplings dominate, leads
to a picture similar to the last panel of Figure 5 but with
κb < 0. No unstable fixed points can be reached for any choice
of (physical) initial conditions. The RG flow always advances
to the next best stable fixed point, either at strong coupling
κ̄ ≡ 0 for 0 ≤ μ < μc, or toward patchy order at κ̄+(μ) for
μc < μ ≤ 1, making μc again the critical point. At μc, where
both lines of stable fixed-points intersect, we find an expo-
nentially divergent correlation length to signal the phase tran-
sition. The Ansatz κn ∼ κ̄+ + εn for εn � 1 on Eq. (21)
provides

εn+1 ∼
(

1 − 2κ̄+
√

f
)

εn . (24)

Since κ̄+ (μc + 	μ) ∼ 	μ f ′(μc )/
√

4f (μc ) from expand-
ing Eq. (22) near κ̄+(μc ) = 0 , we get

εn ∼ [
1 − 	μ f ′(μc )

]n
ε0 ∼ e−n	μ f ′(μc ) = e− n

n∗ . (25)

Thus, the correlation length diverges as

ξ (μ) ∼ 2n∗ = e
const

|μ−μc | , μ → μc . (26)

Again, the RG flow does not pass the branch-point singularity,
as it is located outside (below) the physical domain.

Only in the intermediate regime, as represented by the middle
panel of Figure 5, does the RG flow for some critical μc pass by the
branch-point singularity, which then controls the critical behavior
in a novel way. As before, for 0 ≤ μ < μc the flow reaches strong
coupling at κ̄ ≡ 0 and patchy order at κ̄+(μ) for μc < μ ≤ 1. A

local analysis of the flow just below the critical point,μ ∼ μc − 	μ,
with κn ∼ κb(1 + εn) for εn � 1 on Eq. (21) yields

εn+1 − εn = 	εn

	n
∼ −	μ − κ2

b ε2
n . (27)

This relation exhibits a boundary layer, i.e., in the limit 	μ → 0
the solution drastically changes behavior. With the methods of
Bender and Orszag (1978), we can transform into the “inner”
boundary region by rescaling εn → ηεn and n → δn applied to Eq.
(27),

	εn

	n
∼ − δ

η
	μ − (δη) κ2

b ε2
n , (28)

which becomes balanced for δ ∼ 1/η ∼ 1/
√

	μ. Accordingly, the
characteristic width of the boundary layer scales with

n∗ ∼ 1√
μc − μ

, (29)

which by Eq. (26) leads to the divergence in the correlation length
characteristic of BKT,

ξ (μ) ∼ e
const√
μc −μ , μ → μ−

c . (30)

Clearly, the physical origin of this singularity is not even
remotely related to an actual BKT transition. In fact, instead of
its rarity, confined to very particular lattice models, we may find it
to be one of a few generic types of transition in networks.

7. CONCLUSION
We have analyzed the fixed-point structure of an Ising ferromagnet
on a set of Hanoi networks with an exact real-space renormaliza-
tion group. Using interpolating families of such networks, with
the relative coupling strength between backbone and small-world
bonds as the interpolation parameter, we reveal a number of
regimes with distinct critical behaviors. While in each such regime
the critical transition has non-universal features, the characteris-
tics of the transition in each one has generic, robust features. For
increasing strength, we observe that the divergence in the corre-
lation length changes from a non-universal power-law |x |−v , to

a BKT-like essential singularity e1/
√

x , then to a full singularity
e1/x , on approach to the critical point x ∼ |μc − μ| → 0. We trace
the changes from one regime to the next in terms of the analytic
structure of the RG flow. Finding an enumerable range of such
characteristics suggest a possible classification of critical behavior
of statistical models in networks generally, for which we propose
a general description. Similar critical properties of the kind found
here have also been observed in percolation (Berker et al., 2009;
Boettcher et al., 2009; Nogawa and Hasegawa, 2009; Hasegawa
et al., 2010), for example. The existence of entire regimes that
exhibit essential singularities in the divergence of the correlations,
as we have found here, might explain the surprising prevalence
of typically quite rare BKT-like transitions in otherwise unrelated
network models (Dorogovtsev et al., 2008). In the analysis of, say,
social interaction networks, which have been found to have a hier-
archical structure (Trusina et al., 2004), it is therefore essential to
be aware of the novel phenomena describe here.
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