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Abstract

Vitamin D and its receptor are involved in health and diseases through multiple

mechanisms including the immune system and gut microbiota modulations.

Gut microbiota variations have huge implications in intestinal and extra-

intestinal disorders such as colorectal cancer (CRC). This review highlights the

preventive role of vitamin D in colorectal tumorigenesis through the effects on

the immune system and gut microbiota modulation. The different associations

between vitamin D, gut microbial homeostasis, immune system, and CRC, are

dissected. Vitamin D is supposed to exert several chemopreventive effects on

CRC including direct antineoplastic mechanisms, the effects on the immune sys-

tem, and gut microbiota modulation. Large clinical studies with a randomized

design, are required to confirm the role of vitamin D in CRC, confirming its key

role in the complex interplay between the gut immune system and microbiota.
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1 | INTRODUCTION

Vitamin D is a liposoluble vitamin available in two forms,
D2 (ergocalciferol) and D3 (cholecalciferol). In humans,
it is biosynthesized from a derivative of the cholesterol in
the skin under the influence of solar ultraviolet (UV)-B
radiation.1,2 Vitamin D3 is also present in dietary sources
including animal foods such as fatty fish, liver, milk,
eggs, and dietary supplements. Both forms of vitamin
D are converted to 25-hydroxyvitamin D in the liver;
then, 25-hydroxyvitamin D passes through the blood
to the kidneys, where it is further modified to
1,25-dihydroxyvitamin D (1,25-D), or calcitriol, the active
form of vitamin D in the body.3 As reported in research
studies, vitamin D status is assessed by different variables
such as serum vitamin D, tissue vitamin D, and vitamin
D gene receptor (VDR).4 Serum 25-hydroxyvitamin D
level is widely recognized as a biomarker in determining
the effect of vitamin D status in the clinical setting.5,6

Vitamin D is first known for its traditional role in bone
metabolism, but it has other important biological func-
tions including modulation of the immune system and
anti-carcinogenic effects.7 Recent meta-analyses of case–
control studies, nested case–control studies, and cohort
studies assessed the association between serum vitamin
D and the risk of various types of cancer.8–10 Moreover,
vitamin D and its VDR are known to participate in gut
microbiota modulations in health and diseases.11 The gut
microbiota is an extremely rich and diverse ecosystem
inside the gastrointestinal tract, containing more than
1014 microorganisms.12 Gut microbiota variations have
huge implications in intestinal and extra-intestinal disor-
ders such as metabolic diseases and colorectal cancer
(CRC).13 In this context, this review aims to highlight the
role of vitamin D in colorectal tumorigenesis through gut
microbiota modulation and the effects on the immune
system. We dissect the different associations between
vitamin D, gut microbial homeostasis, immune system,
and CRC, to depict the potential chemopreventive role of
vitamin D in CRC.13,14

2 | GUT MICROBIOTA, IMMUNE
SYSTEM, AND CRC

The human microbiota is a complex ecosystem inhabiting
the human body and harboring more than 100 trillion
microorganisms, most of which colonize the gastrointesti-
nal tract, and specifically the colon, where bacterial den-
sity ranges between 1011 and 1012 cells per milliliter. Gut
microbiota shows several and yet poor-known functions
such as nutrient metabolism, maintenance of the gut
mucosal barrier, and immunomodulation. Alterations of

this ecosystem are nowadays recognized in several dis-
eases, among which cancer, and in particular colon can-
cer.13,14 Compositional gut bacteria variations between
fecal samples of CRC patients and healthy volunteers
have been shown in numerous studies.15 A recent meta-
analysis of fecal metagenomes reveals global microbial
signatures that are specific for CRC.16 In particular, in
CRC patients, the abundance of butyrate producers
decreases while opportunistic pathogens increase. This
constitutes a major structural imbalance of gut micro-
biota. Butyrate is a short-chain fatty acid (SCFA) pro-
duced by the bacterial fermentation of dietary
oligosaccharides and it has a key role in the gut homeo-
stasis; it stimulates mature colonocytes and inhibits
malignant cells; moreover, it lowers luminal pH and
maintains a low O2-tension, favorable to anaerobic com-
mensal bacteria, reducing the risk of an expansion of the
pathogen Enterobacteriaceae. In the lamina propria,
butyrate induces differentiation of Foxp3+ T regulatory
(reg) cells and the expression of interleukin (IL)-10, an
anti-inflammatory cytokine maintaining immune toler-
ance and immune-homeostasis.17,18 Thus, butyrate-
producing bacteria contribute to gut barrier function,
reducing gut inflammation.19 In turn, a reduction in
butyrate-producers may induce an imbalance of gut
microbiota, endotoxin, and bacterial products transloca-
tion, activating an immune response in the colonic
mucosa.20 More in-depth, the gut microbiota of the CRC
patients is characterized by enrichment in Bacteroides
fragilis, Enterococcus, Escherichia/ Shigella, Klebsiella,
Streptococcus, and Peptostreptococcus and a decrease in
Roseburia and other butyrate-producing bacteria of the
family Lachnospiraceae, compared with healthy sub-
jects.15 On the other hand, the gut microbiota of the
healthy subjects has higher levels of Bacteroides vulgatus
and Bacteroides uniformis compared with CRC subjects.
Also, Shen et al.21 demonstrated a higher abundance of
Proteobacteria and a lower abundance of Bacteroidetes,
in colorectal adenomas cases compared to the normal
colonic mucosa, suggesting a peculiar inflammatory
microbial milieu in CRC precursors. Interestingly, the
gut microbiota of CRC patients is enriched in
Fusobacterium spp, and in particular Fusobacterium
nucleatum, a periodontal pathogen, whose role in CRC
has been extensively debated.14,22 In detail, preclinical
studies reported a heavy enrichment of CRC tissues in
FN, which is associated with genetic and epigenetic alter-
ations such as CpG island methylator phenotype (CIMP)
status, microsatellite instability (MSI), and mutations in
BRAF, KRAS, TP53, TGF-β, CHD7, and CHD8.23,24 From
a molecular point of view, F. nucleatum may express its
oncogenic potential through the adhesin FadA, activating
the E-cadherin/β-catenin and Wnt (7a, 7b, 9a) oncogenic

286 RINNINELLA ET AL.



pathways, and promoting the synthesis of pro-
inflammatory cytokines such as IL-6, IL-8, and IL-18 as
well as TNF-α and reactive oxygen species (ROS) with
subsequently DNA damage.25,26 Also, F. nucleatum colo-
nizes the tumor environment through the lectin Fap2,
binding the host polysaccharide Gal-GalNAc, which is
overexpressed in colorectal adenocarcinoma and metasta-
ses.27 Fap2 mediates the impairment of host-antitumor
immunity binding and activating TIGIT, an immunoreg-
ulatory signaling receptor suppressing T cells and NK
cells activation, thus reducing the control of CRC cells by
the immune system.28,29 Fap2 also induces tumor prolif-
eration through lymphocyte apoptosis.30 All the over-
mentioned findings reveal that alterations in CRC
microbiota may contribute to CRC development. Wong
et al. went further by giving germ-free C57BL/6 mice
with stool from five patients with CRC or five controls.
They collected intestinal tissues and performed histology
analysis and 16S ribosomal RNA gene sequencing analy-
sis of feces from mice, showing that gavages of fecal sam-
ples from patients with CRC promoted intestinal
carcinogenesis.31 According to several animal studies,
antibiotics eliminate carcinogenic bacteria in mice
models.32,33 Hence, antibiotic administration could theo-
retically protect against tumor proliferation. Neverthe-
less, in humans, antibiotic use is closely linked with an
increased risk of CRC incidence.34,35 We can hypothesize
that in more complex ecosystems, antibiotic treatment
exacerbates dysbiosis, by reducing gut microbiota diver-
sity and richness of specific species leading to an
increased risk of pathogenic bacterial colonization.36

3 | VITAMIN D, IMMUNE SYSTEM,
AND THE GUT MICROBIOTA

Given the long-term exposure of the colonic mucosa to
external agents and the gut microbiota, the elevated load
in pathogen-associated molecular patterns (PAMPs) con-
tinuously elicits the immune response. The gut (and sys-
temic) immune homeostasis is thus preserved by
regulatory factors such as microbial richness, anti-
inflammatory cytokines, and immune regulatory cells.37

In this sense, 1,25-D, binding to its receptor, could repre-
sent a regulatory biofactor, affecting the immune system
both directly and through gut microbiota modulation.
VDR belongs to a superfamily of nuclear receptors that
transduce hormonal signals from the immediate environ-
ment and participate in the activation of several genes.38

The VDR is expressed in at least 30 different target tissues
including bone, kidney, blood, breast, prostate, gut, acti-
vated B- and T- lymphocytes, monocytes, and
keratinocytes; this widespread expression may largely

explain the pleiotropic effects of vitamin D.38 In the
colonic mucosa, it has been assessed that VDR stabilizes
cell tight junctions between the intestinal epithelial cells
inducing the expression of cell junction proteins such as
ZO-1, E-cadherin, and occludin.39,40 Moreover, nuclear
VDR is directly involved in the regulation of nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-
κB) activation, a pathway essential for inflammatory
response41; indeed, VDR absence leads to reduced levels
of I-kappa-B-alpha protein, the endogenous inhibitor of
NF-κB.42 Vitamin D has a key role in both the innate and
the adaptive immune systems.43 1,25-D can stimulate the
expression of β-defensins and cathelicidins,44,45 the main
classes of antimicrobial peptides (AMPs)46—key compo-
nents of innate host defense47—by interacting with VDR.
In addition, 1,25-D enhances immune homeostasis
decreasing Th1/Th17 CD4+ T cells activity, enhancing
Treg activity, downregulating T cell-driven IgG produc-
tion, and inhibiting dendritic cell differentiation48 in the
intestinal lamina propria. VDR gene acts as a key host
modulator of the gut microbiome, even if it is not
expressed by prokaryotes cells.49 Hence, the effects of
vitamin D and its receptor on gut microbiota are consid-
ered as indirect through the host immune system.50 A
recent genome-wide host–microbiota association study51

identified the VDR gene among the most significant loci
that were associated with overall gut microbial variation
and abundance of individual bacteria, as well as func-
tions of gastrointestinal and immune-related tissues and
cells. In VDR knock-out (KO) (Vdr�/�) mice, feces are
depleted in Lactobacillus and enriched in Clostridium and
Bacteroides; Alistipes and Odoribacter abundances are sig-
nificantly decreased whereas Eggerthella quantity is
increased. Moreover, the intestinal-specific deletion of
VDR could be associated with a decrease in butyrate-
producing bacteria. In mice, vitamin D deficiency (com-
bined with a high-fat diet) may cause dysbiosis, increased
gut permeability, mucosal collapse, and systemic inflam-
mation leading to insulin resistance and hepatic
steatosis.52 In humans, a recent randomized controlled
trial enrolling 26 healthy overweight adults evaluated the
effects of vitamin D supplementation on the fecal micro-
biota of two groups (treatment vs. placebo).53 The vita-
min D group had a higher abundance of genus
Lachnospira, and a lower abundance of genus Blautia
than the placebo group. Moreover, individuals with
25-hydroxyvitamin D > 75 nmol/L had a higher abun-
dance of genus Coprococcus and lower abundance of genus
Ruminococcus compared to those with 25-hydroxyvitamin
D < 50 nmol/L, suggesting potential beneficial effects of
vitamin D supplementation.53 A recent study of 80 other-
wise healthy vitamin D-deficient women54 measured
serum 25-hydroxyvitamin D levels in the blood before
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and after vitamin D supplementation. Vitamin D supple-
mentation significantly increased gut microbial diversity.
Specifically, the Bacteroidetes to Firmicutes ratio
increased. At the genus level, significant variations in
Bacteroides and Prevotella, along with the abundance of
the health-promoting probiotic taxa Akkermansia and
Bifidobacterium, indicated a beneficial variation in
enterotypes following supplementation. Interestingly,
comparing samples, researchers found more pronounced
changes in abundance of major phyla in those of
responders. A recent cross-sectional study conducted in
567 North Americans found that men with higher levels
of 1,25-D had greater α-diversity (the diversity of micro-
bial species within an individual) and β-diversity (the
difference in microbial composition between two sam-
ples) than counterparts with lower levels, even after
adjusting for other covariates of microbial diversity such
as age, geographical origin, race, PPI, and antibiotic
use.55 Another systematic review of animal and human
studies confirmed a significant association between vita-
min D status and β-diversity.56 The beneficial role of
vitamin D on gut microbial modulation is also con-
firmed by the evidence that men with elevated 1,25-D
plasmatic levels are more likely to possess butyrate-
producing bacteria.55

4 | CHEMOPREVENTIVE EFFECTS
OF VITAMIN D AND THE COMPLEX
NETWORK OF GUT MICROBIOTA
AND IMMUNE SYSTEM

Vitamin D is supposed to exert several chemopreventive
effects on CRC (Figure 1).

4.1 | Direct antineoplastic effects

Vitamin D provides a direct preventive action in CRC
onset and progression: its binding to VDR induces several
intracellular and intranuclear pathways linked to growth,
differentiation, and apoptosis. Transcriptomic studies in
CRC cell lines identified hundreds of genes involved in
DNA synthesis, apoptosis, and intracellular signals acti-
vated by VDR.57,58 In detail, the antiproliferative effects
of Vitamin D in CRC includes the VDR binding to
β-catenin (preventing the activation of TCF7L2 com-
plexes in the nucleus), the upregulation of the protein
CDH1 (E-cadherin), a transmembrane protein whose
intracellular tail attracts β-catenin, and the inhibition of
the proto-oncogene MYC (upregulated by the WNT/β-
catenin pathway). Moreover, 1,25-D regulates and
inhibits the activity of the epidermal growth factor

receptor (EGFR) gene and the signaling activity of insulin
growth factor (IGF) 2 protein.58,59 Vitamin D has also a
regulatory epigenetic action, controlling the histone
demethylases KDM6B and activating the cystatin D
(CST5) gene. Cystatin D, in turn, inhibits several cysteine
proteases of the cathepsin family, reducing migration and
growth in CRC cells.60 Another indirect activity of 1,25-D
is the regulation of miR-22 -a short RNA molecule
targeting histone deacetylase 4 (HDAC4) and myc bind-
ing protein (MYCBP)- enhancing its antiproliferative and
anti-migratory effect.61 Vitamin D activity could also
mediate the potential chemopreventive effect of estrogen
replacement therapy in postmenopausal women. VDR is
a known estrogen-responsive gene: estradiol administra-
tion results in significant changes of estrogen-responsive
genes and seems to increase VDR signaling in the colo-
rectal epithelium of postmenopausal women.62 A recent
study confirmed that vitamin D intake could have a clini-
cal impact in advanced or metastatic CRC patients under-
going chemotherapy, in a median follow-up of 2 years.18

During the study, half of the patients were given a daily
dose of 400 IU of vitamin D. The other group first took
two 4000 IU capsules per day for 2 weeks, then one
4000 IU capsule daily. In both groups, the course of the
disease slowed significantly, with greater progression-free
survival in the arm receiving the highest supplementa-
tion. Moreover, in 2 years, CRC was 36% less likely to
spread or be fatal in subjects who consumed more
vitamin D.63 An updated meta-analysis of randomized
controlled trials confirmed that vitamin D supplementa-
tion significantly reduced cancer-related mortality even
though it did not reduce total cancer incidence.63

FIGURE 1 The chemopreventive effects of vitamin D: vitamin

D could affect CRC both directly and through the immune system.

Gut microbiota and immune system are also interconnected, both

of them influencing CRC development and progression
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4.2 | Effects through the gut microbiota
and immune system

Gut microbiota is a key driver of CRC development and
progression: invasive pathobionts (e.g., Escherichia coli)
may contribute to cancer onset counteracting autophagy
and antimicrobial responses in epithelial colonic cells,64

and CRC patients have a pro-inflammatory gut microbial
signature, as stated above. Microbiota is, in turn, modu-
lated by several nutrients such as the micronutrient
vitamin D, through the immune system. Gut microbiota
and immune system are strictly interconnected. The gut
microbiota supports the development and response of the
immune system, which in turn, regulates intestinal
eubiosis balancing tolerance and immunity on the gut
microbiota. Vitamin D plays a pivotal role in this com-
plex network, since VDR is expressed (and activated
under-stimulation) in several immune cell lineages
including CD4 and CD8 T cells, B cells, neutrophils, mac-
rophages, and dendritic cells.65 In a human interven-
tional study, vitamin D supplementation (a weekly dose
of 980 IU/kg body weight of vitamin D3 for 8 weeks) sig-
nificantly changed gut microbiome composition, reduc-
ing opportunistic pathogens and increasing bacterial
richness. Specifically, the class of Gammaproteobacteria
(including Pseudomonas spp and Escherichia/Shigella
spp), significantly decreased. The effects on gut bacteria
are supposed to be mediated by mucosal CD8+ T cells.
These immune cells have a high expression of VDR:
under vitamin D supplementation a switch from naïve to
effector form occurs66; CD8+ T effector cells reduce the
inflammatory environment through the calcitriol synthe-
sis and allowing beneficial bacteria (such as Bacte-
roidetes) to outweigh opportunistic pathogens.67 These
gut microbial modulations could counteract the gut bar-
rier dysfunctions and dysbiosis seen during CRC develop-
ment and progression. Conversely, vitamin D deficiency
exacerbates gut microbiota dysfunctions triggered by
CRC such as dysbiosis, decreases bacterial butyrate pro-
ducers, and increases chronic inflammation leading to
immunosuppression.68 A recent case–control study ana-
lyzed fecal microbiota composition of CRC and controls
subjects evaluating the role of microbiome and diet
(including vitamin D) in CRC etiology and regulation of
inflammation markers.69 Researchers found an inverse
association between CRC risk and high consumption of
fatty fish (rich in omega-3 polyunsaturated fatty acids
and vitamin D). Conversely, a diet poor in fatty fish and
rich in carbohydrates was significantly associated with
CRC risk. The gut microbiome (Bifidobacterium/
Escherichia genera ratio) was found to significantly medi-
ate the effect of diet on CRC risk. Moreover, the gut
microbial profile of CRC patients was enriched in pro-

inflammatory species such as Parvimonas micra,
F. nucleatum, and B. fragilis species whereas controls
specimens were associated with a higher abundance of
Bacteroidetes and Bifidobacterium species. The link
between gut inflammation and cancer has been well
established.70 The risk of CRC increases with the dura-
tion of colitis in patients affected by inflammatory bowel
diseases (IBD), correlating with the grade of inflamma-
tion and extend of the disease.71 Interestingly, a vitamin
D deficit has been also related to IBDs onset, making this
link ever closer.72 A human study correlated seasonal
changes of circulating 25-hydroxyvitamin D levels with
the gut microbiome composition in IBD patients, observ-
ing a reduction in the abundance of bacterial genera typi-
cal for inflammation such as Eggerthella lenta,
Fusobacterium spp, Bacteroides spp, Collinsella aero-
faciens, and Helicobacter spp in summer/autumn period,
when light exposure (and 1,25-D synthesis) is higher.73

The immune cells are directly involved in the pathogene-
sis of both IBD and colitis-associated CRC.74 In colon
cancer cells, macrophage-derived IL-1β induces Wnt sig-
naling.75 In this context, the 1,25-D-VDR binding inhibits
the Wnt/β-catenin activity in macrophages making them
unable to activate Wnt signaling in colon cancer cells.57,63

Moreover, chronic inflammation increases the turnover
of epithelial cells and the release of ROS contributing to
the development of low, high-grade, and finally carci-
noma lesions through the stepwise mutation of key genes
in carcinogenesis such as DNA-repair genes, p53, and
KRAS.76 A recent mice model of inflammation-associated
colon cancer demonstrated that increased dietary vitamin
D supplementation decreases inflammation, dysplasia,
and tumor incidence, and is associated with decreased
MAPK and NF-κB expression during the acute inflamma-
tory stage of disease.77 Cancer cells often contain abun-
dant p53-upregulated modulators of apoptosis (PUMA)
interacting with VDR genes.78 VDR signaling is involved
in the prevention of apoptosis by downregulating PUMA
and blocking NF-κB thus preventing the spread of dam-
aged cells.79 In this context, the activity of VDR is also
under the control of SCFAs, especially butyrate.80 This
makes even closer the triple link between gut microbiota,
Vitamin D, and the immune system in CRC. A mouse
model study of colitis-associated colon cancer81 went fur-
ther, investigating the anti-inflammatory, anti-prolifera-
tive, and chemopreventive effects of vitamin D analog
and assessing a down-regulation of growth-promoting c-
Myc gene, pro-inflammatory COX-2, and inhibition of
ERK activation pathway in the premalignant phase. As
regards CRC and the immune intestinal homeostasis,
1,25-D promotes both antimicrobial activity and a
tolerogenic response, as seen in experimental models of
colitis.50 In detail, 1,25-D inhibits in vitro and in vivo the
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interferon (IFN)-γ and IL-17 production from T cells,82

induces the anti-inflammatory cytokine IL-10 from
Foxp3+ Treg cells83 and the antimicrobial IL-22 from
type 3 innate lymphoid (ILC3) cells.84 All these findings
and statements allow us to attribute to vitamin D a pre-
ventive and anti-proliferative role in CRC carcinogenesis
(Figure 2), even if clinical studies with a prospective
study design are still lacking in this setting.

5 | CONCLUSIONS

In conclusion, vitamin D has been associated with CRC
prevention and better clinical outcomes.85 Vitamin D acts
as a regulatory prohormone with genetic and epigenetic
targets, producing pleiotropic effects by the binding to its
VDR, almost ubiquitous in the human body. In colonic
mucosa, vitamin D may exert its action through an

immune system modulation and microbial composition
shaping, which, in turn, influences mucosal immunity.
These effects influence the most known mechanisms of
CRC development. To date, only preclinical and few clin-
ical studies investigated the role of vitamin D as a chemo-
preventive agent in CRC. Further clinical studies with a
large sample size and randomized design, are required to
confirm the close interplay between vitamin D, micro-
biota, inflammation, and CRC, dissecting the role of vita-
min D as a potential agent in CRC prevention and
therapy.
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