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A statistical perspective on baseline adjustment in
pharmacogenomic genome-wide association studies of
quantitative change
Hong Zhang 1, Aparna Chhibber2,4, Peter M. Shaw2, Devan V. Mehrotra3 and Judong Shen 1✉

In pharmacogenetic (PGx) studies, drug response phenotypes are often measured in the form of change in a quantitative trait
before and after treatment. There is some debate in recent literature regarding baseline adjustment, or inclusion of pre-treatment
or baseline value as a covariate, in PGx genome-wide association studies (GWAS) analysis. Here, we provide a clear statistical
perspective on this baseline adjustment issue by running extensive simulations based on nine statistical models to evaluate the
influence of baseline adjustment on type I error and power. We then apply these nine models to analyzing the change in low-
density lipoprotein cholesterol (LDL-C) levels with ezetimibe+ simvastatin combination therapy compared with simvastatin
monotherapy therapy in the 5661 participants of the IMPROVE-IT (IMProved Reduction of Outcomes: Vytroin Efficacy International
Trial) PGx GWAS, supporting the conclusions drawn from our simulations. Both simulations and GWAS analyses consistently show
that baseline-unadjusted models inflate type I error for the variants associated with baseline value if the baseline value is also
associated with change from baseline (e.g., when baseline value is a mediator between a variant and change from baseline), while
baseline-adjusted models can control type I error in various scenarios. We thus recommend performing baseline-adjusted analyses
in PGx GWASs of quantitative change.
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INTRODUCTION
Pharmacogenetic studies (PGx) aim to identify genetic biomarkers
associated with efficacy and safety of drugs1. Drug response
phenotypes are often measured in the form of change from pre-
treatment (baseline) values of a quantitative trait. The goal of this
type of analysis is to identify genetic effects on drug related
changes independent of the baseline values. For many quantita-
tive measures used in drug response analyses, the magnitude of
change in a score with treatment is correlated with the pre-
treatment value. This correlation may be driven by true
associations between these values or may be introduced through
intra-subject variability, errors in the quantitative measurements
used, or because of the regression-to-the-mean phenomenon, a
phenomenon in which repeated measures of a value will tend to
come closer to the mean of the group from which they are
sampled2. Because genetic variants can be associated with the
baseline values of a trait, care must be taken in adequately
controlling for any correlation between pre-treatment and post-
treatment values. However, there is considerable debate in the
literature on the best approach to preventing false associations
between a variable of interest (such as genotype) and the
quantitative change driven by associations with the baseline
values3–5. Specifically, in the context of PGx studies, a recent
publication explores the impact of adjusting for baseline by
conducting a series of GWASs for response to statin therapy as
measured by change in low-density lipoprotein cholesterol (LDL-
C) and supports the approach for not adjusting baseline values in
GWAS analysis of quantitative change from baseline (CFB)6.
In this paper, we use systematic simulations and rigorous statistical

modeling to explore this issue and make recommendations on the

best analysis approach. We have studied the relationship among
different statistical models, including baseline-adjusted and unad-
justed models. More specifically, we have conducted extensive
simulations to compare the type I error and power performance of
nine statistical models (Methods) and demonstrate that: (1) baseline-
unadjusted models tend to generate inflated type I errors when the
baseline value is a mediator, i.e., when the baseline value is
associated with the genotype and meanwhile associated with CFB or
explains at least some of the association between genotype and CFB,
while baseline-adjusted models can control type I error in all
simulated scenarios; (2) the power of the baseline-adjusted and
unadjusted models are similar when there is no mediator effect; and
(3) the power of the baseline-adjusted model is higher than the
unadjusted model when the genetic effect is in a different direction
from the mediator effect. Based on the simulation results, we further
argue that, although measurement errors could inflate the type I
error of the baseline-adjusted models, not adjusting the baseline is
also likely to cause type I error inflation due to the potential mediator
effect of the baseline. We thus recommend performing baseline-
adjusted analyses as the primary analysis. If type I error rate from
baseline-adjusted analyses is still inflated which may be caused by
measurement error, baseline-unadjusted analyses may be performed
for further diagnosis. The main points from our simulations are
further supported by the analyses of change in LDL-C using
IMPROVE-IT PGx data based on nine statistical models (Methods).

RESULTS
Nine statistical models were evaluated in both simulations and in
the analysis of a real PGx GWAS dataset. These include models
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that measure change as both the transformed residuals of log-
fold-CFB and the CFB ratio. The log-fold change from the baseline
endpoints was also analyzed directly without transforming
residuals. In addition, a two degree of freedom (2df) test that
incorporates a treatment by genotype interaction term was also
tested. All models were evaluated both with and without
adjusting for natural log-transformed baseline values.

Simulation results: type I error
The type I error simulation results based on various simulation
settings (Methods) are summarized in Fig. 1. When the mediator
effect βG0

� βy0 ≠ 0 (i.e., when there is both an association between
genotype and baseline value or βG0

≠ 0 and an association
between baseline value and CFB or βy0 ≠ 0 in Fig. 1a, c), the
baseline-unadjusted models (dotted curves) can inflate the type I
errors as high as 3:5 ´ α, where α is the nominal type I error rate,
βG0

is the effect size of the association between genotype and
baseline and βy0 measures the dependence of CFB on the
baseline. The baseline-adjusted models (solid curves), however,
can control the type I errors at the nominal levels. This is true
regardless of the transformations applied (log vs. percentage),
statistical tests (1df vs. 2df), regression approaches (1-step vs. 2-
step) and measurement errors (no error vs. white noises). More
variation observed at the smaller α levels is due to Monte-Carlo
errors, i.e., simulation-driven variability. We further explored
different settings of βG0

and βy0 . As evidenced in Supplementary
Figs. 1 and 2, the results are consistent with different combina-
tions of βG0

and βy0 . If their product is not zero, the baseline-
unadjusted models will inflate the type I errors substantially in
both the presence and absence of measurement error for almost
all α (except for very large α). Clifton and Clifton derived the
correlation between the baseline score and CFB score and showed
that there is always a correlation (usually negative, also see an
example from our IMPROVE-IT data in Supplementary Fig. 3)
between the change score and baseline score7, which means βy0 is

usually a negative value. Thus, the mediator effect usually
depends on βG0

, the baseline genetic effect size.
The impacts of different measurement errors on the type I

errors were also examined. As shown in Supplementary Fig. 4, we
find that the type I errors of baseline-adjusted models are inflated
only if the errors of baseline and post-treatment measurements
are in different direction (configuration iii). In contrast, if the
measurement errors are both white noises (configuration i), or if
they are in the same direction (configuration ii), the type I errors of
baseline-adjusted models are well-controlled.
In the sensitivity analysis of modeling post-treatment values,

Supplementary Fig. 5 shows that the type I errors of such models
(M5* and M6*) follow the same pattern with CFB models (M5 and
M6). That is, if the mediator effect is non-zero, then the baseline-
unadjusted models will have inflated type I errors. The baseline-
adjusted models again can control type I error well except for
measurement error configuration iii.

Simulation results: power
The power simulation results based on various simulation settings
(Methods) are summarized in Fig. 2. Note that the power presented
is not adjusted for potentially inflated type I error rates for the
baseline-unadjusted models. The power of the baseline-adjusted
models is higher than the corresponding baseline-unadjusted
models under the condition that the mediator effect βG0

� βy0 is in
a different direction from the genetic effects βG. For example, given
baseline is often negatively associated with CFB7, the condition is
met when baseline genetic effect βG0

is in the same direction of the
genetic effects βG, that is, when an allele is associated with both
higher baseline value and larger CFB or when an allele is associated
with both lower baseline value and smaller CFB. The baseline-
unadjusted models have higher power when baseline genetic
effect βG0

is in the opposite direction of the genetic effects βG
given baseline is negatively associated with CFB. However, note
that such power advantage of the baseline-unadjusted model

Fig. 1 Ratios between empirical type I error rates and the nominal α levels. Upper panels (a and b): no measurement errors. Lower panels
(c and d): white noise measurement error (normal relative error rate with mean zero). Dotted curves: baseline-unadjusted models. Horizontal

dash line: the ratio (α+ 3*SE)/α= 1+ 3*SE/α � 1:67, where SE is the margin of error calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α�ð1�αÞ

n

q
, α ¼ 10�6 is the nominal level and

n ¼ 2 ´ 107 is the number of simulations. M1–M9 are defined in the “Methods” section.
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comes (at least partially) at the cost of higher type I error described
above. If there is no mediator effect (Fig. 2b, e), then the baseline
adjustment will not affect power. This observation sheds light on
understanding the different p values generated by the baseline-
adjusted or unadjusted models for the top signals in the IMPROVE-
IT GWAS data analysis. We will discuss the power comparison more
in the “IMPROVE-IT GWAS analysis results from nine statistical
models” section.
Another observation worth mentioning is that when the genetic

interaction effect βGT is larger, the power of the 2df test (model
M5 or M6) is higher than the power of a corresponding 1df test
(model M1 or M3). This is not surprising since we explicitly specify
an interaction term in the 2df model (M5) to model the interaction
effect. This term will capture the interaction effect if it is present.
However, when there isn’t any interaction effect, the interaction
term will be pure noise thus adding it in the model reduces
the power.
More power simulation results are shown in Supplementary

Figs. 6–8 across different combinations of genetic effects ðβG; βGT Þ
and parameters ðβG0

; βy0Þ. The observation is consistent: if the
genetic effects are in different direction from the mediator effect
ðβG0

� βy0Þ, then the power of the baseline-adjusted model is
higher; otherwise, the unadjusted models have higher power
(prior to adjusting for type I error inflation).
We also compare the power of post-treatment value models

(M5*, M6* and Q test) with the CFB models M5 and M6.
Supplementary Fig. 9 shows that the baseline-adjusted model
M5* has comparable power with M5. The power of Q test is the
lowest among all methods.

Simulation results: conclusions
By conducting the extensive type I error and power simulations,
we have demonstrated several critical points:

(1) Baseline adjustment is necessary when the baseline value
is a mediator for the effect of G on CFB (meaning in
addition to the direct G effect on CFB, G can influence CFB
through its association with the baseline value). Note that
this may not inflate the entire QQ plot as the number of
variants associated with the baseline should not be large.

However, the type I error rates for those variants associated
with the baseline will be inflated if the mediator effect is
unaccounted for. Theoretically speaking, when the med-
iator effect is unaccounted for, we are testing βy0 � βG0

þ βG
in the unadjusted model. Even if the parameter of interest
βG ¼ 0, a non-zero βy0 � βG0

can still drive a spurious
association.

(2) The baseline adjustment model can control the type I error
under various scenarios, even when there are normal
(white noise) random errors added to the baseline and
post-baseline measurements.

(3) The power comparison between the baseline-adjusted and
unadjusted models depends on the mediator effect
(βy0 � βG0

) and the genetic effect (βG). If they are in different
directions, the baseline-adjusted model has higher power. If
they are in the same direction, the unadjusted model’s
power is higher before adjusting for inflated type I errors. In
general, if jβy0 � βG0

þ βGj>jβGj, the power of the unadjusted
model is higher compared to the adjusted model, though at
the cost of higher type I error as noted in 1).

(4) The joint test (2df test) of βG ¼ 0& βGT ¼ 0 is more desirable
if we would like to detect strong interaction between
treatment and genotype. When we don’t expect or are not
interested in the interaction, such as in Oni-Orisan et al.’s
paper6, a 1df test of βG ¼ 0 is more powerful.

IMPROVE-IT GWAS analysis results from nine statistical
models
There was no evidence of overall genomic inflation8 based on a
genomic inflation factor (λ) value in this European population with
5661 subjects. The genomic inflation factors from the nine GWAS
analyses based on the nine statistical models (Methods) are 1.02,
1.01, 1.01, 1.01, 1.00, 1.00, 1.01, 1.02 and 1.01, respectively
(Supplementary Fig. 10). The association results from the nine
GWAS analyses of LDL-C response are summarized in Fig. 3,
Supplementary Fig. 11, Table 1 and Supplementary Table 1. Five
lead variants in the genome-wide significant loci (CELSR2/PSRC1/
SORT1, STAG1/SLC35G2/NCK1, LPA, SLCO1B1 and APOE) were
detected by at least one of the nine GWASs from the nine

Fig. 2 Power comparison between baseline-adjusted and unadjusted models. Upper panels (a–c): βG ¼ �0:2. Lower panels (d–f): βG ¼ 0:2.

First, second, third column: βG0
; βy0

� �
¼ 0:1; 0:2ð Þ; 0; 0ð Þ; ð0:1;�0:2Þ, respectively. α ¼ 10�6, which is consistent with the type I error simulation.

M1–M9 are defined in the “Methods” section.
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statistical models. The GWAS using the log-fold-CFB adjusting for
the natural log-transformed baseline level (statistical model M1)
revealed variants from three loci that met genome-wide
significance (CELSR2/PSRC1/SORT1, LPA and APOE; Fig. 3a and
Table 1). The GWAS from M3 (same as M1, but without baseline
adjustment) yielded the same three loci (Fig. 3c and Table 1) that
met genome-wide significance, though with larger p value and
smaller βG0

. The smaller p values for the adjusted models are
consistent with the simulation results that suggest power will be
larger for baseline-adjusted models when the mediator effect
ðβy0 � βG0

Þ is in the opposite direction from βG. Similar results were
observed when the CFB ratio was used as the endpoint: both the
baseline-adjusted model M4 and the unadjusted model M2
yielded the same three loci (Supplementary Fig. 11-M4 and M2
and Supplementary Table 1), and unadjusted models resulted in
larger p values and smaller βG0

. It is worthwhile noting that the
CELSR2/PSRC1/SORT1 locus was identified in all four models (M1,
M3, M5 and M6) in our GWAS (Fig. 3a–d) while it was not detected
by the baseline-unadjusted models in Oni-Orisan et al.’s paper6. In
addition, we observed very small differences in use of baseline

difference ln y1 � ln y0ð Þ vs. CFB ratio y1�y0
y0

� �
as a phenotype.

The 1-step regression with baseline adjustment model M8 gave
the same three statistically significant loci (Supplementary Fig. 11-
M8 and Supplementary Table 1) and M9, the unadjusted version
of M8, yielded one more statistically significant locus (SLCO1B1) on
chromosome 12 (Supplementary Fig. 11-M8 and Supplementary
Table 1). This is consistent with our simulation results that the
1-step regression models provided slightly larger power than the
2-step regression models (e.g., M9 vs. M3 in Fig. 2). The smaller

p value for the unadjusted models for the SLCO1B1 locus (Table 1)
could be explained by the fact that the unadjusted model has
higher power for detecting the signals whose mediator effect is in
the same direction with the genetic effect; for SLCO1B1, the effect
allele for the lead variant was associated with a higher baseline
LDL-C and lower treatment benefit. However, it is quite possible
that this power advantage is (at least partially) due to inflated
type I error as evidenced in the simulation results. In addition,
when the 2df test (joint test of G and GT interaction) was used, the
baseline-adjusted model M5 detected the same loci (Fig. 3b and
Table 1) as M1 and M8. M6, the unadjusted 2df test model, was
able to identify one more locus (STAG1/SLC35G2/NCK1; Fig. 3d and
Table 1) as compared to M9 and M3. The strong genotype*treat-
ment interaction effect (βGT in Table 1) and the small interaction
p value (P_GT in Table 1) for this locus explains why it was only
detected with the 2df test.
To further explore the impact of baseline adjustment on type I

error, we selected a subset of 10,187 variants whose baseline
association p values are less than 1e−03 from M7 (the baseline
association model). Given a clear negative correlation between the
baseline and the CFB in IMPROVE-IT data (Supplementary Fig. 3), it
is reasonable to assume that these variants show some evidence of
mediator effect, i.e., βG0

� βy0 ≠ 0. Figure 4 and Supplementary Fig.
12 summarize the quantile-quantile plots of these variants’ p values
generated by M1–M9 except for M7. The comparisons uniformly
showed that baseline-unadjusted models had much larger
genomic inflation factors (λ= 2.10–2.47) than the baseline-
adjusted models (λ= 1.10–1.19). This observation is consistent
with our simulation results that the baseline-unadjusted models
can heavily inflate the type I errors for those variants with non-zero

Fig. 3 Manhattan plots for five genome-wide association studies (GWAS) of drug-induced change in low-density lipoprotein cholesterol
(LDL-C) from IMPROVE-IT PGx study. These five Manhattan plots are from Model 1 (a, M1), Model 5 (b, M5), Model 3 (c, M3), Model 6 (d, M6)
and Model 7 (e, M7). M1 used log-fold-CFB as phenotype, adjusted for baseline LDL-C and used a 2-step approach in the regression, in which
residuals were obtained by regressing out the covariates and then inverse normally transformed. M3 was the same as M1 except that it did not
adjust for baseline LDL-C in the model. Both M1 and M3 yielded the same three significant loci. M5 used log-fold-CFB as the phenotype,
adjusted baseline LDL-C, and used the 2-df test in the regression. M6 was the same as M5 except that it did not adjust for baseline LDL-C in
the model. M5 yielded three significant loci while M6 yielded two additional significant loci (STAG1/SLC35G2/NCK1, SLCO1B1) on chromosome 3
and 12, respectively. M7 used log-baseline as the phenotype for the baseline association test, which yielded one significant locus on
chromosome 19. The horizontal red line represents the whole-genome significant p value threshold 5e−08. All tests were two-sided.
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mediator effect. The baseline-adjusted models, however, control
type I error well regardless of the mediator effect.
To further examine the influence of baseline adjustment on

power, we compared the top variants’ association results that were
identified by the baseline-adjusted and unadjusted models
respectively. Table 1 shows that as long as the estimated βy0 �
βG0

is of a different sign than the estimated βG, then the baseline-
adjusted models will have smaller p values than the corresponding
unadjusted models (e.g., while comparing M3 vs. M1, M2 vs. M4,
M6 vs. M5 and M9 vs. M8). The only exception is rs79929954
(M1 vs. M3) in the STAG1/SLC35G2/NCK1 locus whose baseline

association p value is PG0 ¼ 0:892 and βG0
¼ �0:002. However, this

observation is consistent with our simulation results that the
baseline-adjusted and unadjusted models provide very similar
power (p values from M1 and M3 are 7.81E−03 and 7.91E−03,
respectively) if there is no genotype and baseline association (or
βG0

is very close to 0). We also observed that the smaller the PG0

(e.g., larger the association of variant and baseline), the larger
difference of association strength (i.e., the CFB association p values)
tends to be observed between the baseline-adjusted and
unadjusted models in our LDL-C real GWAS example (given βy0 is
a negative value around −0.5). For instance, the baseline-genotype

Table 1. All five lead variants from the GWAS analyses of natural log-transformed CFB of LDL-C, LDL-C percent change and natural log-transformed
baseline LDL-C based on five statistical models: M1 (baseline adjustment, 1-df test and 2-step regression), M3 (baseline un-adjustment, 1-df test and
2-step regression), M5 (baseline adjustment and 2-df test), M6 (baseline un-adjustment and 2-df test) and M7 (baseline association only).

Gene SNP CHR BP MA MAF Modela βy0
b βG or βG0

c P_G βGT
d P_GTd P_2dfd

CELSR2/PSRC1/
SORT1

rs599839 1 109822166 G 0.240 M1 (BJ-1dfT-2SR) −0.490 −0.172 2.92E−14

M3 (BuJ-1dfT-2SR) −0.156 6.19E−12

M5 (BJ-2dfT) −0.493 −0.052 1.12E−12 0.026 8.12E−02 2.22E−12

M6 (BuJ-2dfT) −0.049 1.74E−10 0.029 6.04E−02 2.44E−10

M7 (Baseline only) −0.008 6.58E
−02e

STAG1/SLC35G2/
NCK1

rs79929954 3 136623748 G 0.015 M1 (BJ-1dfT-2SR) −0.490 0.215 7.81E
−03e

M3 (BuJ-1dfT-2SR) 0.214 7.91E
−03e

M5 (BJ-2dfT) −0.486 0.079 2.68E−03 −0.244 3.04E−06 2.05E−07e

M6 (BuJ-2dfT) 0.080 3.23E−03 −0.285 1.78E−07 1.58E−08

M7 (Baseline only) −0.002 8.92E
−01e

LPA rs10455872 6 161010118 G 0.080 M1 (BJ-1dfT-2SR) −0.490 0.287 5.94E−16

M3 (BuJ-1dfT-2SR) 0.240 1.38E−11

M5 (BJ-2dfT) −0.499 0.090 6.82E−15 −0.050 3.06E−02 6.53E−15

M6 (BuJ-2dfT) 0.078 1.13E−10 −0.049 4.28E−02 1.20E−10

M7 (Baseline only) 0.024 3.68E
−04e

SLCO1B1 rs4149056 12 21331549 C 0.162 M1 (BJ-1dfT-2SR) −0.490 0.129 6.92E
−07e

M3 (BuJ-1dfT-2SR) 0.141 5.20E
−08e

M5 (BJ-2dfT) −0.485 0.043 3.76E−07 −0.028 9.10E−02 5.95E−07e

M6 (BuJ-2dfT) 0.050 1.33E−08 −0.036 3.75E−02 1.12E−08

M7 (Baseline only) −0.013 9.64E
−03e

APOE rs1065853 19 45413233 T 0.089 M1 (BJ-1dfT-2SR) −0.490 −0.491 2.13E−48

M3 (BuJ-1dfT-2SR) −0.388 1.32E−30

M5 (BJ-2dfT) −0.535 −0.164 3.91E−50 0.081 1.59E−04 5.87E−52

M6 (BuJ-2dfT) −0.130 7.99E−30 0.082 2.73E−04 1.52E−31

M7 (Baseline only) −0.064 2.35E−23

SNP single nucleotide polymorphism, CHR chromosome, BP base pair, MA minor allele, MAF minor allele frequency, βy0 effect size of baseline variable, βG effect
size of G (genotype) on CFB (from M1, M3, M5 and M6), βG0

effect size of G (genotype) on baseline (from M7), P_G p value of G (genotype), βGT effect size of G*T
(genotype by treatment interaction), P_GT p value of G*T (genotype by treatment interaction), P_2df p value of 2df test (joint test of genotype and
genotype*treatment interaction).
aBJ: Baseline-adjusted; BuJ: Baseline-unadjusted; 1dfT: 1 degree of freedom test; 2dfT: 2 degree of freedom test or joint test of genotype and
genotype*treatment interaction; 1SR: 1-step regression; 2SR: 2-step regression. In M1, M3, M5 and M6, difference of natural log-transformed Simvastatin and
Ezetimibe/Simvastatin on low-density lipoprotein cholesterol levels were used for analysis.
bEffects calculated for the nature log-transformed baseline LDL-C.
cEffects calculated with respect to the minor allele. A negative value indicates more intense drug (Simvastatin and Ezetimibe/Simvastatin) LDL-C lowering.
dResults were only available in the 2df test model M5 and M6, which also tests the genotype*treatment interaction and joint test of genotype and
genotype*treatment interaction.
eNot reaching genome-wide significance (p < 5E−08). For 2df test methods, p values from the 2df test (P_2df ) were used.
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association of the rs1065853 SNP in the APOE locus was very strong
(βG0

=−0.064 and P_G= 2.35E−23), which led to the large
difference between the baseline-adjusted model M1 (P_G= 2.13E
−48) and the baseline-unadjusted model M3 (P_G= 1.32E−30). In
contrast, when there was no association between the baseline and
the rs79929954 SNP in the STAG1/SLC35G2/NCK1 locus (βG0

=
−0.002 and P_G= 8.92E−01), we observed little difference
between the baseline-adjusted mode M1 (P_G= 7.81E−03) and
the baseline-unadjusted mode M3 (P_G= 7.91E−03). On the other
hand, the baseline-unadjusted models detected two loci that the
adjusted models failed to detect: STAG1/SLC35G2/NCK1 (M6) and
SLCO1B1 (M6 and M9). In both cases, the estimated βy0 � βG0

are in
the same direction as the estimated βG, which is the signal pattern
that favors the unadjusted model as shown in the simulation.
However, these two loci may not remain statistically significant if
we take the potential type I error inflation of the unadjusted
models into consideration.
GWAS analyses using the 2df test models (or the joint test of

βG ¼ 0& βGT ¼ 0, M5 and M6) confirmed that the 2df test is more
powerful than the 1df test when there is a large interaction effect
between the SNP and treatment. For example, the 2df test
provided much stronger evidence of association (M5 p= 5.95E
−07, M6 p= 1.12E−08) for SNP rs79929954 in the STAG1/
SLC35G2/NCK1 locus, while the p values of the 1df test models
(M1–M4, M8 and M9) were at 1E−03 level since there was a strong
genotype by treatment interaction effect (P_GT= 1.78E−07 in M6,
Table 1 and Fig. 1). A similar pattern was observed for SNP
rs4149056 in the SLCO1B1 locus (M6 p= 1.12E−08 <M9 p= 1.33E
−08) due to the moderate genotype by treatment interaction
effect (P_GT= 3.75E−02 in M6, Table 1 and Fig. 1).

DISCUSSION
Using statistical simulations, we explore the impact of baseline
adjustment in statistical models analyzing the association
between genetic variants and change in quantitative measures
between pre- (baseline) and post-treatment values. We find that,
in situations in which a genetic variant is associated with both the
baseline and CFB values and where there is a correlation between
baseline and CFB, failure to adjust for the baseline value results in
substantial inflation of test statistics. This inflation will result in not
only higher risk of false positive associations between genotype
and CFB, but also inaccurate assessment of the magnitude of
quantitative CFB driven by genotype. We further evaluate the
impact of normally distributed measurement errors and find that

they may indeed inflate the type I error of baseline-adjusted
models in the (unlikely) situation where the measurement errors
are qualitatively different in the baseline and post-baseline.
However, when the measurement errors are white noises or they
are of the same sign, the measurement errors have little impact on
the type I error of baseline-adjusted models. We acknowledge that
there may be type I error inflation in baseline-adjusted models
caused by other types of measurement errors not modeled here.
Further research is clearly needed to fully understand the inflation
caused by measurement errors in other scenarios. On the other
hand, the type I error inflation of baseline-unadjusted models
caused by the mediator effect is found in our simulation and in
the IMPROVE-IT GWAS analysis as well (Fig. 4 and Supplementary
Fig. 12). For those variants with at least some association with
baseline values, the baseline-unadjusted models show clear type I
error inflation while the baseline-adjusted models do not. This
observation suggests that the mediator effect of the baseline
should be considered in order to properly control type I errors.
Multiple approaches have been recommended in the literature

to control for this type of mediator effect, including use of the ratio
of change as an endpoint instead of or in addition to including the
baseline value as a covariate in the model. Consistent with prior
reports6, we find that use of the CFB ratio without baseline
adjustment is not sufficient to address the mediator effect. Analysis
of post-treatment values directly with baseline values included as a
covariate is also recommended in the literature as an approach to
address the mediator effect; this approach was also tested by ref. 6.
Because this model is similar to the log-fold change from the
baseline model with adjustment of coefficients by a constant7, we
did not test this model separately in this work.
In addition to the baseline adjustment, other aspects of the

statistical models also play an important role in the analysis of
quantitative change. No single approach is universally the most
powerful test for all the different signal patterns as shown in the
power comparison between the 2df test and 1df test. The 2df
joint test of βG ¼ 0& βGT ¼ 0 is the most robust test to identify a
potential interaction effect (Supplementary Fig. 7) and is
recommended when the data include both treatment and
control arms and no prior information available regarding
interaction with the genotype. The 2df test can be used as the
screening step in a GWAS to assess the combined prognostic and
predictive association of each genetic variant to drug response to
declare statistical significance. To help interpret 2df test results, it
is also recommended to generate the p value and effect estimate
for the genotype and the interaction separately. All these results

Fig. 4 QQ plots of the p values between two sets of the baseline-adjusted models (black) vs. the baseline-unadjusted models (green)
from the four GWAS analyses based on four models with log-CFB endpoint. M1 vs. M3 (a) M5 vs. M6 (b). The variants were first filtered
based on the baseline association p value <1e−03 from M7 and 10,187 SNPs were used for both plots. These variants showed clear mediator
effect βG0

� βy0≠0. The red line was the diagonal line and the 95% confidence interval polygon in each QQ plot was based on the p values from
the baseline-adjusted model (M1 in a and M5 in b).
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provide a comprehensive picture of any signals associated with
drug response.
Compared with a 2-step regression approach, 1-step regression

provides similar or slightly larger power. However, a 2-step
regression approach generally runs faster than a 1-step regres-
sion approach in GWAS analysis since, for each SNP, only a
univariate regression is needed. For 1-step regression, the
phenotype needs to be appropriately transformed so that the
type I error can be controlled. For a 2-step regression, appropriate
transformation of the residuals is necessary to make valid
statistical inference, for example, inverse normal transformation
of the residuals to ensure normal distribution before the second
step for genotype association analysis (Supplementary Figs. 13
and 14). For more discussion on the 2-step vs. 1-step regression
and more robust approaches by combining both, please refer to
McCaw et al.’s paper 9.
In addition to the simulations, we also explored the various

statistical models in a real PGx analysis dataset, using data from
the IMPROVE-IT study of cholesterol lowering drugs (statin vs.
statin+ ezetimibe). Despite differences in the patient population
and in treatments received for a subset of patients, the GWAS
results from Oni-Orisan et al.’s paper6 and our IMPROVE-IT are
largely consistent. In both analyses, the loci at SORT1, LPA, and
APOE become more significant after baseline adjustment. Oni-
Orisan et al. argued that the SORT1 locus was a false positive
because a heterogeneity Q test was not able to replicate the
finding6. Our simulation results showed that this Q test is less
powerful compared with other more commonly used models.
Thus, it is not surprising that the heterogeneity Q test may not
replicate the results from the adjusted models. In our dataset, the
SORT1 locus was clearly associated with change in LDL-C with
treatment in all statistical models used, suggesting that this locus
is in fact associated with response to lipid-lowering treatment.
Interestingly, the SORT1 locus was strongly associated with
baseline LDL-C in Oni-Orisan et al.’s paper6, but only weakly
trended to an association with baseline LDL-C in the IMPROVE-IT
dataset, perhaps because the locus is more strongly associated
with variability in LDL-C levels in among those first initiating statin
treatments rather than those in a high-risk population as enrolled
in the IMPROVE-IT study. Conversely, the LPA locus showed only a
nominally significant association with baseline LDL-C in Oni-Orisan
et al.’s paper6 but was clearly associated with baseline LDL-C in the
IMPROVE-IT dataset. Again, differences in the patient population
may explain these observations. Two loci at LDLR and APOB just
met genome-wide significance thresholds in Oni-Orisan et al.’s
paper (in their baseline-adjusted analyses)6 but were not detected
in the IMPROVE-IT analyses (Supplementary Table 2); this is not
surprising given the smaller sample size in the IMRPOVE-IT
dataset. These loci have not been associated with LDL change in
other statin response GWASs, though the dataset used in Oni-
Orisan et al.’s paper is larger than those previously analyzed.
From the perspective of type I error control, selecting baseline-

unadjusted vs. adjusted models for PGx CFB analysis is a trade-off
between mitigating measurement error problems and accounting
for the mediator effect. Our simulations and IMPROVE-IT GWAS
analyses demonstrate the impact of the mediator effect on
analysis results, resulting in higher type I errors in unadjusted
models under the simulation settings tested. However, in our
simulations under certain conditions the power of the unadjusted
models was slightly higher than that of the adjusted models, and
the type I errors from adjusted models were higher. Further, while
ideally a quantitative change analysis would rely on multiple
repeated measures to minimize the impact of measurement
errors, we assume for most large studies repeated measurements
are not likely to be generated. Therefore, guided by the results
from our extensive simulations and real GWAS analyses, we
recommend performing baseline-adjusted analyses as the primary
analysis. Baseline-unadjusted analyses may be conducted only if

the type I error rate of baseline-adjusted model is inflated, which
may be caused by measurement error of very specific type (e.g.,
different directions of the error baseline vs. post-baseline). In
addition, we recommend use of the most general 2-df test
statistical model for PGx studies with both treatment and control
arms, especially when it is expected that there are strong G*T
interaction effects for some markers and/or when there are
underlying genetic related difference between the two arms.
Finally, careful post-GWAS biological and clinical interpretation
along with independent replication are essential in separating
false positives from true association signals.

METHODS
Statistical models for GWAS analysis
Nine statistical models are considered for our simulations and real GWAS
analyses. Assume y1 is the on-treatment response value and y0 is the
baseline response values, these nine models are:

● M1 (log-fold-CFB, adjusted, 1df test, 2-step: INT residuals):
ln y1 � ln y0 � β0 þ βy0 ln y0 þ βTTþ βXX; INTed Res � βGG,

● M2 (CFB ratio, unadjusted, 1df test, 2-step: INT residuals):
y1�y0
y0

� β0 þ βTTþ βXX; INTed Res � βGG,

● M3 (log-fold-CFB, unadjusted, 1df test, 2-step: INT residuals):
ln y1 � ln y0 � β0 þ βTTþ βXX; INTed Res � βGG;

● M4 (CFB ratio, adjusted, 1df test, 2-step: INT residuals):
y1�y0
y0

� β0 þ βy0 y0 þ βTTþ βXX; INTed Res � βGG,

● M5 (log-fold-CFB, adjusted, 2df test, 1-step):
ln y1 � ln y0 � β0 þ βy0 ln y0 þ βTTþ βGGþ βGT GxTð Þ þ βXX,

● M6 (log-fold-CFB, unadjusted, 2df test, 1-step):
ln y1 � ln y0 � β0 þ βTTþ βGGþ βGT GxTð Þ þ βXX,

● M7 (baseline association): ln y0 � β0 þ βG0
Gþ βXX,

● M8 (log-fold-CFB, adjusted, 1df test, 1-step):
ln y1 � ln y0 � β0 þ βy0 ln y0 þ βTTþ βGGþ βXX,

● M9 (log-fold-CFB, unadjusted, 1df test, 1-step):
ln y1 � ln y0 � β0 þ βTTþ βGGþ βXX.

where X are covariates, G is genotype, T is treatment, β0 is
intercept, βy0 is baseline coefficient, βT is treatment coefficient, βX
are covariates’ coefficients, βG0

is genotype coefficient for baseline
(from M7), βG is genotype coefficient for CFB (from M1–M6 and
M8–M9), βGT is genotype by treatment interaction coefficient, ln is
natural log transformation function and “INTed Res” represents
the inverse normal transformed residuals.
The first four models M1–M4 are the same as the four models Ma–Md

discussed in Oni-Orisan et al.’s paper6, which use the one degree of
freedom (1df) tests for the main genotype effect assuming no genetic-by-
treatment interaction. M1 and M3 model the log-fold-CFB with and
without baseline adjustment respectively. M4 and M2 are similarly defined
for the phenotype of the CFB ratio. All these four models take a 2-step
regression approach. In the first step, residuals are obtained by regressing
the response on non-genetic covariates including the treatment (T),
covariates X and the baseline variable (if needed). The residuals are further
inverse normal transformed (INTed). In the second step, the (INTed)
residuals are directly regressed on the genotype (G). M5 and M6 use the
two degree of freedom (2df) tests for modeling the log-fold-CFB with or
without baseline adjustment, respectively. In PGx studies with more than
one arm, patients’ clinical outcomes could be influenced by both main
genotype effect and genotype by treatment interaction effects. The 2df
joint test of the main effect and the interaction effect usually increases
power for detecting signals in PGx studies with small to moderate sample
sizes compared with only testing the interaction effect or the main
genotype effect separately10. M7 is the baseline association model. To
evaluate the impact of the 2-step and the 1-step regression approaches,
we also run two additional models M8 and M9 with 1-step regression in
parallel with M1 and M3 with 2-step regression for the log-fold-CFB.
It is straightforward to see that M5 is the most general out of these nine

models. M1 (M8) is a special case of M5 when βGT ¼ 0 while M6 is a special
case when βy0 ¼ 0. M3 is even more restricted by fixing βGT and βy0 ¼ 0 at
the same time. It is worth mentioning that mis-specifying βGT may only
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affect the power performance but fixing βy0 ¼ 0 could inflate the type I
errors as evidenced in the simulation section.
In addition to the aforementioned models of CFB, we also considered

the following models of post-baseline measurements and Cochran’s Q test
as a sensitivity analysis.

● M5* (log-post-treatment, adjusted, 1df test, 1-step):
ln y1 � β0 þ βy0 ln y0 þ βTTþ βGGþ βXX,

● M6* (log-post-treatment, unadjusted, 1df test, 1-step):
ln y1 � β0 þ βTTþ βGGþ βXX,

● Cochran’s Q test (as described in Neupane et al.’s paper11): Let βGi ; i ¼
0; 1; be the regression coefficients of G in the model
ln yi � β0 þ βTTþ βGiGþ βXX; i ¼ 0; 1, respectively. The Cochran’s Q
statistic is defined as Q ¼ P1

i¼0 ωiðβ̂Gi � β̂Þ2, where β̂ ¼ P1
i¼0 ωi β̂Gi=P1

i¼0 ωi , ωi ¼ 1=s2i , s
2
i is the estimated variance of β̂Gi .

We can verify that the Q statistic is equal to ðβ̂G1 � β̂G0Þ2=ðs20 þ s21Þ which
follows a chi-squared distribution with degree of freedom 1 if these two
betas are independent. However, in our context, they are likely to be
positively correlated. Thus, s20 þ s21 overestimates the variance of β̂G1 � β̂G0
which makes the p values calculated by chi-squared distribution too
conservative. Indeed, our simulation results confirm that Q test is not
powered to detect CFB association.

Simulation settings
We simulate the baseline y0 and the CFB from M5 and M7, respectively, in
the following way:

ln y0 ¼ 4:6þ βG0
Gþ ϵ0; (1)

ln y1 � ln y0 ¼ �0:25T� 0:01Xþ βy0 ln y0 þ βGGþ βGTGTþ ϵ1; (2)

where treatment variable T � bernoulið0; 1Þ, age variable
X � uniformð18; 65Þ, genotype G � binomialðn; 2; MAFÞ with sample size
n ¼ 1000, MAF ¼ 0:2: The regression errors ϵ0 and ϵ1 are assumed
to be independent and follow a standard normal distribution. Parameters
βG0

measures the effect size of the baseline association, βy0 measures the
dependence of CFB on the baseline. βG and βGT measure the direct genetic
main effect and interaction effect on CFB, respectively. Under H0, we
consider βG0

¼ �0:1; 0; 0:1, βy0 ¼ �0:2; 0; 0:2. Under H1; in addition to
the settings under H0, we consider each of βG and βGT to be
�0:4;�0:3; ¼ ; 0:4; respectively. We also consider measurement errors.
Specifically, we assume the relative error rates to be independent normal
variables, ri � N μi ; σ ¼ 1

4

� �
; i ¼ 0; 1: Three configurations of μi were used: (1)

μi � 0 (white noise); (2) μi � 0:25 (biased toward the same direction); (3)
μ0 ¼ �0:25, μ1 ¼ 0:25 (biased toward different direction). Then, the
observed responses under measurement errors are 1þ r0ð Þy0 and
ð1þ r1Þy1. Such variable will generate error rates between −0.49 to 0.49
with 95% probability. In the rare cases, the simulated responses are also
bounded from below at 1 to ensure a valid log transform. We simulate 2 ´ 107
repetitions under the null hypotheses and 2 ´ 103 repetitions under the
alternative hypotheses. We compare the type I error and power of M1–M9
except for M7. The empirical type I error and power are calculated as the
proportion of p values less than a nominal level α. For type I error comparison,
we also calculated the variance of empirical type I error as σ2 ¼ αð1� αÞ=n12.
A margin of error ¼ 3σ was used to determined if the empirical type I error is
inflated, i.e., significantly higher than the nominal level.

Mediator effect
Plugging Eq. (1) into Eq. (2), we can see that the G effect on CFB is
βG þ βG0

� βy0 . Under the null hypothesis that βG ¼ 0, G is still associated
with CFB by βG0

� βy0 , which is called the mediator effect. The mediator, in
our model, is the baseline measurement, e.g., the SNPs not only influences

the CFB directly but also by influencing the baseline. This mediator effect
must be accounted for, e.g., by baseline adjustment, to correctly estimate
the βG , otherwise it will inflate the type I error rates. The underlying
relationship between genotype and CFB, which is mediated by the
baseline variable, is described in Fig. 5.

Analysis of IMPROVE-IT PGx GWAS data
We applied the nine statistical models to GWAS analyses of Ezetimibe
response in IMPROVE-IT. In this PGx study, we were interested in
discovering genetic variants that influence efficacy of Vytorin (EZ+ simva)
treatment to further identify subpopulations who would receive a greater
benefit from Vytorin treatment using clinical data from IMPROVE-IT. The
details of the endpoint, genotyping, genotype QC and imputation for this
GWAS analyses are described below. After GWAS QC and SNP imputation,
there were 9,407,967 variants and 6502 subjects available for analyses.
The subjects were further filtered by excluding subjects who had
cardiovascular event prior to month 1 since cardiovascular event affected
LDL-C that may not be treatment related. A total of 5661 European
subjects were included for GWAS analyses. For all genome-wide analyses,
p < 5 × 10−8 was considered as the threshold to meet genome-wide
significance. Statistical analyses were conducted with R (R Foundation for
Statistical Computing, version 3.5.2, https://www.R-project.org/) and PLINK
(version 1.07, http://pngu.mgh.harvard.edu/purcell/plink/)13. All statistical
tests were two-sided.

IMPROVE-IT trial analysis
Data source and study population. The clinical data in this PGx population
for the Ezetimibe response GWAS analysis were collected from the
IMPROVE-IT (IMProved Reduction of Outcomes: Vytroin Efficacy Interna-
tional Trial, clinical trial registry number: NCT00202878), which is a multi-
center, double-blind, randomized phase 3b study to establish the efficacy
and safety of Vytorin (ezetimibe+ simvastatin tablet) in comparison to
simvastatin monotherapy in 18,144 high-risk patients who were present-
ing with acute coronary syndrome (ACS) and age 50 and older14. Subjects
were required to have their LDL-C levels between 50–125 mg/dl at the
time of the qualifying event (QE) if they had not been taking any lipid-
lowering therapies, or 50–100mg/dl if they had been receiving lipid-
lowering therapies. All subjects entering the study were randomized in 1:1
ratio to receive either ezetimibe 10 mg/simvastatin 40 mg combination or
simvastatin 40 mg QD. Patients returned for follow up visits at 1 month,
4 months, and every 4 months after that. The trial was specified to end
after all subjects had a follow up for a minimum of 2.5 years (median
follow up was 6 years), and a primary endpoint event had been
documented in at least 5250 subjects. The ethics committee at each
participating center approved the protocol and amendments14. All trials
were carried out in accordance with the Declaration of Helsinki, current
guidelines on Good Clinical Practices and local ethical and legal
requirements. All participants provided voluntary written informed
consent before trial entry.

Phenotype and statistical analysis. For baseline LDL-C (LDL-C at QE),
measurement was obtained within 24 h from the time of presentation to
best reflect the subject’s lipid status at the time of the event. In the cases
where such measurement could not be collected, LDL-C measurements
that were collected within 6 months prior to the QE were used. For a
direct comparison with the response to treatment phenotypes used in
Oni-Orisan et al.’s paper6, we used the same formulas to define the two
phenotypes. The first phenotype was defined as log-fold change of LDL-
C from QE to 1 month (i.e., ln(LDL-C at 1 month/LDL-C at QE)) or
ln y1 � ln y0, the difference between the natural log-transformed base-
line LDL-C y0ð Þ and on-treatment LDL-C (y1) values (log-fold-CFB). The

Fig. 5 Illustration of baseline as a mediator effector in the analysis of CFB in PGx studies. This mediator effector, if existing, must be
accounted for, e.g., by baseline adjustment.
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second phenotype was defined as CFB ratio or y1�y0
y0

, which is the
percentage of the difference between the baseline LDL-C (y0) and on-
treatment LDL-C (y1) values over the baseline values. Both phenotypes
were adjusted for the following prespecified covariates: age, gender,
prior lipid-lowering therapy, early ACS trial treatment variable (unen-
rolled, enrolled receiving test treatment, or enrolled receiving control
treatment) and high-risk ACS diagnosis. The top five genetic ancestry
eigenvectors (principal components (PC)) estimated from the GWAS data
were also included as covariates to adjust for population structure. To
investigate the impact of adjusting for baseline LDL-C values, both
phenotypes of LDL-C response were performed with and without
baseline adjustment. This resulted in four statistical regression models
(M1, M3, M2 and M4) for GWAS analyses, which are based on genotype
test only (or 1df test) and the 2-step regression procedure (see
“Statistical models for GWAS analysis” section for details). To further
compare this 1df test with the 2df test approach (by adding the
genotype by treatment interaction in the model) and the 2-step
regression procedure with the 1-step regression procedure, we used
the other four statistical regression models (M5, M6, M8 and M9) for
GWAS analyses of the log-fold-CFB endpoint as well. More details are
discussed in the “Statistical models for GWAS analysis” section.

Genotyping, quality control and imputation. Regarding generation and
quality control (QC) of genetic data, 7971 patients who provided
appropriate consents for the genetic studies and had DNA with sufficient
quality were genotyped using a custom Axiom™ array (Thermo Fisher
Scientific, CA, USA). Genotyping was performed by BioProcessing
Solutions Alliance (Piscataway, NJ, USA), and the raw data was processed
following the vendor recommended guidelines. Genetic QC steps were
performed in 6765 self-reported European subjects. Variants with missing
call rate greater than 3%, as well as non-autosomal variants were
excluded. Following variant QC, individuals were excluded if they had low
call rates (missingness greater than 5%), gender mismatches, hetero-
zygosity greater than 3 standard deviations from the mean of the
Caucasian population, or identical and first/second degree relatives using
identity-by-descent (>0.1875). Principal component analysis (PCA) was
performed in a subset of variants pruned for linkage disequilibrium using
EIGENSTRAT smartpca15, together with 1000 Genomes phase 3 data16 as
the reference. Individuals who deviated ±6 standard deviation from the
means of 1000 Genomes European super population for PC 1–3 were also
removed. A second PCA was then performed with European-only
individuals to calculate the eigenvalues to be used as covariates in the
genetic analyses to correct for within population stratification. In total,
6502 individuals of European descent, and 644,570 directly genotyped
variants have been used for imputation. Imputation was performed using
IMPUTE217 and 1000 Genomes European panel as the reference. In total,
9,407,967 variants with minor allele frequency greater than 0.01, and
imputation quality score (r2) greater than 0.3 were used for the
subsequent genome-wide association studies (GWAS) analyses.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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