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Enhanced CD4+ and CD8+ T 
cell infiltrate within convex 
hull defined pancreatic islet 
borders as autoimmune diabetes 
progresses
Alexander J. Dwyer1, Jacob M. Ritz2, Jason S. Mitchell3, Tijana Martinov4, 
Mohannad Alkhatib1, Nubia Silva1, Christopher G. Tucker1 & Brian T. Fife  1*

The notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, 
the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with 
standard approaches. Optical microscopy is an important and widely used method to evaluate 
immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression 
or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited 
by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, 
attempts at quantitative measurements require significant time for manual analysis and often 
involve sophisticated and expensive imaging software. In this study, we developed and illustrate 
here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet 
area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this 
end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet 
areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing β cell and 
glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the 
freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our 
image analysis procedure allows for direct quantification and statistical determination of islet area 
and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet 
areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated 
with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese 
diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells 
infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic 
NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss 
of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent 
quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be 
combined with other markers of inflammation or activation in future studies.

T cells in type 1 diabetes.  Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-medi-
ated destruction of the insulin-producing β cells in the pancreatic islets of Langerhans1. Both CD4+ and CD8+ T 
cells are important for the progression of diabetes in mice and humans2–6. CD8+ T cells are crucial for mediating 
direct islet killing, whereas CD4+ T cells may be more important for disease initiation7,8. Removal or complete 
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absence of T cells in mouse models prevents diabetes, and the adoptive transfer of autoreactive T cells alone 
causes diabetes9–11. Regulatory CD4+ T cell (Treg) interactions are also pathologically culpable given that T1D 
donor Tregs exhibit decreased autologous suppressive capacity relative to HLA- and age-matched controls12–18. 
Furthermore, CD4+ T cells have a critical role in both augmenting CD8+ T cell responses and undergoing cog-
nate interaction with B cells leading to autoantibody production19.

Diabetes in humans and the non-obese diabetic (NOD) mouse occurs spontaneously1. In NOD mice, immune 
cell infiltration of the pancreas first appears at approximately 4-weeks of age with the first observable immune 
cells surrounding the islet (peri-insulitis)20,21, while progression to diabetes and loss of normal glycemic control 
occur after 10-weeks of age2,3. Given that peri-insulitis dominates before intra-islet insulitis and precedes detect-
able loss of β cell mass by approximately 8 weeks20, the distribution of T cells within and outside the islet offer 
insight into T1D disease progression22. To adequately assess the spatial contributions of T cells to the autoimmune 
process in T1D, there is a need for quantitative imaging methodologies that are expeditious, facile and unbiased.

Current islet image analysis approaches.  Multiple imaging modalities are currently available to study 
the in situ distribution of both human and murine pancreatic autoreactive T cells. Among these, light micros-
copy visualizing hematoxylin and eosin (H&E) stained fixed/sectioned pancreas tissue is commonly used given 
its ability to easily distinguish normal tissue from islets with infiltrating immune cells. However, this method has 
multiple limitations. First, H&E staining prevents identification of immune cell subtypes. Second, H&E micros-
copy relies upon investigator-assigned insulitis scores that classify islet infiltration into one of five groups based 
upon the perceived proportion of the islet destroyed8. Although analysis of insulitis scores assigned to each islet 
allows for the detection of large differences in islet inflammation, more subtle variations can be challenging to 
identify. Third, visually assessing the proportion of an islet destroyed by inflammation requires the analyzer to 
reliably determine precise borders between the islet and surrounding pancreatic exocrine tissue, which becomes 
more difficult as infiltration progresses and islets are further destroyed. In older NOD mice, some islets visual-
ized as “insulitis-free” may in fact represent late stage pathology of post-insulitic “pseudo-islets” containing only 
non-β endocrine cells after all beta cells have been targeted and destroyed8. An alternative imaging approach 
uses fluorescent antibody staining of specific cell subsets to visualize immune cell infiltrate using epifluorescent 
wide-field or confocal microscopy. These fluorescent microscopy techniques provide data that can be analyzed 
with traditional insulitis scoring procedures, much like H&E qualitative analyses described above8. In addition, 
pancreas sections can be evaluated by quantifying fluorescent signals, but current strategies require cumber-
some manual analysis or utilize sophisticated imaging software that can be prohibitively expensive. Currently, 
no unbiased analytical approach exists to rapidly examine pancreatic islet immune infiltration based on accurate 
determination of conspicuous islet borders without the use of advanced imaging software.

Convex hull methodology.  In this current study, we introduce an automated and largely unbiased analyti-
cal technique for the efficient quantification of immune cell infiltrate and peri-insulitis with a focus on CD4+ 
and CD8+ T cells. Given that murine islets possess glucagon-secreting α cells that predominantly encircle the 
islet perimeter and are not specifically targeted by the autoimmune response23, our approach uses glucagon 
staining to better detect islet borders in islets that have already undergone β cell destruction. We demonstrate 
that non-infiltrated islets can be precisely modeled by overlaying minimal area convex polygons (convex hulls) 
that entirely capture the sum of insulin (β cell) and glucagon (α cell) signals to distinguish individual contribu-
tions of immune cell subtypes during inflammation either within or outside the islet border. By performing this 
entire analysis using the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing 
package24,25, our approach utilizes a macro that is accurate, reliable, practical and free. We suggest that identify-
ing the location of immune infiltrate relative to the islet boundary may have implications regarding the progres-
sion of disease, the efficacy of diabetes-ameliorating therapeutics and the ability of immune cells to traffic to 
the site of autoimmune invasion. Importantly, this methodology can be easily adapted to other immunological 
markers that identify immune cells beyond T cell subsets in other autoimmune diseases or at other tissue sites.

Results
Macro development and image analysis:.  Overview.  Before demonstrating application of our convex 
hull approach to determine inflammation in NOD islets through T1D progression, we first present an overview 
of the macro to show its accessibility. The quantitative imaging workflow contains several steps that utilize both 
user-driven and fully-automated approaches, depending on the requirements of each individual step (Fig. 1). 
Each step is described in detail in the subsequent sections. Briefly, the user first acquires epifluorescent single-
channel images for each fluorophore (step 1). Next, several parameters must be set (step 2); these include speci-
fying the cell marker for each channel, establishing thresholding and background subtraction values, and speci-
fying the minimum pixel radius of fluorescent signal to include as foreground. After these initialization steps, the 
macro displays each overlaid image for the user to mark the islet-of-interest with an arrow (step 3). All images 
are then randomized and sequentially presented for threshold preparation (step 4) to a blinded analyzer. Because 
this macro cannot differentiate multiple islets in an image, images with multiple islets must be duplicated prior 
to analysis for individual assessment as described.

Islet images are next thresholded to create binary renderings for automated quantitative analysis. Threshold 
preparation requires a series of sub-steps to subtract background based on user-drawn regions of interest (ROI’s), 
with subsequent cropping of each islet-of-interest to ensure the correct islet is analyzed in multi-islet images (step 
5). This process ensures that images with multiple islets may be analyzed, with each islet assessed independently. 
The bulk of the analysis is performed next, with sub-steps dedicated to first establishing the islet outline based 
on the combined thresholded insulin and glucagon images and then determining the amount of CD4+ and CD8+ 
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T cell signal that falls within or outside of the newly created islet border (step 6). If background ROI’s are not 
drawn appropriately during step 5, unintentional user-driven errors can result in which too much background 
signal or too little foreground signal is included. This can cause a misrepresentation of the islet area or degree 
of insulitis. To mitigate this problem, a validation step is included in which representations of the calculated 
islet outlines and T cell signals are projected onto the original images and displayed for rapid confirmation of 
analytical quality (step 7). Any islets that have been inappropriately analyzed can be corrected by repeating the 
algorithm to improve quantification accuracy (step 8).

A critical component of this methodology involves the application of convex hulls over the combined thres-
holded insulin and glucagon signals to help determine islet area (step 6b). In general, a continuous two-dimen-
sional Euclidean plane subset may be considered convex if, given any two points selected within the confines of 
the space and connected by a straight line, all segments of this line lie within the Euclidean plane subset borders 
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Figure 1.   Quantitative imaging workflow for islet analysis. This step-by-step process integrates islet analysis 
using a FIJI-driven automated macro. After acquiring images and defining dataset-specific macro parameters, 
the FIJI macro guides the user through image randomization, background correction and cropping for each 
individual islet present in an image. Fully automated image analysis then proceeds to establish islet outlines by 
applying convex hulls to thresholded insulin and glucagon masks, and CD4+ and CD8+ T cell inflammation is 
quantified relative to the islet border to calculate insulitis (within islet border) and peri-insulitis (beyond islet 
border) measurements.
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(Fig. 2A,B)26. A more intuitive description specifically defines a polygon as convex if all vertices have associated 
interior angles that are each individually less than 180°, such as a regular pentagon with equivalent interior 
angles of 108°. (Fig. 2C). The convex hull, then, can be described as the convex two-dimensional polygon with 
the smallest area that entirely encloses all data points of a Euclidean plane subset (Fig. 2D). A simple concept to 
visualize the convex hull is to envision a rubber band snapping tightly into place surrounding the polygon. In 
the case of epifluorescent imaging of pancreatic islets, the islet mass can be thought of as the relevant analyzable 
Euclidean plane subset with the corresponding convex hull representing the cross-sectional islet area. Impor-
tantly, thresholded insulin and glucagon single-channel images of mouse pancreatic islets contain many small, 
disconnected polygons due to lack of nuclear staining or dimming/elimination of signal caused by overlying 
infiltrated immune cells (Fig. 2E–G). Applying convex hulls to the thresholded sum of the insulin and gluca-
gon images effectively merges these disparate signals into a single representation of islet area (Fig. 2H–J). The 
convex hull approach allows for improved accuracy in determining islet area over traditional visual approaches 
by calculating the entire area enclosed by the polygon borders. More importantly, this method can consistently 
establish islet borders uninfluenced by investigator interpretation that can be used to determine which T cells 
fall within the islet border (insulitis) and which fall outside of the islet border (peri-insulitis).

Background correction.  To eliminate user bias influenced by treatment conditions when performing back-
ground correction, image randomization occurs prior to any alterations of the raw data. A blinded user first 
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Figure 2.   Inflamed islet borders can be defined using insulin, glucagon and a convex hull based geometrical 
approach. Convex hulls are two-dimensional convex polygons that can model cross-sectional images of 
pancreatic islets. (A) A circle is an example of an entirely convex shape since all segments of a straight line 
connecting any two randomly selected points (Q, R) within the shape lie inside the shape borders. (B) A 
crescent is an example of a shape that is not entirely convex because a straight line connecting the two points (S, 
T) exists outside the shape borders. (C) A pentagon is an example of a convex polygon because all interior angles 
are less than 180°. (D) A convex hull (grey region) is depicted to demonstrate the area that entirely encloses all 
points of a mixed concave/convex polygon (black outline) with the smallest possible area. (E–J) Examples of the 
convex hull methodology using an acquired image of an islet from a 13-week-old non-diabetic NOD mouse. 
(E) Merged image with CD4 (yellow), CD8 (cyan), DAPI (blue), insulin (red) and glucagon (magenta) staining. 
(F) Individual thresholded 8-bit insulin image. (G) Individual thresholded 8-bit glucagon image. (H) Combined 
insulin and glucagon images from (F) and (G). (I) Convex hull (transparent white) of combined insulin and 
glucagon images. (J) Original merged image with overlaid convex hull (transparent white). White bars represent 
50 μm length.
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marks each islet in the image series using an arrow to ensure background correction is optimized to the XY posi-
tion of the islet of interest. This step is necessary to properly identify the islet of interest in images that contain 
multiple islets. Image randomization proceeds using the Fisher–Yates shuffle statistical randomization algorithm 
to decrease any user bias for treatment groups or experimental conditions between tissues. The user then draws 
a small ROI containing the brightest background signal observed in each fluorescent channel to specify unde-
sired background intensities that must be subtracted (Fig. 3A,B). Identifying an ROI with bright intensity of only 
background signal is critical; an ROI containing only dim background signal will fail to remove background 
regions of brighter intensity (false positives) while an ROI containing any foreground signal will remove all 
foreground regions of similar or lower brightness (false negatives).

The overarching goal of background correction is to minimize the proportion of false positives and negatives 
within an image, which is accomplished through uniform subtraction of an intensity value from all pixels in 
each channel. Following user-driven background ROI identification, the macro automatically selects an intensity 
value for each channel based on the background ROI to subtract from each pixel and removes background sig-
nal in the corresponding channel. Specifically, the macro automatically determines the mean ( µ ) and standard 
deviation ( σ ) intensity values for the background ROI’s in each channel and calculates a “subtraction value” ( S ) 
using the formula S = µ+ 3σ . A properly delineated background ROI will have a brightness histogram that is 
approximately Gaussian, so setting S three standard deviations above the mean captures > 99% of the background 
pixels (Fig. 3C). Notably, S cannot simply be set to the maximum intensity value within the background ROI 
since imperceptible saturated pixels are often included in the background ROI’s, skewing the value of S . When 
considered in the context of the entire image brightness histogram for each corresponding channel, S effectively 
functions as a delineation point to definitively separate foreground from background intensity signals (Fig. 3D). 
S is then subtracted from each pixel in the image, “left-shifting” the brightness histogram for each channel 
such that background pixels are normalized to an intensity value of 0 (Fig. 3E). This process has the effect of 
eliminating nearly all the background signal while ensuring that all relevant foreground signals are maintained 
(Fig. 3F). Fine-tuning of background signal elimination occurs in later steps of image processing, though this 
initial background subtraction procedure accounts for the majority of background correction.

The final step in background correction involves manual cropping of each islet-of-interest and associated 
immune cells. In this analysis, only immune cells continuous with the insulin and glucagon signals are included as 
islet-associated immune cells, with all intervening tissue resident CD8+ T cells and other niduses of inflammation 
(e.g. lymphocytes occupying exocrine pancreas blood vessels) excluded. The crop region is drawn on the merged 
channel and automatically applied to each individual fluorescent channel to avoid quantifying signals derived 
from inflamed islets in the image other than the islet of interest. The background correction and cropping process 
is then repeated for each islet, after which the fully automated insulitis and peri-insulitis calculations can proceed.

Insulitis and peri‑insulitis calculations.  To allow image thresholding and promote consistency in units of length 
for images captured on microscopes with different magnifications or different charge-coupled device pixel sizes, 
all channels are first converted to 8-bit images and units of length are converted to pixels. 8-bit insulin, glucagon, 
CD4 and CD8 channels are then converted to thresholded masks within a predetermined range (default = 10–255 
for all channels). To calculate the cross-sectional islet area, insulin and glucagon masks are added together and 
any remaining background noise is eliminated by removing continuous foreground regions smaller than a speci-
fied size (default = 5; will vary depending on pixel size and image magnification but should be set to approximate 
lymphocyte diameter). All background regions entirely surrounded by foreground (“background enclaves”) in 
the insulin/glucagon sum image are converted to foreground to account for lack of nuclear staining in images 
obtained from staining with antibodies specific for molecules confined to the cell surface or cytoplasm (e.g. 
insulin and glucagon). The convex hull of the insulin/glucagon sum image is calculated and all background 
within the convex hull is converted to foreground, establishing a thresholded region that matches the islet area.

As diabetes progresses, CD4+ and CD8+ T cells infiltrate and destroy the pancreatic islet β cells27,28. The degree 
of infiltration can be determined by the location of the inflammatory aggregate relative to the islet borders. CD4 
and CD8 insulitis and peri-insulitis calculations are derived by comparing their signals to the islet area image. 
Thresholded CD4 and CD8 images are multiplied by the thresholded islet area image to isolate only the signals 
occupying the islet area. The total area of CD4+ and CD8+ T cells associated with each islet is also calculated, pro-
viding a reference for peri-insulitis calculations. The thresholded CD4 and CD8 images are then added together 
and the area calculations are repeated with the resultant image to provide an approximation of combined CD4+ 
and CD8+ T cell inflammation. β cell mass can be calculated from the insulin signal by converting all background 
enclaves to foreground to account for lack of nuclear staining.

To facilitate expeditious visual inspection of insulitis, peri-insulitis and islet area calculations, two valida-
tion images are generated for each analyzed islet and adjacently displayed as two linked image stacks. The first 
image stack depicts a transparent overlay of the islet area derived from the insulin and glucagon signals with 
the original false-color merged image for each islet. The second image stack depicts this same islet area overlay 
on a black background accompanied by the thresholded CD4 and CD8 signals. By generating these two adja-
cent image stacks, the user determines which islets (if any) must be reanalyzed due to inadequate user-defined 
background correction.

Convex hull validation.  To validate the convex hull approach, we applied common planar convexity metrics to 
non-infiltrated pancreatic islets. Common convexity measurements of two-dimensional Euclidean plane subsets 
can be categorized into either area- or perimeter-based assessments26. Utilizing both area- and perimeter-based 
measurements to assess convexity is advantageous since minor alterations in the Euclidean plane subset can 
dramatically alter its corresponding convex hull. For example, protrusions and border irregularities can radi-
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Figure 3.   Region of interest (ROI)-based background correction allows dynamic elimination of false positive signals 
for individual islets. (A) Histology image of a 13-week-old non-diabetic NOD mouse islet with CD4 (yellow), CD8 
(cyan), DAPI (blue), insulin (red) and glucagon (magenta) staining. (B) Individual 8-bit insulin image of islet from 
(A) with orange circle representing a valid ROI selection containing only negative background for subsequent signal 
subtraction. (C) Brightness histogram of the insulin background ROI from (B) demonstrating the default background 
subtraction value of three standard deviations (σ) above the mean (μ) (dotted line). (D) Brightness histogram of the 
entire insulin image from (B) depicting the subtraction value obtained from (C) (dotted line) with the shaded green 
region representing positive insulin signal and the unshaded region representing negative background signal. (E) 
Insulin brightness histogram after background subtraction with dotted red line representing an additional flexible 
cutoff value dependent upon the combination of fluorophores employed. (F) Individual 8-bit insulin image of islet 
from (A) after background subtraction with pixel values of 0 represented in blue to enhance visualization of remaining 
positive insulin signal. White bars represent 50 μm length.
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cally alter the area and perimeter respectively of the convex hull overlying an irregular, partially concave polygon 
(Fig. 2D). For both area- and perimeter-based measurements, ratiometric comparison of the Euclidean plane 
subset to its convex hull offers a simple and well-accepted method by which to assess the degree of convexity 
of the subset. Specifically, the area-based convexity measurement ( CArea ) can be calculated using the formula 
CArea =

AreaE
AreaCH

 , where AreaE and AreaCH are the areas of the Euclidean plane subset and convex hull respec-
tively. Similarly, a boundary-based convexity measurement can be derived based on perimeter ratios ( CPerimeter ) 
using the formula CPerimeter =

PerimeterCH
PerimeterE

 , where PerimeterCH and PerimeterE are the perimeters of the convex 
hull and Euclidean plane subset respectively. The relative position of the convex hull measurement in either the 
numerator or denominator in both these formulae is due to the geometrical property of convex hulls generally 
possessing a larger area and smaller perimeter than their Euclidean plane subset counterparts. Consequently, 
measuring the convexity of Euclidean plane subsets in this manner yields a value between 0 and 1, with convex-
ity increasing as this number approaches 1. A value of 1 for both the area- and perimeter-based measurements 
also suggests that the convex hull perfectly models the Euclidean plane subset, as is true for all regular polygons 
(e.g. equiangular triangles) as well as other perfectly convex shapes (e.g. circles and ellipses).

Extending these geometrical concepts to pancreatic islets, we applied the area- and perimeter-based metrics to 
NOD.RAG1.KO to determine the degree to which non-infiltrated cross-sectional islet areas correspond to their 
convex hulls. Islet outlines were first obtained by manual contouring of the overlaid images and their convex hulls 
were determined, with area and perimeter measurements calculated for both the original contour and the convex 
hull. A linear regression between the manual and convex hull areas shows a near-perfect correlation (R2 = 0.9925, 
p < 0.0001) with the convex hull areas closely matching their manual outline counterparts (m = 0.9527, 95% CI 
X- and Y-intercepts include 0) (Fig. 4A). Similar results were obtained with a linear regression between the 
manual and convex hull perimeters (R2 = 0.9927, p < 0.0001, m = 1.054, 95% CI X- and Y-intercepts include 0), 
with both the area- and perimeter-based convexity measurements average being close to 1 (Fig. 4B,C). These data 
suggest pancreatic islet cross sections are predominantly convex and are closely modeled by the convex hulls of 
their two-dimensional outlines, offering support for our method using the convex hull approach in definitively 
establishing conspicuous islet borders when assessing immune cell insulitis and peri-insulitis.

Comparison to standard qualitative approach and representation of data.  Qualitative approaches to approximate 
the magnitude of pancreatic insulitis require visual assessment of each islet to determine an insulitis score. The 
range of possible scores typically represent discrete bins that correspond to the proportion of the cross-sectional 
islet area occupied by immune cells (Fig. 5A, left). In contrast, automated convex hull quantification generates 
cross-sectional area data for islet infiltration area as well as other user-defined metrics (Fig. 5A, right). Given 
that our quantitative method can accurately evaluate the contributions of individual immune cell subtypes to 
islet infiltration, we sought to directly compare our method to a conventional qualitative approach to determine 
if similar trends are observed. To accomplish this, we pooled cross-sectional pancreas images obtained from 
young, adult non-diabetic and adult diabetic NOD mice as well as adult NOD.RAG1.KO mice to obtain a broad 
range of islet inflammation. We next applied our quantitative macro or assigned traditional qualitative insulitis 
scores to each islet by a blinded assessor8. A moderately weak positive correlation was observed when compar-
ing the proportion of islet area occupied by either CD4+ or CD8+ T cells determined by our quantitative method 
against the qualitative insulitis scores (Fig. 5B). This weak correlation was likely due to the increasing variability 
of T cell infiltrate for islets assigned larger insulitis scores, a phenomenon that is less problematic when islet infil-
trate is quantitatively assessed (discussed below). This suggests that qualitatively binning islet infiltration by eye 
captures a larger range of infiltration values within each bin than that which the observer may be aware. Moreo-
ver, despite detectable differences in T cell infiltrate between the extreme ends of the insulitis scoring scale, 
the variability in infiltrate for each insulitis score prohibited differentiating between adjacent scores (Fig. 5C). 
Notably, the infiltrate proportions calculated with our quantitative method were consistently smaller than the 
infiltration proportions in the corresponding insulitis score bins. This may reflect an improved ability to detect 
only specific immune cell subsets (in this case, CD4+ and CD8+ T cells) with automated quantification or might 
represent differences in proportional infiltrate determination due to islet boundary disagreements between the 
traditional qualitative approach and the convex hull methodology. These findings confirm that quantitative 
assessment of islet immune cell infiltration correlates to traditional discrete qualitative evaluation but addition-
ally provides continuous area metrics otherwise unobtainable from visual inspection analysis alone.

To demonstrate application of this method to a data set with a broad range of islet infiltration, we indepen-
dently analyzed images obtained from NOD.RAG1.KO mice and NOD mice from three age groups (young, adult 
non-diabetic and adult diabetic) as in Fig. 5B,C. Using this method, data obtained from analyzed islets may be 
summed for each mouse with each data point representing a single mouse, or single islets may be pooled from all 
mice in a particular group and individually plotted. In both cases, assessing islet area expectedly demonstrates a 
significant decrease in islet size between non-diabetic and diabetic adult NOD mice, consistent with the notion 
that progressive autoimmune destruction of pancreatic islets eliminates functional and observable islet mass as 
T1D progresses (Fig. 6A,B). Upon observing the apparent asymmetric distribution of islet area for all treatment 
groups (Fig. 6B), we aimed to determine whether this distribution was Gaussian to ensure selection of appropri-
ate statistical tests. We constructed quantile–quantile (Q–Q) plots of each data set against a predicted Gaussian 
probability distribution to assess the variation in islet sizes relative to an expected normal bell curve. We found 
that the islet area in each group profoundly deviates from an expected Gaussian distribution, and this deviation 
from normality was observed for islet inflammation metrics as well (Fig. 6C and data not shown). Given this, we 
assert that data sets obtained by imaging islets are best represented with individual islets plotted and analyzed 
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with nonparametric statistical tests such that potential alterations in data distribution and the substantial vari-
ability in islet size and inflammation between islets can be properly ascertained.

A major benefit of employing quantitative fluorescent microscopy over traditional qualitative approaches is 
the ability to enumerate fluorescent signals independently of one another. Given the known contributions of 
both CD4+ and CD8+ T cells to development of spontaneous diabetes in the NOD mouse, we hypothesized a 
concomitant and comparable increase in both CD4+ and CD8+ T cell infiltrate area in adult non-diabetic mice 
(13-weeks) relative to both young mice (4-weeks) and adult diabetic mice (17-weeks). To this end, we sought 
to determine the collective and individual contributions of CD4+ and CD8+ T cells to islet inflammation in our 
treatment groups using an unbiased and quantitative approach. Assessing bulk T cell inflammation demon-
strates a significant increase in T cell infiltration from 4- to 13-weeks as autoimmune pathology advances, with 
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Figure 4.   Convex hull representations of two-dimensional islet cross sections accurately model non-infiltrated 
islets. Islet images from 11-week-old NOD.RAG1.KO mice (n = 3) were obtained and islets (n = 55) were 
manually contoured by a blinded analyzer or overlaid with convex hulls derived from added insulin/glucagon 
signals using the macro methodology. Areas and perimeters of the cross-sectional polygons from both 
approaches were compared to validate the convex hull approach. (A,B) Linear regressions between (A) areas and 
(B) perimeters of the associated manual or convex hull outlines. (C) Area ratio of manual outline to convex hull 
outline and perimeter ratio of convex hull outline to manual outline. Dotted red lines on linear regression plots 
represent the line of best fit. Data are pooled from three independent experiments.
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Figure 5.   Quantitative assessment of islet infiltration detects variability that traditional qualitative islet scoring approaches fail to 
identify. (A) Diagram comparing assessment of islet infiltration using the traditional visual inspection method (left) vs. the convex 
hull quantification method (right). The traditional approach generates an approximate islet infiltration score (“2” for the depicted islet) 
while the convex hull approach provides multiple computationally derived quantifiable metrics. (B,C) Individual islet images from 
4-week-old (n = 93), 13-week-old non-diabetic (n = 71) and 17-week-old diabetic NOD mice (n = 23) and 11-week-old NOD.RAG1.
KO (n = 55) mice were pooled within each group (n = 3/group) and analyzed with both our quantitative methodology and a traditional 
qualitative islet scoring approach performed by a blinded analyzer. (B) Linear regression between quantified proportion of individual 
islet areas occupied by T cells and traditional qualitative islet scores. Dotted red line on the linear regression plot represents the line 
of best fit. (C) Qualitative islet scores for each islet plotted against their corresponding quantified T cell infiltrate areas. Islet scoring: 
0—no insulitis, 1—peri-insulitis, 2—< 25% of islet mass infiltrated, 3—< 75% of islet mass infiltrated, 4—> 75% of islet mass infiltrated. 
Kruskal–Wallace test with post-hoc Dunn’s multiple comparison test was performed to determine statistical significance. ns, not 
significant. Data are pooled of three independent experiments.
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Figure 6.   Quantitative islet analysis enables numerous metrics to assess islet inflammation throughout 
progression of T1D. Individual islet images from 4-week-old (n = 93), 13-week-old non-diabetic (n = 71) 
and 17-week-old diabetic NOD mice (n = 23) were pooled within each group (n = 3/group) and analyzed for 
quantification of islet area and inflammation. (A) Sum of total islet area for all islets imaged from each mouse. 
(B) Individual islet area from islets pooled from all mice of a given strain and age. (C) Quantile–quantile plot of 
actual individual islet areas from 13-week-old non-diabetic NOD mice, as in (B), compared to values predicted 
from a normally distributed Gaussian data set. (D–F) T cell infiltration of individual islets pooled from all mice 
of a given age. (D) T cell infiltration was assessed as combined CD4+ and CD8+ T cell infiltration as well as 
independent (E) CD4+ and (F) CD8+ T cell infiltration. (G–I) Metrics assessing the proportional contributions 
of insulin or T cell signals based on their position relative to the defined islet border of individual islets pooled 
from all mice of a given age. (G) Proportion of islet area occupied by insulin signal. (H) Proportion of islet area 
occupied by combined CD4+ and CD8+ T cell signal. (I) Proportion of total T cell inflammation that falls within 
the islet borders. Solid red lines on violin plots depict the median and dotted black lines depict the first and third 
quartiles. Dotted line at 50% represents a break point representing a conversion from peri-insulitis to insulitis. 
“DB” refers to diabetic mice. Red dots represent data points from diabetic mice. Kruskal–Wallace test with post-
hoc Dunn’s multiple comparison test was performed to determine statistical significance. Data are representative 
of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns not significant.
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a significant drop in diabetic 17-week mice (Fig. 6D). Notably, no difference in total T cell infiltrate was observed 
between 4-week (non-diabetic) and 17-week diabetic mice. This may reflect late-stage T1D NOD islets rapidly 
losing mass with subsequent death and egression of immune cells out of the pancreas as antigen becomes limiting, 
leading to an apparent decrease of T cells within any remaining detectable islet borders. This same trend of wax-
ing/waning T cell infiltration as NOD mice age can also be observed for CD4+ and CD8+ T cells independently 
(Fig. 6E,F). Although no differences were found in the overall trend of CD4+ or CD8+ T cell infiltrate among 
our three selected timepoints, this finding demonstrates the ability of our method to quantitatively assess both 
collective and individual fluorescent signals when investigating multiple cellular subtypes.

Proportion calculations evaluating T cell inflammation and position relative to the area and borders of an 
islet can also be performed. One such metric assesses the proportion of insulin signal relative to islet area for 
each islet, which demonstrates a robust decrease for diabetic adult mice relative to non-diabetic adults and young 
mice (Fig. 6G). This metric can be similarly applied to T cell infiltrate as a proportion of islet area for each islet, 
showing a marked increase for adult non-diabetic mice compared to young mice (Fig. 6H). As with quantifying 
T cell infiltrate area (Fig. 6D–F), this proportion drops for adult diabetic mice to levels indistinguishable from 
young mice. To obtain quantitative data describing T cell position relative to islet borders, we calculated the T 
cell infiltrate as a proportion of total T cell signal associated with each inflamed islet for those mice that had such 
islets (i.e. only adult mice). Our data show no difference in T cell infiltrate as a proportion of total T cell signal 
between non-diabetic and diabetic adult mice, but we suggest this metric may be particularly useful for grossly 
defining islet inflammation as predominantly insulitis (> 50% total T cell signal occupying islet space) or peri-
insulitis (< 50%) (Fig. 6I). Altogether, the data generated from this quantitative method of enumerating pancreatic 
islet immune cell infiltration offer multiple routes by which T cell area and relative position can be calculated.

Technical limitations and analytical reproducibility.  Although this quantitative imaging methodology accu-
rately reflects islet area and T cell inflammation, there are limitations to consider. For example, despite a robust 
background correction protocol (described above) that avoids the need for complex spectral microscopy or 
linear unmixing protocols, a small amount of false positive CD4+ and/or CD8+ T cell signal appears in a minor 
subset of NOD.RAG1.KO islets, predominantly within the islet border (Fig. 7A). This is principally caused by 
spectral overlap between different fluorophores, in this case between CD4-AF594 and Insulin-Cy3 causing false 
positive CD4 signal within the islet borders of immunodeficient NOD.RAG1.KO mice (Fig. 7B, yellow aster-
isk)29. This effect causes non-infiltrated 11-week NOD.RAG1.KO islets to appear infiltrated at levels comparable 
to slightly infiltrated 4-week NOD islets despite a known absence of lymphocytes in RAG1.KO mice. (Fig. 7C). 
To mitigate this issue, quantified inflammation area ≤ 20 µm2 is designated as beyond the limit of detection with 
this methodology since < 5% of non-infiltrated NOD.RAG1.KO islets have false positive T cell signals > 20 µm2 
(Fig. 7D). Given that total islet area decreases as T1D progresses (Fig. 6A,B), establishing precise islet border 
demarcation becomes progressively more difficult throughout disease development. For late-stage diabetic and 
heavily infiltrated islets, alternative metrics may be employed to assess disease severity. For example, an inverse 
relationship exists between total T cell area and insulin area as T1D progresses (i.e. as T cell area increases, β cells 
are destroyed and insulin area decreases), making a ratio of T cell area to insulin area an alternative option for 
determining pathological extent of disease (Fig. 7E).

Data reproducibility and scientific rigor between independent investigators is a crucial component of ensuring 
the accuracy of an experimental method or analytical technique. Although user bias is largely eliminated with 
this image analysis methodology, the process of ROI-based background subtraction and islet cropping notably 
requires user input (Fig. 1, step 5). To assess reproducibility of results between users, we randomly selected a 
subset of islets from 4-week, 13-week non-diabetic and 17-week diabetic NOD mice and these data were inde-
pendently processed by three blinded analyzers. Results were highly reproducible at 4-weeks, when robust inflam-
mation is not yet present and therefore definitive islet border identification is straightforward (data not shown). 
More variability in results occurred at 13-weeks likely due to the preponderance of heavily infiltrated islets 
with difficult to define borders at this timepoint (Fig. 8A, yellow stars). Despite this, there were no differences 
between the three analyzers regarding total islet area, T cell infiltrate, T cell peri-insulitis or any of the individual 
CD4+ or CD8+ T cell signals at 13-weeks (Fig. 8B and data not shown). To determine variability between users 
on an individual islet basis, we next performed linear regressions of each metric for every islet comparing all 
permutations of analyzers 1–3. We observed strong and significant correlations with 1:1 concordance between 
analyzers 1 and 2 (slopes ≈ 1) for all metrics assessed in Fig. 7B, and these correlations were also present between 
analyzers 1 and 3 and analyzers 2 and 3 at the 13-week timepoint (Fig. 8C and data not shown). Expectedly, islets 
with greater inflammation demonstrated a larger variability in infiltrate quantification between different analyz-
ers, evidenced by greater deviation of islets with larger infiltrate from the line of best fit. Importantly, all three 
analyzers internally replicated the waxing and waning phenotype observed in Fig. 6D–F in which total T cell 
infiltrate is greatest at 13 weeks relative to 4-week non-diabetic and 17-week diabetic NOD mice, and this same 
result was obtained for isolated CD4+ and CD8+ infiltrate as well (Fig. 8D and data not shown). Taken together, 
these data suggest that multiple individuals employing this quantitative methodology on identical data sets will 
consistently achieve comparable results in a reproducible manner.

Discussion
With this study, we introduce an automated convex hull-based analytical procedure using a macro written in 
FIJI for the rapid and precise identification of pancreatic islet borders and subsequent quantification of islet 
area, insulitis and peri-insulitis. We demonstrate the application of convex hulls to cross-sectional islet images 
and show the accurate modeling of non-infiltrated islets with this approach. An ROI-based background correc-
tion scheme represents one possible method to eliminate background signals, allowing us to establish that our 
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analysis captures variability that traditional qualitative approaches neglect. We additionally show that various 
infiltration metrics can be obtained from our macro-derived quantification parameters and the technical limi-
tations associated with quantifying inflammation in heavily infiltrated islets do not preclude determination of 
inflammatory severity. Finally, we provide evidence that this methodology is reproducible between users, even 
as islet T cell infiltration increases.

Modeling the cross-sectional area of pancreatic islets using the convex hull approach is advantageous for 
several reasons: (1) it generates a complete two-dimensional polygon that accurately estimates islet area without 
leaving interior signal gaps that would result from simple addition of insulin and glucagon signals (Fig. 2F, left 
panel); (2) it establishes continuous islet outlines in cases where immune-mediated pancreatic islet destruction 
has obfuscated the islet border (Fig. 2F, middle and right panels); and (3) delineation of islet borders occurs 
rapidly and with minimal bias when insulin and glucagon are present. However, an underlying assumption is that 
the areas of two-dimensional mouse pancreatic islet cross-sections are accurately modeled by overlaid convex 
hulls. Given that pancreatic islets are thought to be roughly spherical in shape when embedded in pancreatic 
exocrine tissue30, this assumption was reasonable. Corroborating this, our data show similar modeling of non-
infiltrated islet areas by both automated convex hulls and manual contouring (Fig. 4), suggesting that convex 
hulls can model non-infiltrated islet areas to a high degree of accuracy.

A significant benefit of our automated convex hull T cell infiltration analysis is the inclusion of validation 
images produced by the macro to allow rapid user verification of analysis quality, with the opportunity to reana-
lyze images that had their background inappropriately corrected. To further amplify the scientific rigor of this 
approach, we recommend having a blinded investigator assess the quality of the validation images before pro-
ceeding to repeat quantification. For data sets with heavily infiltrated islets and an evenly distributed gradient of 
CD4 and CD8 intensity values that make defining a single background ROI challenging, multiple analyses may 
be necessary to achieve appropriate quantification of T cell inflammation. Variability can be further decreased by 
averaging quantified values obtained from multiple independent analyzers, effectively treating these data points 
as technical replicates. With these technical augmentations in mind, our methodology can reliably yield accurate 
results despite the necessity of user input during background correction and islet cropping.

Properly differentiating between foreground and background signals is a crucial step in quantitative fluores-
cent microscopy analyses to ensure that quantified signals represent specific staining. Given that non-specific 
staining of biological tissue sections with fluorophore-conjugated antibodies is inherently non-uniform due 
to topological variations in tissue architecture and differential islet inflammation, background staining inten-
sity of a single fluorescent channel can vary across the histological landscape29. This problem is compounded 
when numerous fluorophores are used, since these local variations in staining intensity contribute to irregular 
fluorescent spillover or light contamination when comparing multiple positions in the two-dimensional plane. 
Therefore, addressing the issue of epi-fluorescent background correction requires adaptive identification of these 
subtle, location-dependent background staining variations rather than a static background subtraction approach 
applied equally and concurrently to all images. To solve this problem, background correction in our approach 
is performed serially on each image for each individual fluorescent channel with blinded user-driven identifi-
cation of background ROI’s on which to base pixel subtraction near the islet being analyzed. Many automated 
approaches to background correction exist in FIJI that may be alternatively employed, but these approaches 
utilize algorithms that do not consistently capture the vast range of inflammation that exists amongst islets in 
diverse T1D disease states.

Depending on the fluorescent antibodies employed in imaging, a small amount of false positive signal is 
possible. As shown in Fig. 7C, the effects of spectral overlap with our fluorescent panel commonly produce back-
ground signals that occupy up to 20 µm2 area. Given that this spectral overlap applies to both non-infiltrated and 
infiltrated islets, we do not recommend reanalyzing non-infiltrated islets with small amounts of false positive T 
cell signals with the goal of eliminating this signal. Doing so will non-uniformly skew quantification since false 
positives are nearly impossible to discern in heavily infiltrated islets. Importantly, for experiments assessing islets 
with little immune infiltration, the limit of detection must be determined for each unique panel of fluorescent 
markers by assessing false positive signals on islets known to be non-infiltrated (e.g. NOD.RAG1.KO or young 
NOD islets). If imaging infiltrated islets (e.g. non-diabetic 13-week NOD mice) using a panel of fluorescent 
markers with minimal spectral overlap, it is likely not necessary to consider the limit of detection given that the 
fluorophores will not spill into adjacent channels.

Figure 7.   Technical limitations of quantitative islet analysis do not prevent accurate quantification of T cell 
inflammation. (A) Histology image of an 11-week-old NOD.RAG1.KO islet with CD4 (yellow), CD8 (cyan), 
DAPI (blue), insulin (red) and glucagon (magenta) staining with overlaid convex hull (transparent white) 
representing islet area. (B) 8-bit validation image showing background CD4 (cyan) and CD8 (red) signal on 
the border of the non-infiltrated islet from (A) (yellow star). (C) Total CD4+ and CD8+ T cell area detected 
within or near pooled islets from 11-week NOD.RAG1.KO or 4-week NOD mice (n = 3/group). (D) Frequency 
histogram of background CD4 and CD8 signals in 11-week-old NOD.RAG1.KO islets. The shaded green region 
depicts true positive signals above the T cell limit of detection with < 5% of non-infiltrated NOD.RAG1.KO islets 
showing background CD4 or CD8 signals in this range. (E) Ratio of T cell area to insulin area for individual 
islets pooled from 4-week, 13-week non-diabetic and 17-week diabetic NOD mice (n = 3/group). White bars 
on histology images represent 50 μm length. Solid red lines on violin plots depict the median and dotted black 
lines depict the first and third quartiles. “DB” refers to diabetic mice. Kruskal–Wallace test with post-hoc Dunn’s 
multiple comparison test was performed to determine statistical significance. Data are representative of three 
independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns not significant.
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Figure 8.   Quantitative islet analysis yields reproducible data when performed by multiple independent analyzers. (A) Histology 
images of two representative 13-week-old non-diabetic NOD mouse islets with CD4 (yellow), CD8 (cyan), DAPI (blue), insulin (red) 
and glucagon (magenta) staining showing heavily infiltrated islet with islet borders that are difficult to define (yellow stars). (B–D) 
A randomly selected subset of islet images (n = 66) obtained from 4-week, 13-week non-diabetic and 17-week diabetic NOD mice 
(n = 3/group) were separately assessed using the quantitative methodology by three independent and blinded analyzers. (B) Islet area, 
T cell infiltration and T cell peri-insulitis of individual islets pooled from all mice of a given age as assessed by analyzers 1–3. (C) 
Linear regressions of islet area, T cell infiltration and T cell peri-insulitis between analyzers 1 (x-axis) and 2 (y-axis). (D) Combined 
CD4+ and CD8+ T cell infiltration of different NOD mouse timepoints as assessed by analyzers 1–3. White bars on histology images 
represent 50 μm length. Dotted red lines on linear regression plots represent the line of best fit. Solid red lines on violin plots depict 
the median and dotted black lines depict the first and third quartiles. “DB” refers to diabetic mice. Kruskal–Wallace test with post-hoc 
Dunn’s multiple comparison test was performed to determine statistical significance. Data are representative of three independent 
experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns not significant.
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A challenge that is common to both quantitative and qualitative methods is the difficulty in accurately estab-
lishing islet borders in late-stage diabetic and heavily infiltrated islets. Autoimmune disease necessarily involves 
destruction of autoantigen-associated tissue and in the case of T1D, insulin-producing β cells are targeted first 
with the eventual destruction of the entire islet of Langerhans. Although our quantitative approach utilizes gluca-
gon staining of α cells to better assess islet area in islets where β cell loss has already begun, late-stage T1D islets 
eventually undergo complete destruction of all endocrine components, including the α cells. This means that 
total islet area decreases as T1D progresses (Fig. 6A,B) but more importantly, it suggests that precise islet border 
demarcation becomes progressively more difficult throughout disease development. Positional data regarding 
the distribution of immune cell subtypes relative to the islet border in mice with heavily infiltrated islets may be 
less reliable and other metrics to assess disease severity might be alternatively employed (Fig. 7E). Despite this, 
metrics that are difficult to assess (e.g. insulitis and peri-insulitis) still demonstrate significant 1:1 concordance 
between analyzers, even when comparing analyses with heavily infiltrated islets performed by different users 
(Fig. 8C; p < 0.0001 and slope ≈ 1). This suggests that even though convex hull modeling of cross-sectional pan-
creatic islets suffers from similar uncertainty in defining faithful inflamed islet borders to qualitative approaches, 
the method is capable of reliably quantifying area metrics of islet-associated CD4+ and CD8+ T cells.

Although the automated convex hull methodology for insulitis quantification has been discussed only in 
the context of murine T1D, this method may have applications for analysis of human samples as well. Human 
pancreata available for histology are exceptionally rare given the contraindication to biopsy, the rapidity of 
processing required post-autopsy to prevent exocrine enzymatic tissue autolysis and the improvement of T1D 
therapies leading to fewer available cadaveric samples20. Further complications include the transient nature of 
human insulitis that disappears soon after symptomatic onset and the lack of human α cell distribution encircling 
the islet periphery as in mice20,23, likely making convex hull approximation of late-stage diabetic human islets 
challenging. Nevertheless, automated quantitative analysis may be useful by employing alternative measurements 
in those samples that do exist, such as investigating the varying penetration depths of immune cell subtype 
infiltration localized to inflamed islets.

A unique advantage of the automated convex hull approach to assessing islet infiltration is the flexibility 
available in selecting alternative markers and metrics for islet inflammation analysis. Although CD4+ and CD8+ 
T cells were the only immune cells included in this study, these cell types could be further classified based on 
markers identifying their corresponding helper and cytotoxic subsets. B cells, dendritic cells and various innate 
cells may also be analyzed with the convex hull methodology. Additional measurements may also be of interest 
to future investigators, such as assessment of infiltrate density and distribution throughout the islet structure. 
Consequently, a compelling topic for future inquiry involves determining whether immune cell subtypes dif-
ferentially contribute to the insulitis or peri-insulitis infiltrate regions at various stages of disease. It is reasonable 
to expect that the innate and adaptive arms of the immune system may interact with the islet border and interior 
structures differently dependent upon overall disease progression, islet architecture and other factors, and the 
convex hull approach provides an avenue by which this subject might be evaluated.

In summary, our automated approach to islet image analysis is particularly robust in producing quantifiable, 
replicable data reflecting pancreatic islet area and the location and area of immune cell subsets relative to islet 
borders. This method models cross-sectional pancreatic islet borders using convex hull processing to reflect 
islet area even as immune-mediated β cell destruction progresses. Convex hull representation of islet borders is 
especially accurate in islets without heavy infiltration, with late-stage diabetic islets posing a greater challenge 
due to autoimmune-mediated destruction of detectable islet components. Additionally, the capacity to expand 
this approach to include extra imaging channels corresponding to supplemental cellular markers or to apply 
this methodology to other tissue sites with defined architecture further augments the versatility of the method 
for quantifying microscopic cellular interactions.

Methods
Equipment and reagents.  Epi‑fluorescent microscopy.  Pancreata were harvested and frozen in OCT 
compound (Sakura Finetek, Torrance, CA) as previously described31,32. Pancreata were cut into two groups of 
10 sequential 7-μm-thick sections separated by a depth of 100-μm using a Leica CM1860 UV cryostat (Leica 
Microsystems, Buffalo Grove, IL) and mounted on glass slides (Fisherbrand ProbeOn Plus slides, 22-230-900; 
Thermo Fisher Scientific). Slides were fixed in cold (4 °C) acetone (L10407-AU; Thermo Fisher Scientific) for 
10 min and stored at − 20 °C for no more than 3 months. For insulitis quantification, slides were first warmed to 
25 °C and pancreas sections were hydrated in PBS for 10 min. Sections were then blocked with 5% bovine serum 
albumin (BSA, 9048-46-8; Sigma-Aldrich) in PBS for 1 h at 25 °C followed by primary antibody staining over-
night at 4 °C in 5% BSA. Primary antibodies used were guinea pig anti-insulin (A0564; Dako, Carpinteria, CA) 
at 1:1000 and rabbit anti-glucagon (EP3070; Abcam, Cambridge, MA) at 1:5000. Pancreas sections were then 
stained with secondary and direct conjugate antibodies for 1 h at 25 °C in 5% BSA. Secondary antibodies used 
were donkey anti-guinea pig IgG (H and L chain) (Cy3, 706165148; Jackson ImmunoResearch, West Grove, PA) 
at 1:1000 and donkey anti-rabbit IgG (H and L chain) (Alexa Fluor 647, 711605152; Jackson ImmunoResearch, 
West Grove, PA), and direct conjugates used were anti-CD4 (Alexa Fluor 594, GK1.5; BioLegend) at 1:50 and 
anti-CD8 (Brilliant Violet 480, 53-6.7; Thermo Fisher Scientific) at 1:200. Slides were mounted with Prolong-
Gold antifade reagent with DAPI (P36935; Thermo Fisher Scientific) using Gold Seal cover slips (12-518-108A; 
Thermo Fisher Scientific). Images were acquired on a Leica DM6000B epifluorescent microscope with a 20 × ob-
jective (Leica Microsystems, Buffalo Grove, IL). Islet scoring was performed by a blinded investigator using the 
following scale: 0, no insulitis; 1, peri-insulitis; 2, 25% of islet mass infiltrated; 3, 75% of islet mass infiltrated; 4, 
more than 75% of islet mass infiltrated8.
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Mice.  Female NOD (Taconic) and NOD.RAG1.KO (Jackson Laboratories) mice were housed in specific patho-
gen–free conditions. The Institutional Animal Care and Use Committee of the University of Minnesota (IACUC-
UMN) approved all animal experiments. All animal work was conducted in accordance with the guidelines and 
regulations imposed by the IACUC-UMN and all reporting in this manuscript follows the Animal Research: 
Reporting of In Vivo Experiments (ARRIVE) guideline recommendations33.

Assessment of diabetes.  Blood glucose concentrations were measured from female NOD mice with Contour 
glucose meters with associated Contour test strips (Bayer). Mice were designated diabetic with two consecutive 
readings of > 250 mg/dL.

Image analysis and macro development.  All image analyses were performed using ImageJ equipped with the 
Fiji Is Just ImageJ (FIJI) image processing package24,25. Automation of ImageJ commands was executed using the 
IJ1 Macro language and code was written with the ImageJ macro processing plugin (Supplementary data). All 
processing parameters (e.g. thresholding) were applied uniformly to all pixels within an image.

Data availability
The macro employed in this study is available in supplementary material. Additionally, any data generated in 
this study are freely available upon request.
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