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Abstract

Regulation of capsid disassembly is crucial for efficient HIV-1 cDNA synthesis after entry,

yet host factors involved in this process remain largely unknown. Here, we employ genetic

screening of human T-cells to identify maternal embryonic leucine zipper kinase (MELK) as

a host factor required for optimal uncoating of the HIV-1 core to promote viral cDNA synthe-

sis. Depletion of MELK inhibited HIV-1 cDNA synthesis with a concomitant delay of capsid

disassembly. MELK phosphorylated Ser-149 of the capsid in the multimerized HIV-1 core,

and a mutant virus carrying a phosphorylation-mimetic amino-acid substitution of Ser-149

underwent premature capsid disassembly and earlier HIV-1 cDNA synthesis, and eventually

failed to enter the nucleus. Moreover, a small-molecule MELK inhibitor reduced the effi-

ciency of HIV-1 replication in peripheral blood mononuclear cells in a dose-dependent man-

ner. These results reveal a previously unrecognized mechanism of HIV-1 capsid

disassembly and implicate MELK as a potential target for anti-HIV therapy.

Author summary

Phosphorylation of the HIV-1 capsid has long been known to regulate viral uncoating and

cDNA synthesis processes, but the cellular kinases responsible for this have remained

unidentified. Here, we report that a host cell kinase MELK dictates optimal capsid disas-

sembly through phosphorylation of Ser-149 in the multimerized HIV-1 core, which leads

to efficient viral cDNA synthesis in target cells. The phosphorylation-mimetic capsid

mutation of Ser-149 caused aberrant capsid disassembly and too-early completion of

reverse transcription, and impeded nuclear entry of HIV-1 cDNA, suggesting the
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importance of well-ordered capsid disassembly in the early stages of viral replication. This

discovery will facilitate understanding of the functional link among virus uncoating,

reverse transcription and nuclear entry, and is expected to contribute to developing a

novel strategy for AIDS therapy.

Introduction

During the course of human immunodeficiency virus type 1 (HIV-1) infection, the virus

encounters numerous bottlenecks constituted by a variety of host cell proteins essential for or

inhibitory to HIV-1 replication [1]. HIV-1 particles must attach to and fuse with the plasma

membrane of target cells, releasing the viral core into the cytoplasm. Shortly after entry, the

HIV-1 capsid (CA), a major component of the viral core, starts dissociating from the core

[reviewed by [2–5]]. It has been shown that optimal dissociation of CA from the HIV-1 core is

required for efficient viral cDNA synthesis in target cells [6–8]. Thus, (i) Rhesus monkey

TRIM5α abrogates productive reverse transcription (RT) by accelerating the disassembly of

CA [9, 10]; (ii) CA mutations that impair HIV-1 infection are unable to achieve proper uncoat-

ing and RT [6–8]; (iii) The prevention of RT with RT inhibitors causes CA disassembly delay

[11, 12]; and (iv) Uncoating of the HIV-1 CA core is triggered following first strand transfer of

reverse transcription [13]; (v) The progression of reverse transcription causes morphological

and mechanical changes in the HIV-1 cores [14]. Overall, these observations suggest that

proper dissociation of CA is functionally linked to reverse transcription of HIV-1. This is also

supported by studies showing that cytoplasmic accumulation of CPSF6 restricts HIV-1 infec-

tion through abnormal stabilization of the HIV-1 core [15–17]. HIV-1 CA is likely to interact

with multiple host cell factors during uncoating and trafficking to the nucleus [3–5, 18]. How-

ever, it remains poorly understood how the HIV-1 core dissociation process is triggered and

regulated by host factors. One important consideration lies in the phosphorylation of CA

because previous studies have shown that its phosphorylation plays pivotal roles in the viral

life cycle [19–21]. For example, Ser-109 located in the amino-terminal domain, Ser-149 in the

flexible linker and Ser-178 in the carboxy-terminal domain have been identified as major

phosphoacceptor sites in CA which are essential for virus replication [19]. Alanine substitution

at Ser-109, Ser-149 or Ser-178 reduces the phosphorylation level of CA in cell-free virions and

inhibits efficient viral cDNA synthesis [19, 22]. Furthermore, these mutations cause aberrant

CA assembly or impaired core stability [21–23]. Phosphorylation of other amino acid residues

in CA has also been reported to contribute to viral replication [24–27]. In terms of capsid

phosphorylation by virion-associated kinases, the catalytic subunit of cAMP-dependent pro-

tein kinase (C-PKA) was reported to interact with and phosphorylate CA, and thus regulate

viral infectivity, although the residues that were phosphorylated were not identified [28, 29]. A

recent study showed that virion-associated extracellular signal-regulated kinase 2 (ERK2)

phosphorylates Ser-16 in CA [30], while an earlier study showed that HIV-1 CA is not a direct

substrate of MAPK/ERK2 [19]. Thus, the significance of the phosphorylation of each of the

amino acid residues in CA and the contribution of host cell kinases to HIV-1 replication

remains to be fully elucidated. In the current study, we performed a genome-wide RNAi screen

in a human T-cell line to identify host factors that contribute to HIV-1 infection. We found

that a cellular kinase, MELK, is responsible for phosphorylation of the HIV-1 CA in target

cells.

Essential role for MELK in HIV infection
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Results

Genome-wide RNAi screen identifies MELK as a host factor required for

HIV-1 replication

To identify host cell factors involved in HIV-1 replication in human cells, we employed a

genome-wide RNAi screen in the MT4C5 lymphoid cell line, a derivative of MT4 cells express-

ing CCR5 and susceptible to infection with CXCR4-tropic and CCR5-tropic HIV-1 strains.

MT4C5 cells were transduced with ten independent pools of puromycin-marked lentivirus

vectors expressing a human short hairpin RNA (shRNA) library comprising >75,000 shRNAs

directed against >15,000 human genes in total. Transduced cells were then infected with the

HIV-1NL4-3 strain which normally kills infected MT4C5 cells. Surviving cells were then studied

further (Fig 1A). Using this approach, 32 individual shRNA sequences were obtained that

potentially target host factors, including Cyclophilin A and Transportin-SR2 (TNPO3), which

are known to be essential host factors [1, 31] (S1 Table). Of these, we have characterized mater-

nal embryonic leucine-zipper kinase (MELK) in detail. This was identified in a sub-pool resis-

tant to HIV-1 infection. MELK is a member of the AMP-activated protein kinase-related Ser/

Thr protein kinase family [32]. Previous reports indicated that MELK is expressed mainly in

the cytoplasm and is involved in different cellular processes such as cell-cycle progression, cell

proliferation and pre-mRNA splicing [33–37]. However, involvement of MELK in HIV-1 rep-

lication has not been reported.

To determine whether endogenous MELK is involved in HIV-1 infection, we depleted this

enzyme from MT4C5 cells (MELK-KD). Lentivirus-mediated stable expression of a MELK-

targeting shRNA, but not that of non-targeting shRNA (Non-T), suppressed expression of

MELKmRNA (Fig 1B, lower panel, compare Non-T and MELK-KD-2) and protein (Fig 1B,

upper panel, compare Non-T and MELK-KD-2). Parental MT4C5 and MELK-KD cells

showed no significant difference in growth and surface expression of CD4 and CXCR4 (S1

Fig). Analyses of cell-cycle progression using propidium iodide DNA staining revealed no sig-

nificant differences between Non-T and MELK-KD cells after release from synchronization by

demecolcine, which arrests cells in mid-metaphase of the cell cycle (S2 Fig). Depletion of

MELK markedly reduced the infectivity of HIV-1- or VSV-G- envelope-pseudotyped NL4-

3luc, although there was a small difference in the HIV-1 env/HIV-1 infectivity between paren-

tal and Non-T cells. The results suggest that MELK is required for HIV-1 infection during a

post-entry stage (Fig 1C, left and middle panels). Inhibition of HIV-1 infection by MELK

depletion with three different MELK-targeting shRNAs, 293-MELK-KD-1, 293-MELK-KD-2

and 293-MELK-KD-3, was dependent on its level of expression in the single-round infection

of HEK293 cells with VSV-G pseudotyped HIV-1, reducing the likelihood of an off-target

effect of the shRNA (S3A–S3C Fig). Importantly, similar results were obtained with MELK-

depleted and CD3/CD28-stimulated peripheral blood lymphocytes (PBL) (S3D–S3F Fig). In

contrast, MELK depletion did not affect the infectivity of the VSV-G-pseudotyped murine leu-

kemia virus (MLV)-based vector (Fig 1C, right panel). HIV-1 replication in MT4C5 cells with

the replication-competent NL4-3 virus was markedly inhibited by MELK depletion (Fig 1D).

Viral DNA synthesis by replication-competent HIV-1 proceeded more slowly than by VSVG-

pseudotyped HIV-1, continuing until 24 h after infection, as previously reported [38, 39]. Of

note, MELK depletion did not significantly affect the amount of immediate early viral cDNA

quantified at the R/U5 region 2 h post-infection (Fig 1E, upper panel), but profoundly reduced

it thereafter by approximately 80% compared to Non-T (Fig 1E, upper panel). This is because

amplification of the R/U5 region includes both Early and Late RT products. Similar results

were obtained by quantifying viral cDNA at the pol and env regions as Late RT products

(approximately 80% reduction compared to Non-T) (Fig 1E, middle and lower panels). Viral
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Fig 1. Identification of MELK as an essential host factor for HIV-1 infection of human cells. (A) Schematic summary of the

genome-wide RNAi screen. (B) Immunoblot analysis monitoring MELK expression in MT4C5 cells stably expressing either non-target

(Non-T) or MELK-specific shRNA (MELK-KD-2) (upper panel). Semi-quantitative RT-PCR analysis of MELK mRNA expression (lower

panel). A primer set for amplification of GAPDH mRNA was included in each reaction as an internal control (GAPDH). (C) MT4C5,

Non-T and MELK-KD-2 cells were infected with HIV-1-env- or VSV-G-env-pseudotyped NL4-3luc, or VSV-G-env-pseudotyped MLV-

luc. Relative luciferase activities are shown as ratios (%) of the RLU of non-target shRNA MT4C5 cells with standard deviations

Essential role for MELK in HIV infection
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cDNA synthesis after HIV-1 infection in the presence of the HIV-1 reverse transcriptase inhib-

itors azidothymidine (AZT) or nevirapine (NVP) was markedly reduced (Fig 1E, compare

Non-T, Non-T + AZT and Non-T + NVP). Collectively, these results indicate that MELK is a

host factor required for efficient viral cDNA synthesis.

MELK depletion delays HIV-1 capsid disassembly

We first investigated whether MELK affects HIV-1 entry using the HIV-1 virion fusion assay

with β-lactamase-Vpr chimeric protein incorporated into HIV-1 virions. This approach

revealed similar efficiencies of HIV-1 entry into control Non-T and MELK-KD MT4C5 cells

and a marked inhibition of HIV-1 fusion in the presence of the CXCR4 antagonist AMD3100

[40] (Fig 2A and 2B, compare Non-T and MELK-KD-2). Quantitative RT-PCR assays also

showed similar amounts of incoming viral genome RNA 2 h post infection (Fig 2C, compare

Non-T and MELK-KD-2). We next assessed whether it is involved in proper disassembly of

the viral CA. To determine whether the viral core interacts with MELK, we purified One-

STrEP-FLAG-(OSF)-tagged MELK protein expressed in HeLa cells, and viral cores from cell-

free virions. The HIV-1 envelope was removed from virions and envelope-stripped cores were

enriched by ultracentrifugation through a discontinuous 10% and 30% sucrose gradient with

0.1% Triton X-100 in the 10% sucrose layer, as previously reported [20] (Fig 2D). The enve-

lope-stripped cores were characterized by transmission electron microscopy (TEM) showing

recognizable ~100 nm cone-shaped structures similar to authentic HIV-1 cores (Fig 2E). Puri-

fied OSF (N-terminal)-tagged Cyclophilin A (CypA) or FLAG-One-STrEP (FOS) (C-termi-

nal)-tagged rhesus monkey Trim5α (rhT5α) proteins, known to be HIV-1 core-binding

proteins [9, 41–43], were used as positive controls for binding to the HIV-1 core. Pull-down

assays revealed that OSF-tagged CypA or FOS2-tagged rhT5α, but not OSF-tagged Green

Fluorescent Protein (GFP), significantly interacted with the envelope-stripped core in a dose-

dependent manner (Fig 2F, lower panel CA, compare lanes 2–3, 6–7 and 8–9). Similar to

CypA and rhT5α, MELK interacted with the envelope-stripped core (Fig 2F, lower panel CA,

compare lanes 2–3 and 4–5). Immunoblot analyses revealed that the envelope-stripped cores,

but not enveloped virions or the CA monomer, interacted in vitro with OSF-tagged MELK (S4

Fig). We next tested whether MELK affects the stability of the HIV-1 core after viral entry,

using a fate-of-capsid assay, as described previously [39] and summarized in Fig 2G. Previous

reports showed that uncoating was closely linked to reverse transcription, using VSVG-pseu-

dotyped lentivirus vectors that enter target cells in large numbers [13, 18, 44–46] and far more

quickly by endocytosis than the replication-competent HIV-1 does through CD4- and

CXCR4-mediated fusion with the plasma membrane. As far as we know, we used for the first

time replication-competent HIV-1 in the fate of capsid assay to demonstrate how MELK acts

on HIV-1 in an experimental setting more relevant to human pathology. We chose to focus on

the time point 8 h post infection for this fate-of-capsid assay for the following reasons: (i) pre-

vious reports showed that reverse transcription products reached a maximum 24 h after

calculated from five independent experiments. (D) Effect of MELK depletion on HIV-1 replication in MT4C5 cells. The virion-associated

RT activity was monitored at the indicated time points in culture supernatants of MT4C5 (closed squares), Non-T (closed circles) and

MELK-KD-2 (open circles) cells. (E) Quantitative DNA-PCR analyses of viral cDNA metabolism after HIV-1 infection of

MT4C5-derived cells in the presence or absence of AZT (5 μM) or NVP (10 μM). Total DNA was extracted from a portion of the cells 2

h after infection and early viral cDNA synthesis was quantified by real-time PCR with a primer set recognizing the R/U5 region (top

panel). Total DNA was extracted at the indicated time points (4, 8 and 24 h) and analyzed for the amount of late viral cDNA with a

primer set recognizing the R/U5 region (top panel), env (middle panel) or pol (bottom panel) regions. The ratios of each viral cDNA

level to beta-globin DNA level are given. Experiments were performed at least three times and error bars are standard deviations

calculated from three independent experiments. Statistical significance was determined by one-way analysis of variance (ANOVA)

with Dunnett’s multiple comparison test (C). ns, not significant (P>0.05); *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.ppat.1006441.g001
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Fig 2. Depletion of MELK delays HIV-1 CA disassembly. (A) Non-T or MELK-KD-2 MT4C5 cells were mock-infected or infected with 100

or 500 ng of p24-measured amounts of NL4-3 virions containing BlaM-Vpr, based on the measured amount of p24, in the presence or

absence of AMD3100 (100 nM). They were then analyzed in the fusion assay by flow cytometry using a violet laser to excite CCF2. Each

experiment was performed in triplicate, repeated three times and one set of representative data is shown. (B) Relative numbers of BlaM+

MELK-KD-2 MT4C5 cells are shown as percentages (%) of Non-T MT4C5 cells with standard deviations calculated from three independent

experiments. (C) Virion-associated viral RNA was quantified by quantitative RT-PCR 2 h after infection of Non-T or MELK-KD-2 MT4C5 cells
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infection with replication-competent HIV-1 [38, 39]; (ii) our requirement studies indicated

that the amount of total intracellular CA 4 h after infection remained so small that it was

impossible to detect pelletable CA by western blotting following ultracentrifugation (S5 Fig).

Previous studies had shown that ectopic expression of the rhT5α protein accelerated uncoating

and restricted HIV-1 infection, and that a reverse transcriptase inhibitor, NVP, delayed CA

disassembly [9, 11, 12, 47]. To confirm the validity of this fate-of-capsid assay, we established

MT4C5 cell pools stably expressing C-terminally hemagglutinin (HA)-tagged rhT5α (rhT5α-

HA) (Fig 2H, upper panel). As reported previously [47], rhT5α strongly inhibited HIV-1 infec-

tion (Fig 2H, lower panel). Control Non-T, MELK-KD, rhT5α-HA-expressing cells and Non-

T cells treated with NVP were infected with wild-type HIV-1. We found that the amount of

HIV-1 cores in HIV-1-infected cells expressing rhT5α-HA 8 h post-infection was significantly

lower than in control cells (Non-T) (Fig 2I, panel CA of fraction #3, MG132[–], compare Non-

T and rhT5α-HA). We also found that treatment of Non-T cells with NVP 8 h post-infection

caused a marked delay of CA disassembly (Fig 2I, panel CA of fraction #3, MG132[–], compare

Non-T and Non-T + NVP). Immunoblot analyses 2 h post-infection revealed that the levels of

CA protein in the cell lysates from Non-T or MELK-KD cells were similar, indicating similar

efficiency of HIV-1 entry (Fig 2I, panel CA of cell lysate 2 h, MG132[–], compare Non-T and

MELK-KD-2). However, immunoblotting 8 h post-infection revealed that the amount of HIV-

1 CA in the cell lysate from MELK-KD cells was significantly larger than that from Non-T cells

in the absence of MG132 (Fig 2I, panel CA of cell lysate 8 h, MG132[–], compare Non-T and

MELK-KD-2). This difference was confirmed in a quantitative manner by p24 ELISA (Fig 2I,

left lower bar graph, MG132 [–], compare Non-T and MELK-KD-2). This suggests that CA

monomers dissociated from multimerized cores undergo degradation in living cells. Consis-

tent with a previous report [48], degradation of incoming CA protein in our hypotonic lysis

buffer was accelerated by rhT5α (Fig 2I, panel CA of cell lysate 8h, MG132[–], compare Non-T

and rhT5α-HA). The report also showed that the proteasome inhibitors MG132 and lactacys-

tin caused markedly increased steady-state levels of incoming CA protein in the cytosol of

with wild-type HIV-1. Error bars indicate the standard deviations calculated from five independent experiments. (D) Immunoblot analysis of

envelope-stripped HIV-1 cores. Concentrated virions were subjected to step-gradient centrifugation in the absence (-) or presence (+) of 0.1%

of Triton-X100. (E) Electron micrographs showing envelope-stripped cores of HIV-1. TEM images of a negatively stained envelope-stripped

core of HIV-1 prepared from HIV-1NL4-3 virions. Bars indicate 50 nm. (F) Immunoblot analyses showing MELK bound to envelope-stripped

cores of HIV-1. HeLa cells were transfected with pCAG-OSF (lane 1) or increasing amounts of pCAG-OSF-GFP (lanes 2 to 3),

pCAG-OSF-MELK (lanes 4 to 5), pCAG-FOS2-rhT5α (lanes 6 to 7) or pCAG-OSF-CypA (lanes 8 to 9). Purified OSF- or FOS2-tagged

proteins were incubated with envelope-stripped cores and complex formation was assessed. Masses of molecular weight standards are

indicated on the left. Arrows indicate the position of MELK in the gel. (G) Schematic diagram of the fate-of-capsid assay. (H) Forced

expression of rhesus Trim5α (rhT5α) inhibits HIV-1 replication in human T cells. Cell lysates were prepared from MT4C5 cells transduced with

empty lentivirus (vector-control) or lentivirus for C-terminally HA-tagged rhesus Trim5α expression (rhT5α-HA) and processed for

immunoblotting with anti-HA (HA) and anti-alpha-tubulin (α-tubulin) antibodies. Experiments were performed at least three times and one

representative set of data is shown (upper panels). Vector-control and rhT5α-HA cells were infected with VSV-G-env-pseudotyped NL4-3luc.

Relative luciferase activity is shown as a percentage (%) of the RLU of vector-control cells with standard deviations calculated from five

independent experiments (lower panel). (I) Effect of MELK depletion on the fate of the HIV-1 CA in MT4C5 cells. Non-T, MELK-KD-2, MT4C5

cells expressing rhT5α (rhT5α), or Non-T cells treated with 10 μM nevirapine (Non-T + NVP) were infected with wild-type HIV-1 for 8 h in the

presence or absence of 10 μM MG132 (MG132 [+] or MG132 [–]). HIV-1 stock inactivated by incubation at 65˚C for 30 min was used as a

negative control (HI control). Cell lysates were subjected to 20%–60% step-gradient centrifugation and three fractions were collected from the

top (fraction #1), middle (fraction #2) and interface between the 20% and 60% sucrose layers (fraction #3). Aliquots of each fraction were

processed for immunoblotting with anti-p24 antibody (CA) (upper panel). Experiments were performed at least five times and one

representative set of data is shown. The amount of CA in each fraction in the absence of MG132 was quantified by HIV-1 p24 ELISA (lower

panel). Error bars indicate the standard deviations calculated from five independent experiments. (J) Percentage of the pelletable CA (fraction

#3) within total CA in the absence of MG132 was calculated based on the p24 ELISA data shown in Fig 2H. Total CA denotes the sum of the

amount of p24 antigen which was calculated based on the p24 ELISA data of fractions #1, #2, and #3. Error bars represent the standard

deviations calculated from five independent experiments. Statistical significance was determined by unpaired two-tailed Student’s t test (B, C,

H and J), or one-way analysis of variance (ANOVA) with Dunnett’s multiple comparison test (I). ns, not significant (P>0.05); *P<0.05,

**P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.ppat.1006441.g002
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HeLa cells expressing non-restrictive human Trim5α or rhT5α [48]. We therefore used the

proteasome inhibitor MG132 to retain the CA in infected cells as far as possible in order to

show how much CA was actually present in infected cells at the time of the assay. Indeed, the

inhibition of CA degradation by the proteasome revealed that similar amounts of CA were

present in infected cells (Fig 2I, panel CA of cell lysate 8 h, MG132[+], compare Non-T,

MELK-KD-2, rhT5α-HA and Non-T + NVP). Importantly, more viral cores were found 8 h

post-infection in MELK-KD cells than in Non-T cells regardless of proteasome inhibition,

indicating that depletion of MELK in MT4C5 cells impaired the dissociation of CA from the

HIV-1 core (Fig 2I, panel CA of fraction #3, MG132 [–] and MG132[+], compare Non-T and

MELK-KD-2). Accordingly, the ratio of pelletable CA of HIV-1 cores to total CA in

MELK-KD cells quantified by p24 ELISA in the absence of MG132 was significantly increased

compared to Non-T cells (Fig 2J). To determine whether the effects of MELK on CA disassem-

bly were cell type-specific, similar experiments were performed with the cells used in S6A–S6C

Fig. Immunoblotting revealed that CA in the cell lysate (S6B Fig, left upper panel) or derived

from HIV-1 cores (S6B Fig, right upper panel, fraction #3) was significantly increased in

HEK293 cells 8 h after VSV-G-pseudotyped HIV-1 infection. This was accomplished without

any significant difference in the efficiency of VSV-G-pseudotyped HIV-1 entry, as in MT4C5

cells (S6A Fig, compare Non-T and 293-MELK-KD-3). Again, confirmation was obtained by

quantitative p24 ELISA (S6B Fig, bottom panels). As in MT4C5 cells, the proportion of pelleta-

ble CA in 293-MELK-KD-3 cells was significantly greater than in control Non-T cells (S6C

Fig). Proteasome inhibition by MG132 treatment indicated that there were similar amounts of

CA in infected cells, suggesting that MELK depletion stabilizes intracellular CA protein as in

MT4C5 cells (S6D Fig). CA derived from viral cores in MELK-KD MT4C5 and MELK-KD

HEK293 cells were increased relative to control cells at all time points examined (S6E Fig).

These results clearly indicate that MELK is required for optimal HIV-1 capsid disassembly in

newly infected cells.

Catalytic activity of MELK regulates HIV-1 replication

Transduction of MELK-depleted MT4C5 expressing an shRNA targeting the 30-untranslated

region (30-UTR) of MELK (MT4C5-MELK-KD-1) with a lentivirus vector capable of express-

ing wild-type MELK substantially restored HIV-1 infectivity in two independent cell pools (Fig

3A, compare lanes 4 and 5 or 6). In contrast, a MELK mutant (T167A) that lacks catalytic activ-

ity [37] failed to do so (Fig 3A, compare lanes 4 and 7 or 8), suggesting that the kinase activity

of MELK is required for efficient HIV-1 replication. Depletion of endogenous MELK as well as

forced expression of exogenous MELK was verified by RT-PCR and immunoblotting (S7 Fig).

To determine whether CA is a substrate for MELK, we prepared recombinant CA fused to GST

(GST-HIV-CA) and employed an in vitro luminescent kinase assay, in which the amount of

ADP produced in the kinase reaction was quantified (for details, see “Materials and methods”).

MELK phosphorylated ZIPtide, a substrate for MELK [49] (Fig 3B, upper panel), which was

inhibited by the small-molecule MELK inhibitor OTSSP167 [50] in a dose-dependent manner

(Fig 3B, lower panel). As shown in Fig 3C, MELK significantly phosphorylated GST-HIV-CA,

but not the control GST protein (compare GST and GST-HIV-CA) or GST-HIV-CA in the

presence of OTSSP167 (compare GST-HIV-CA and GST-HIV-CA + OTSSP167). We obtained

similar results with the GST-free recombinant HIV-1 CA protein (S8 Fig). These results suggest

that CA is a substrate for MELK. Because the results shown in Fig 2F implied that MELK pref-

erentially recognized multimerized CA cores, we next determined whether MELK phosphory-

lates CA in a structure-dependent manner. In vitro luminescent kinase assays revealed that

env-stripped HIV-1 cores were much more efficiently phosphorylated by MELK than
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Fig 3. Catalytic activity of MELK is required for HIV-1 infection. (A) Effect of exogenous wt or T167A MELK on single-round HIV-

1 infection. VSV-G-pseudotyped NL4-3luc was used to infect parental MT4C5 (white bar: lane 1), Non-T (gray bars: lanes 2 and 9)

and MELK-KD-1 (dark gray bars: lanes 3 to 8) cells transduced with control vector (lane 4), wild-type MELK (lanes 5 and 6) or

catalytically inactive T167A MELK mutant (lanes 7 and 8) (see also S7 Fig). Two independent MELK-KD-1 cell pools expressing wild-

type MELK (lanes 5 and 6) or T167A MELK mutant (lanes 7 and 8) were used. Error bars indicate the standard deviations calculated

from five independent experiments. (B) In vitro luminescent kinase assay with recombinant active MELK (10 or 100 ng) and
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GST-HIV-CA (Fig 3D, compare GST-HIV-CA and Env-stripped HIV-1 cores). To explore

which Ser or Thr residue(s) in CA can be phosphorylated by MELK, we generated fifteen pep-

tides that covered all the regions containing Ser or Thr residues in CA (Fig 3E). In vitro lumi-

nescent kinase assays revealed that peptides #8 and #9 were phosphorylated by MELK in a

substrate dose-dependent manner (Fig 3F). These results suggest that Thr-119, Ser-146, Thr-

148 and Ser-149 of CA could be phosphorylation targets of MELK.

Phosphorylation of Ser-149 in CA by MELK regulates HIV-1 uncoating in

target cells

We next explored whether an amino-acid substitution that mimics phosphorylation of each

serine or threonine residue, Thr-119, Ser-146, Thr-148 and Ser-149, counteracts the delay of

CA disassembly and reduction in viral cDNA synthesis caused by MELK depletion. We gener-

ated four mutant pNL4-3 proviral molecular clones in which each Ser or Thr residue was

substituted by a glutamic acid residue so that each mutation mimics constitutive phosphoryla-

tion of the site. Mutant HIV-1 bearing T119E, S146E, T148E, or S149E mutations in CA were

used to evaluate the efficiency of viral cDNA synthesis in MELK-KD MT4C5 cells. The

amount of each input CA-mutated virus was normalized by its RT activity. HIV-1 bearing

T119E, S146E or T148E poorly restored early (Fig 4A) and late (Fig 4B) cDNA synthesis in

MELK-KD MT4C5 cells. In contrast, viral cDNA synthesis after infection with HIV-1 bearing

the S149E mutation was robustly restored, and even at an earlier time point than wild-type

HIV-1 (approximately 1.7-fold increase compared to Non-T-wt, 8 h post-infection) (Fig 4A

and 4B, MELK-KD-2-S149E). The S149E mutation did not significantly alter the amount of

incoming HIV-1 RNA in MELK-KD or control Non-T MT4C5 cells (S9G Fig, compare NL4-

3wt and NL4-3 CA S149E). In control MT4C5 cells expressing non-target shRNA, only the

S149E mutation caused an earlier peak and subsequent downturn in viral cDNA synthesis sim-

ilar to that in MELK-KD MT4C5 cells (S9A–S9D Fig). This suggests that phosphorylation of

Ser-149 is likely to play an important role in the initiation of viral cDNA synthesis. Despite

maintenance of efficient cDNA synthesis by the S149E mutant, production of the 2-LTR circu-

lar form of viral cDNA, a marker for nuclear import, was undetectable (Fig 4C, MELK-KD-

2-S149E). This shows that this CA mutation promotes viral cDNA synthesis, but does not

favor nuclear import. HIV-1 bearing T119E or T148E but not S146E mutations appeared to

partially restore production of the 2-LTR circular form (Fig 4C), suggesting that although

these mutants failed to substantially restore viral DNA synthesis, they were still competent for

nuclear entry. Single-round infection assays using TZM-bl or LuSIV indicator cells revealed

very low but detectable infectivity of HIV-1 bearing CA T119E or T148E. However, infection

with S146E or S149E CA mutants was undetectable (S10C Fig).

increasing amounts of ZIPtide, a substrate for MELK (upper panel). Phosphorylation of the substrate was monitored as the amount of

ADP produced during the kinase reaction. Effect of OTSSP167, a MELK kinase inhibitor, on in vitro MELK kinase activity (lower

panel). Error bars indicate the standard deviations calculated from three independent experiments. (C) In vitro luminescent kinase

assay with recombinant active MELK and increasing amounts of the indicated GST fusion proteins in the presence or absence of

OTSSP167 (100 nM). Mean values from five independent experiments are shown. Error bars indicate the standard deviations

calculated from five independent experiments. (D) In vitro luminescent kinase assay with recombinant active MELK and increasing

amounts of the indicated substrates in the presence or absence of OTSSP167 (100 nM). Phosphorylation of proteins was monitored

as in (C). Error bars indicate the standard deviations calculated from five independent experiments. (E) List of fifteen different

peptides containing serine or threonine residues in HIV-1 CA. (F) In vitro luminescent kinase assay with recombinant active MELK

and increasing amounts of each peptide shown in (E). Phosphorylation of the peptides was monitored as in (B). Experiments were

performed at least three times and error bars are standard deviations calculated from three independent experiments. Statistical

significance was determined by one-way analysis of variance (ANOVA) with Dunnett’s multiple comparison test (A), or two-way

ANOVA with Tukey’s multiple comparison test (C and D). ns, not significant (P>0.05); *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.ppat.1006441.g003
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Fig 4. Phosphorylation of Ser-149 in CA regulates CA disassembly and viral cDNA synthesis in human T cells. (A-C)

Quantitative DNA-PCR analyses of viral cDNA metabolism after HIV-1 infection of MT4C5 cells. Total DNA was extracted from non-

target shRNA (Non-T) or MELK-depleted (MELK-KD-2) MT4C5 cells at the indicated time points (2, 4, 8 and 24 h) after infection with

wild-type or the indicated mutants of HIV-1 and analyzed for the amounts of the R/U5 region as early viral cDNA (A), the env region as

late viral cDNA (B) and the 2-LTR circle form (C). Experiments were performed at least three times and error bars are standard

deviations calculated from three independent experiments. The ratios of each viral cDNA level to beta-globin DNA level are given. (D)
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To assess how the S149E mutation in CA influences the kinetics of capsid disassembly, we

performed a fate-of-capsid assay in control Non-T and MELK-KD MT4C5 cells. The S149E

substitution resulted in a clear decrease of the HIV-1 core not only in MELK-KD cells but also

in Non-T cells, indicating that this mutation promoted the CA disassembly irrespective of the

presence of MELK (Fig 4D, right panel CA, MG132[–], compare lanes 12–13 and 14–15).

Reciprocally, the soluble form of CA was markedly increased in S149E mutant-infected cells

relative to NL4-3wt-infected cells (Fig 4D, middle panel CA, MG132[–], compare lanes 7–8

and 9–10). However, this was not due to different efficiencies of HIV-1 entry because the

amounts of incoming CA were similar in the presence of MG132, which prevents the degrada-

tion of the CA monomer dissociated from the viral core in the cytoplasm (Fig 4D, panel CA of

cell lysate, MG132[+], compare lanes 2–3 and 4–5). Consequently, the ratio of pelletable S149E

CA to total CA in the absence of MG132 quantified by p24 ELISA was significantly less than

that of NL4-3wt in both MELK-KD and control Non-T cells (Fig 4E, compare WT and

S149E). Overall, these results suggest that phosphorylation of Ser-149 by MELK is a trigger for

CA disassembly in HIV-1 infection.

We also attempted to characterize HIV-1 with an S149A mutation expected to confer

refractoriness to phosphorylation by MELK, but the titer of the S149A virus was too low to

compare its infectivity with NL4-3wt and S149E mutant. This is consistent with a previous

study that the S149A mutation affects the production of infectious virions [23]. We therefore

evaluated the infectivity of VSV-G-envelope-pseudotyped NL4-3luc bearing the S149A muta-

tion in CA (VSVG/NL4-3luc CA-S149A) in Non-T and MELK-KD MT4C5 cells. We did this

because the infectivity of S149A mutant virus was reported to be rescued specifically by pseu-

dotyping with the VSV envelope protein [22, 23]. The S149A mutation greatly reduced the

VSVG/NL4-3luc-derived reporter gene activity in parental and Non-T cells, and also, but less

markedly, in MELK-KD cells (S11A Fig, panels MT4C5, Non-T and MELK-KD-2, compare

CA-wt and CA-S149A). Additionally, depletion of MELK modestly reduced the reporter gene

activity of VSVG/NL4-3luc CA-S149A compared to Non-T control cells (S11B Fig). These

findings may in part reflect unidentified dysfunctionality of this mutant CA, but also raise the

possibility that MELK regulates HIV-1 replication in a manner in addition to phosphorylating

CA Ser-149. A GST-linked S149A CA (GST-HIV-CA S149A) was analyzed using the in vitro
luminescent kinase assay to determine whether any other residues in CA can be phosphory-

lated by MELK (Fig 5A). Essentially no phosphorylation could be detected when activated

MELK was incubated with increasing amounts of GST-HIV-CA S149A (Fig 5A, compare

GST-HIV CA and GST-HIV CA S149A).

To directly test the ability of MELK to phosphorylate Ser-149 in CA, we generated rabbit

polyclonal antibodies that recognize only phosphorylated Ser-149 in CA (CA-S149p). Fig 5B

shows that phosphorylation of virion-associated CA was undetectable with CA-S149p (top

panel CA-S149p, lanes 2 and 3). We next performed an in vitro phosphorylation assay with

Fate-of-capsid assays with non-target shRNA (Non-T) or MELK-KD-2 MT4C5 cells infected with NL4-3 or its S149E CA mutant for 8 h in

the presence or absence of 10 μM MG132 (MG132 [+] or MG132 [–]). HIV-1 stock inactivated by incubation at 65˚C for 30 min was used

as a negative control (HI control). Cell lysates were prepared and analyzed as in Fig 2I. Aliquots of input, fraction #1 and #3 were

processed for immunoblotting with anti-p24 antibody (CA). The amount of CA in each fraction in the absence of MG132 was quantified

by HIV-1 p24 ELISA (MG132 [–], lower panels). Experiments were performed five times and one representative set of data is shown. (E)

Percentages of pelletable CA (fraction #3) within total CA in the absence of MG132 were calculated based on the p24 ELISA data shown

in Fig 4D. Total CA denotes the sum of the amount of p24 antigen which was calculated based on the p24 ELISA data of fractions #1,

#2, and #3. Error bars represent the standard deviations calculated from five independent experiments. Statistical significance was

determined by one-way analysis of variance (ANOVA) with Tukey’s multiple comparison test (D), or unpaired two-tailed Student’s t test

(E). ns, not significant (P>0.05); *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.ppat.1006441.g004
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Fig 5. MELK phosphorylates Ser-149 of HIV-1 CA. (A) In vitro luminescent kinase assay with recombinant active MELK and increasing

amounts of the indicated GST fusion proteins in the presence or absence of OTSSP167 (100 nM). Phosphorylation of the proteins was

monitored as in Fig 3B. Error bars indicate the standard deviations calculated from five independent experiments. (B) Immunoblotting to

detect Ser-149 phosphorylation by MELK. Envelope-stripped cores prepared as in Fig 2D were incubated with recombinant MELK for the

indicated times. Aliquots of each reaction sample were processed for immunoblotting using anti-phospho-S149-CA (CA-S149p), anti-p24

(CA), anti-p17 (MA), anti-gp120 (Env) or anti-MELK (MELK) (upper 5 panels). Envelope-stripped cores were incubated with recombinant
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envelope-stripped core prepared as in Fig 2D to determine whether MELK phosphorylates

Ser-149 of CA in the multimerized viral core. Incubation of envelope-stripped core with

recombinant MELK induced phosphorylation of S149 in a time-dependent manner (Fig 5B,

top panel CA-S149p, lanes 3–7), which was undetectable in the presence of the immunizing

peptide for CA-S149p (Fig 5B, panel Immunizing peptide [CA: 140–154 S149p]). This indi-

cates that CA-S149p specifically detects phosphorylation of S149 in CA, which was diminished

in the presence of OTSSP167 (Fig 5B, panels OTSSP167 [100 nM] and OTSSP167 [500 nM])

or calf intestinal alkaline phosphatase (Fig 5B, bottom panel CIAP, CA-S149p). To further

investigate the phosphorylation of Ser-149 by MELK in vivo, we performed Phos-tag analysis

to detect any mobility shift of phosphorylated proteins using Manganese2+-phos-tag

SDS-PAGE [51] (Fig 5C and 5D). Migration of CA was faster from MELK-KD MT4C5 cells

than from control (Non-T) cells, indicating that MELK phosphorylates CA in HIV-1-infected

cells (Fig 5C, top panel CA, compare lanes 2 and 3). Treatment of cell lysate with calf intestinal

alkaline phosphatase (CIAP) further down-shifted the bands (Fig 5C, top panel CA, lanes 4

and 5). In addition, essentially no difference in the mobility shift was observed with CA-S149A

in Non-T and MELK-KD cells, suggesting that the Ser-149 residue is the sole phosphorylation

target of MELK (Fig 5D, top panel CA, compare lanes 2 and 3). Collectively, these results

clearly indicate that MELK regulates optimal capsid disassembly and efficient viral cDNA syn-

thesis in target cells through phosphorylation of Ser-149 in CA. In fact, according to the HIV

Sequence Compendium 2016 published by Los Alamos National Laboratory, the Ser-149 resi-

due in CA is highly conserved among HIV-1 strains, suggesting its important role in HIV-1

replication (S12 Fig).

Forced expression of MELK leads to premature HIV-1 capsid

disassembly and viral cDNA synthesis in target cells

Our observation that constitutive phosphorylation of Ser-149 caused premature capsid disas-

sembly and early viral cDNA synthesis but failed to support nuclear import of viral DNA sug-

gests that a well-ordered phosphorylation of Ser-149 during CA disassembly is required for

optimal uncoating, viral cDNA synthesis and nuclear import. We next examined whether

forced expression of MELK in MT4C5 cells affects HIV-1 infection. Expression of exogenous

and endogenousMELKmRNA was monitored by RT-PCR (Fig 6A). To assess how MELK

overexpression influences the kinetics of capsid disassembly, we performed a fate-of-capsid

assay in control (CSII-control), MELK-expressing (CSII-MELK) and catalytically inactive

MELK-expressing (CSII-MELK T167A) MT4C5 cells. Overexpression of wild-type MELK

resulted in an obvious decrease in pelletable CA (Fig 6B, right panels, compare CSII-control

MELK in the presence of 100 nM or 500 nM of OTSSP167 [panel: OTSSP167 (100 nM or 500 nM)]. The samples were also treated with (+)

or without (-) 100 U of calf intestine alkaline phosphatase (CIAP) and immunoblotted (lower 2 panels) with CA-S149p (panel: CA-S149p) or

with anti-p24 antibody [panel: CA (reprobed)]. Experiments were performed three times and one representative set of data is shown. (C)

Non-T or MELK-KD-2 MT4C5 cells were infected with VSV-G-pseudotyped HIV-1 or VSV-G-pseudotyped HIV-1 CA-S149A for 8 h. The

proteasome inhibitor MG132 (2 μM) was added 5 h after infection to prevent the degradation of CA proteins dissociated from the viral core in

the cytoplasm [48]. Cell lysates were separated by SDS-PAGE containing Manganese(II)-Phos-tag (Mn2+-phos-tag) or SDS-PAGE without

Mn2+-phos-tag (Normal), and analyzed by immunoblotting with anti-p24 antibody (CA) or anti-alpha-tubulin antibody (α-tubulin). Cell lysates

were incubated for 60 min at 37˚C without (lanes 2 and 3) or with (lanes 4 and 5) calf intestine alkaline phosphatase (CIAP). “non-pCA”

indicates the position of CA dephosphorylated by CIAP and “pCA” indicates phosphorylated CA. Experiments were performed at least three

times and one representative set of data is shown. (D) Non-T or MELK-KD-2 MT4C5 cells were infected with VSV-G-pseudotyped HIV-1

CA-S149A for 8 h. Cell lysates were separated as in (C) and analyzed by immunoblotting with anti-p24 antibody (CA) or anti-alpha-tubulin

antibody (α-tubulin). Similar results were obtained in three independent experiments and a representative result is shown. Statistical

significance was determined by two-way analysis of variance (ANOVA) with Tukey’s multiple comparison test (A). ns, not significant

(P>0.05); *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.ppat.1006441.g005
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Fig 6. Forced expression of MELK affects the disassembly of HIV-1 core and infectivity. (A) Semi-

quantitative RT-PCR analyses of MELK mRNA expression. Total RNA was prepared from Non-T MT4C5 cells

transduced with empty lentivirus vector (CSII-control), MELK expression vector (CSII-MELK) or MELK mutant

expression vector (CSII-MELK T167A). Total MELK mRNAs (left panel), endogenous MELK mRNA (middle panel)

and exogenous mutant MELK mRNA (right panel) were quantitated by RT-PCR amplification with specific primer

sets (MELK). A primer set for amplification of GAPDH mRNA was included in each reaction as an internal control
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and CSII-MELK), whereas the catalytically inactive MELK rather increased them. This indi-

cates that the catalytic activity of MELK controls CA disassembly (Fig 6B, right panels, com-

pare CSII-control and CSII-MELK T167A). Overexpression of MELK but not the MELK

mutant inhibited HIV-1 infection (Fig 6C, compare CSII-control, CSII-MELK and CSII-

MELK T167A) and resulted in aberrant viral cDNA synthesis quite similar to the S149E CA

mutant (Fig 6D, compare CSII-Control, CSII-MELK and CSII-MELK-T167A). These results

strongly suggest that optimal phosphorylation of CA by MELK is required for efficient HIV-1

infection at the early stages.

MELK inhibitor suppresses HIV-1 replication

We assessed whether OTSSP167 affects HIV-1 replication in MT4C5 cells. Single-round infec-

tion assays revealed that viral infectivity in the presence of OTSSP167 was substantially

reduced in a dose-dependent manner (Fig 7A). OTSSP167 compromised viral cDNA synthesis

in a dose-dependent manner (Fig 7B) and also reduced viral infectivity in PHA-stimulated

peripheral blood mononuclear cells (PBMCs) derived from two healthy donors (Fig 7C).

Similar results were obtained with the macrocyclic thiazole antibiotic Siomycin A (Fig 7D–

7F), initially identified as an inhibitor of the transcription factor FOXM1b and thereafter

reported to reduce MELK expression in brain tumor stem-like cells in vitro [52–54]. MELK

expression was reduced by Siomycin A in a dose-dependent manner (S13A Fig), while there

was no effect onMELKmRNA levels in MT4C5 cells (S13B Fig). HIV-1 replication in MT4C5

cells with the replication-competent NL4-3 virus in the presence of Siomycin A was markedly

inhibited in a dose-dependent manner (S13C Fig). These findings suggest that a small-mole-

cule inhibitor of MELK has potential as an anti-HIV lead compound.

Discussion

The main finding of the present study is that MELK regulates CA disassembly to promote viral

cDNA synthesis through the phosphorylation of Ser-149 in CA during the early stages of HIV-

1 infection. MELK depletion did not significantly alter the efficiency of HIV-1 entry (Fig 2A–

2C), but did impair viral cDNA synthesis in association with a significant delay of CA disas-

sembly during the early stages of HIV-1 infection (Figs 1E, 2I and 2J). Although MELK was

identified based on HIV-1 infection-resistant cells during a spreading-infection, the inhibition

(GAPDH). Experiments were performed three times and one set of representative data is shown. (B) Fate-of-

capsid assays. Non-T MT4C5 cells transduced with empty lentivirus vector (CSII-control), MELK expression vector

(CSII-MELK) or MELK mutant expression vector (CSII-MELK T167A) were infected with NL4-3 for 8 h. HIV-1 stock

inactivated by incubation at 65˚C for 30 min was used as a negative control (HI control). Cell lysates were prepared

and analyzed as in Fig 2I. Aliquots of input, soluble fraction #1 and viral core fraction #3 were processed for

immunoblotting with anti-p24 antibody (CA). Input cell lysates were also analyzed by immunoblotting with anti-

MELK (MELK) and anti-alpha-tubulin antibodies (α-tubulin). Experiments were performed five times and one

representative set of data is shown. The amount of CA in each fraction was quantified by HIV-1 p24 ELISA (lower

panels). Error bars indicate the standard deviations calculated from five independent experiments. (C) Non-T

MT4C5 cells transduced with empty lentivirus vector (CSII-control), MELK expression vector (CSII-MELK) or MELK

mutant expression vector (CSII-MELK T167A) were infected with VSV-G-env-pseudotyped NL4-3luc. Relative

luciferase activities are shown as ratios (%) of the RLU of control Non-T MT4C5 cells with standard deviations

calculated from five independent experiments. (D) Quantitative DNA-PCR analyses of viral cDNA metabolism after

HIV-1 infection of MT4C5 cells. Total DNA was extracted from the indicated cells and analyzed for the amounts of

late RT product (upper panel) and 2-LTR circle form (lower panel) as in Figs 1E and 4C. Experiments were

performed at least three times and error bars are standard deviations calculated from three independent

experiments. The ratios of each viral cDNA level to beta-globin DNA level are given. Statistical significance was

determined by one-way analysis of variance (ANOVA) with Dunnett’s multiple comparison test (B and C). ns, not

significant (P>0.05); *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.ppat.1006441.g006
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Fig 7. MELK inhibitor blocks HIV-1 infection in human cells. (A) Effect of OTSSP167 on HIV-1 single-round infection. MT4C5 cells were infected

with VSV-G-pseudotyped NL4-3luc in the presence of increasing amounts of OTSSP167. (B) Quantitative DNA-PCR analysis of viral cDNA

metabolism after HIV-1 infection in OTSSP167-treated MT4C5 cells. Total DNA from MT4C5 cells treated with OTSSP167 was extracted 8 h after HIV-

1 infection and analyzed for the amount of late RT products with a primer set recognizing the env (left panel) or pol (right panel) regions. The ratios of

each viral cDNA level to beta-globin DNA level are given. (C) Effect of OTSSP167 on single-round HIV-1 infection of PHA-stimulated PBMCs. PHA-

stimulated PBMCs were infected with VSV-G-pseudotyped NL4-3luc in the presence of increasing amounts of OTSSP167. (D) Effect of Siomycin A on

HIV-1 single-round infection. MT4C5 cells were infected with VSV-G-pseudotyped NL4-3luc in the presence of increasing amounts of Siomycin A. (E)

Quantitative DNA-PCR analysis of viral cDNA metabolism after HIV-1 infection in Siomycin A-treated MT4C5 cells. Total DNA from MT4C5 cells

treated with Siomycin A was extracted and analyzed as in (B). (F) Effect of Siomycin A on single-round HIV-1 infection of PHA-stimulated PBMCs.
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by MELK-depletion in single-round infection assays was not complete (Fig 1C). This seems to

be due, at least in part, to the difference in MOI between single-round infection assays (MOI,

1) and the initial genome-wide RNAi screen (MOI, 0.01). The different level of inhibitory

effects shown in the uncoating (~2 fold) and infectivity (~10 fold) results may be explained by

the widely observed finding that changes in uncoating influence reverse transcription and

nuclear translocation, thereby amplifying the effect. The marked suppression of the spread of

HIV-1 infection in MELK-depleted cells further suggests a role for MELK in other stages of

virus replication. This is currently under investigation. The direct interaction of MELK with

envelope-stripped core, but not with the monomeric form of CA, suggests an association

between the host cell MELK and the incoming viral core in the cytoplasm (Fig 2D–2F). More-

over, the results in Fig 3D indicate that the env-stripped HIV-1 core is a much better substrate

of MELK than GST-HIV-CA. Host cell core-binding factors such as MELK that accelerate CA

dissociation from the viral core, and those that stabilize the core, such as CPSF6 [15–17], are

likely required to achieve optimal stability of the viral core which is necessary for efficient viral

cDNA synthesis in target cells. We further document, for the first time, phosphorylation of

S149 in the multimerized viral core by MELK, and provide compelling evidence of in vivo
phosphorylation of S149 (Fig 5B). In vitro phosphorylation assays have shown that the HIV-1

CA is a substrate of MELK (Fig 3C) and that Thr-119, Ser-146, Thr-148, and Ser-149 are the

candidate phosphorylation targets (Fig 3F). Ser-146, Thr-148 and Ser-149 are located in the

flexible linker region that may allow movement of the C-terminal domain (CTD) relative to

the N-terminal domain (NTD) [55–57], whereas Thr-119 is located in the amino-terminal

domain of CA. The restoration of viral cDNA synthesis in MELK-KD cells by the S149E muta-

tion is consistent with a previous report that the flexible linker region has a critical role in opti-

mal core stability and efficient HIV-1 replication [23]. The S149E mutation caused an earlier

peak and subsequent reduction of viral cDNA synthesis in control cells as in MELK-KD cells

(S9D Fig). Infection of cells overexpressing MELK with wild-type HIV-1 resulted in premature

CA disassembly and aberrant viral cDNA synthesis (Fig 6B and 6D). These results collectively

indicate that unusual phosphorylation of S149 in CA by MELK misguides capsid disassembly

and viral cDNA synthesis (Figs 4 and 6 and S9D Fig). HIV-1 with T119E, S146E or T148E

mutations yielded less late RT product in MELK-KD cells than in control Non-T cells probably

because in these mutants S149 remains intact (S9A–S9C Fig). They produced late RT products

in control Non-T cells much less efficiently than did wild-type so that the proportional reduc-

tion in the late RT product was not as marked as in the wild-type (S9A–S9C Fig). This reduc-

tion indicates that these mutants are sensitive to MELK depletion and that the essential target

of MELK is not T119, S146 or T148. T119E and S146E mutants produced a little more late RT

product than did the wild-type in MELK-KD cells (Fig 4B) and eventually failed to increase or

retain this at 24 h post-infection, suggesting that these mutations promoted reverse transcrip-

tion independently of MELK (Fig 4B). A previous report showed that the CA mutations

E128A/R132A increased the stability of the viral core and impaired viral cDNA synthesis,

while CA mutations Q63A/Q67A accelerated CA disassembly and viral cDNA synthesis, but

severely impaired viral infectivity [6]. This appears consistent with our results that MELK

depletion caused both the delay of CA disassembly and reduction in viral cDNA synthesis in

target cells. We showed here that the S149E mutation, like Q63A/Q67A mutations, accelerated

PHA-stimulated PBMCs were infected with VSV-G-pseudotyped NL4-3luc in the presence of increasing amounts of Siomycin A. Error bars indicate the

standard deviations calculated from five independent experiments. Statistical significance was determined by two-way analysis of variance (ANOVA)

with Sidak’s multiple comparison test (A and D), or one-way ANOVA with Dunnett’s multiple comparison test (B, C, E and F). *P<0.05, **P<0.01,

***P<0.001.

https://doi.org/10.1371/journal.ppat.1006441.g007
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CA disassembly and viral cDNA synthesis, and severely impaired nuclear import of the viral

cDNA (Fig 4). This suggests that successful viral cDNA synthesis may largely depend on the

S149 phosphorylation-triggered CA disassembly and that appropriate timing and perhaps

location of CA disassembly is necessary for the efficient nuclear import of viral cDNA. Indeed,

previous reports showed that HIV-1 CA interacts directly with the nuclear pore complex

(NPC) by binding to the cyclophilin-like domain of Nup358 [58, 59]. It is plausible that aber-

rant disassembly of S149E CA potentially at an inappropriate location renders recognition of

CA by Nup358 difficult. The rapid decline in the amount of viral cDNA in S149E mutant-

infected cells (Fig 4A–4C and S9D Fig) also suggests that premature uncoating promotes viral

DNA degradation in the cytoplasm. Poor production of the S149E mutant virus (S10A and

S10B Fig) may further explain why this residue has to be phosphorylated after entry. MELK-

mediated phosphorylation of Ser-149 after entry may have evolved to optimize production of

infectious virions and achieve an ordered CA disassembly and efficient nuclear entry. In terms

of the coupled RT and capsid disassembly, it is tempting to postulate that phosphorylation of

CA leads to a conformational change that unlocks the initiation of reverse transcription. This

would in turn influence the activities of cytoplasmic factors involved in the regulation of capsid

disassembly, such as MELK, and thereby further promote disassembly of the core.

The poor ability of the VSVG/NL4-3luc CA-S149A virus to infect control MT4C5 cells dif-

fers from a previous observation that VSVG-pseudotyped env-deleted HIV-1 CA-S149A

mutants can infect LuSIV, TZM-bl and MAGIC-5B HeLa cells. This may be due in part to the

different reporter systems and cell lines used. Our observation that alanine substitution of Ser-

149 (S149A) ablated CA phosphorylation in vitro by MELK suggests that the Ser-149 residue is

the sole phosphorylation target of MELK in CA (Fig 5A). The lack of difference in mobility

shift of S149A CA in Non-T and MELK-KD cells shown in the Phos-tag assay further reinforces

this notion (Fig 5D). A previous report showed that phosphorylation of three serine residues

(Ser-109, Ser-149, and Ser-178) in CA is required for efficient reverse transcription and uncoat-

ing [19]. We therefore generated S109E and S178E mutant viruses, and found that this failed to

support viral cDNA synthesis in both Non-T and MELK-KD cells, suggesting that MELK is not

involved in phosphorylation of Ser-109 or Ser-178 (S9E and S9F Fig). Our Phos-tag result that

treatment of lysates from HIV-1-infected MELK-KD cells with CIAP further down-shifted the

CA bands suggests that CA is phosphorylated by other cellular kinases in HIV-1-infected cells

(Fig 5C, top panel CA, compare lanes 3 and 5). Our results from S149E mutation experiments

and overexpression of MELK regarding effects on viral DNA synthesis and nuclear import

strongly suggest that phosphorylation of S149 under temporally and spatially appropriate con-

ditions is important for enabling HIV-1 to proceed through the early stages of infection.

OTSSP167 inhibits the catalytic activity of MELK while Siomycin A reduces its expression, both

of which interfere with the function of MELK as a kinase and similarly reduce the infectivity of

HIV-1 in PBMC (Fig 7). This decreases the likelihood of off-target effects of these drugs.

In conclusion, the essential role of MELK at an early stage of HIV-1 infection exemplifies

another aspect of the functional links between viral capsid disassembly, cDNA synthesis and

nuclear import. These findings contribute to our understanding of early viral life-cycle events

and raise the possibility of developing a new class of anti-HIV agents targeting viral capsid

disassembly.

Materials and methods

Cells

HEK293 (Invitrogen Corp., Carlsbad, CA), HEK293T (Invitrogen Corp., Carlsbad, CA), HeLa

(ATCC) and TZM-bl [National Institutes of Health (NIH) AIDS Research and Reference
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Reagent Program] cells were propagated in Dulbecco’s modified Eagle medium containing

10% fetal bovine serum (FBS) and penicillin/streptomycin. MT4C5 (kindly provided by Tet-

suro Matano’s lab in National Institute of Infectious Diseases, Japan) cells were maintained in

complete RPMI 1640 medium supplemented with 10% FBS and penicillin/streptomycin.

LuSIV cells (NIH AIDS Research and Reference Reagent Program) were cultured in RPMI

1640 supplemented with 10% FBS, penicillin/streptomycin, and 300 μg per ml hygromycin B.

Phytohemaggulutinin (PHA)-activated PBMCs (PHA-PBMCs) were cultured in RPMI 1640

containing 10% FBS, penicillin/streptomycin, and 100 U IL-2 per ml. CD3/CD28-stimulated

peripheral blood lymphocytes (PBL) were prepared using human T-Activator CD3/CD28

Dynabeads (Thermo Fisher Scientific, Waltham, MA) and cultured in RPMI 1640 containing

10% FBS, penicillin/streptomycin, and 100 U IL-2 per ml.

Pharmaceuticals

Nevirapine (NVP) and Azidothymidine (AZT) were obtained from National Institutes of

Health (NIH) AIDS Research and Reference Reagent Program. AMD3100 and MG132 were

obtained from Sigma-Aldrich. Siomycin A was obtained from Bioaustralis. OTSSP167 was

obtained from Selleck chemicals.

Preparation of virus stocks

HEK293T cells cultured in a 10 cm dish were cotransfected with 8 μg of pNL4-3luc (env-/nef-)
plus 2 μg of pHCMV-G (VSV-G) or pLET (HIV-1LAI/IIIB envelope), using FuGENE 6 (Roche

Applied Science, Mannheim Germany) as recommended by the manufacturer. Virus stocks

used for analysis of viral replication were prepared by transfection of HeLa cells using Lipofec-

tAMINE LTX PLUS (Invitrogen Corp., Carlsbad, CA) with molecular clone DNAs of HIV-

1NL4-3, pNL4-3 [60] or pNL4-3 glutamate mutants. Viruses were harvested 48 h post-transfec-

tion and filtered through a 0.45 μm syringe filter. Titers of the virus stocks were determined by

their reverse transcriptase (RT) activity. The amount of CA was quantified by HIV-1 CA (p24)

enzyme-linked immunosorbent assay (ZeptMetrix Corporation, Buffalo, NY). For production

of lentivirus vectors, HEK293T cells were co-transfected with a lentivirus vector plasmid,

HIV-1 helper virus plasmid (pCMV delta R8.2), and VSV-G protein-expression plasmid

(pHCMV-G) using FuGENE6 transfection reagent. Culture supernatant of transfected

HEK293T cells was collected 48 h after transfection and filtered through a 0.45 μm syringe fil-

ter. For production of retrovirus vectors, Plat-E cells were cotransfected with the retrovirus

transfer plasmid pMX-luc [61] and VSV-G using FuGENE 6 transfection reagent. Culture

supernatant of Plat-E cells was collected 60 h after transfection and filtered through a 0.45 μm-

pore syringe filter.

Plasmids

pNL4-3T119E, pNL4-3S146E, pNL4-3T148E, and pNL4-3S149E were generated by site-directed

mutagenesis using PrimeSTAR Mutagenesis Basal kit (TAKARA BIO Inc., Shiga, Japan) on

pCR2.1 (Invitrogen Corp., Carlsbad, CA) using the NL4-3 gag gene (nt 689–2225) of the HIV-

1NL4-3 genome (GenBank accession number M19921) as the template. Primers T119E-5 (5’-

TGGATGGAGCATAATCCACCTATCCCA-3’) and T119E-3 (5’-ATTATGCTCCATCCA

TCCTATTTGTTC-3’) were used for the T119E substitution, primers S146E-5 (5’-ATGTAT

GAGCCTACCAGCATTCTGGAC-3’) and S146E-3 (5’-GGTAGGCTCATACATTCTTAC

TATTTT-3’) for the S146E substitution, primers T148E-5 (5’-AGCCCTGAGAGCATTCTG

GACATAAGA-3’) and T148E-3 (5’-AATGCTCTCAGGGCTATACATTCTTAC-3’) for the

T148E substitution and primers S149E-5 (5’-CCTACCGAGATTCTGGACATAAGACAA-3’)
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and S149E-3 (5’-CAGAATCTCGGTAGGGCTATACATTCT-3’) for the S149E substitution.

These mutated DNA fragments were inserted into the BssH II and Apa I sites of pNL4-3. The

resultant plasmids are referred to as pNL4-3T119E, pNL4-3S146E, pNL4-3T148E, and pNL4-

3S149E. For construction of Strep-tag II fusion-MELK, -Cyclophilin A (CypA), -rhesus monkey

Trim5α (rhT5α) and Green Fluorescent Protein (GFP) expression vectors, the cDNA of

human MELK was amplified by RT-PCR using MT4C5 cell-derived total RNA as the template

and the cDNAs of CypA, rhT5α, and GFP were amplified by PCR using pcDNA-HA-CypA

[62], pRhT5α [63], and pMax-GFP (Lonza Japan Ltd., Tokyo, Japan) as the template, respec-

tively. Primers huMELK-5 (5’-GGGGTACCAAAGATTATGATGAACT-3’) and huMELK-3

(5’-CCGCTCGAGTTATACCTTGCAGCTAGATA-3’) were used for MELK amplification;

primers pCAG-OSF-CypA-5 (5’-GGGGTACCATGGTCAACCCCACCGT-3’) and pCA-

G-OSF-CypA-3 (5’-CCGCTCGAGTTATTCGAGTTGTCCACAGT-3’) for CypA amplifica-

tion, primers KpnI-Kz-RhT5α-F (5’-GCGGTACCGCCACCATGGCTTCTGGAATCC

TGCTT-3’) and XhoI-RhT5a-R (5’-CGCTCGAGAGAGCTTGGTGAGCACAGAG-3’) for

rhT5α amplification, primers KpnI-GFP-F (5’-GCGGTACCGTGAGCAAGGGCGAGGAG-

3’) and XhoI-GFP-R (5’-CCGCTCGAGTCACTTGTACAGCTCGTCCAT-3’) for GFP ampli-

fication. The amplified cDNAs were inserted into the Kpn I and Xho I sites of pCAG-OSF or

pCAG-FOS2 [64], and sequenced. The resultant plasmids are referred to as pCAG-OSF-

MELK, pCAG-OSF-CypA, pCAG-FOS2-rhT5α, and pCAG-OSF-GFP. Primers huMELK-

T167A-F (5’-CTACAGGCCTGCTGTGGGAGTCTGGCT-3’) and huMELK-T167A-R (5’-

ACAGCAGGCCTGTAGATGGTAATCCTT-3’) were used to generate pCAG-OSF-

MELK-T167A by site-directed mutagenesis. A DNA fragment encoding HIV-1 CA was ampli-

fied by PCR using pNL4-3 as the template, and were inserted into pGEX-4T-3 in frame with

glutathione S-transferase (GST). The resulting plasmid is referred to as pGEX-HIV-CA. Prim-

ers NL43-CA-S149A-5 (5’-CCTACCGCCATTCTGGACATAAGACAA-3’) and

NL43-CA-S149A-3 (5’-CAGAATGGCGGTAGGGCTATACATTCT-3’) were used to generate

pGEX-HIV-CA-S149A by site-directed mutagenesis. For generation of human MELK and

rhT5α lentiviral expression constructs, the cDNAs of human MELK and rhT5α were amplified

by PCR using pCAG-OSF-MELK and pRhT5α as the template, respectively. Primers pENTR-

MELK-5 (5’-CACCACCATGAAAGATTATGATGAACT-3’) and pENTR-MELK-3 (5’- TTA

TACCTTGCAGCTAGATA-3’) were used for MELK amplification. Primers RhTRIM5α-

HA-F (5’-CACCACCATGGCTTCTGGAATC-3’) and RhTRIM5α-HA-R (5’-TCAAGTCT

GGGACGTCGTATGGGTA-3’) were used for rhT5α amplification. Each amplified cDNA

was inserted into pENTR/D-TOPO (Invitrogen Corp., Carlsbad, CA). The lentivirus vector

CSII-EF-IB-RfA [65] was incubated with pENTR/D-TOPO-MELK or pENTR/D-TOPO-

rhT5α-HA in the presence of Gateway LR Clonase II Enzyme Mix (Invitrogen Corp., Carls-

bad, CA) according to the procedures recommended by the manufacturer. The resultant plas-

mids are referred to as pCSII-EF-IB-MELK or pCSII-EF-IB-rhT5α-HA. A similar approach

was used to generate lentivirus vector for the T167A MELK mutant,

pCSII-EF-IB-MELK-T167A.

Establishment of an shRNA T-cell library

A puromycin-marked lentivirus vector-based shRNA library that targets over 15,000 human

genes (Sigma-Aldrich, MISSION shRNA library) was used to establish shRNA-MT4C5 cell

libraries. On average, there are five shRNA sequences designed for each gene target. The

library was pre-divided into ten sub-pools of approximately 8,000 shRNA constructs. MT4C5

cells were transduced with the shRNA-lentivirus library and selected with puromycin (1 μg/

ml) for 2 weeks.
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shRNA-based screening

Established shRNA library-expressing MT4C5 cell pools were then infected with HIV-1NL4-3

strain. HIV-1NL4-3 strain normally kills infected parental or Non-T control MT4C5 cells with a

slight degree of syncytia formation, indicating effective infection-induced cell death. Two

weeks after infection, cells were seeded into 96-well round-bottom cell culture plates. Several

sub-pools resistant to HIV-1 infection were identified. Total cellular DNA was prepared from

each sub-pool and used to detect the pol region of the HIV-1NL4-3 late reverse transcription

product by quantitative PCR using TaqMan PCR (Applied Biosystems, Carlsbad, CA). Positive

samples were excluded as persistently infected cells. To determine the shRNA sequences in

surviving cells free from NL4-3 DNA, total cellular DNA was extracted and the DNA frag-

ments encoding the shRNA were amplified by PCR with the primers 5’-TACAAAATACGT

GACGTAGAAA-3’ and 5’-TTTGTTTTTGTAATTCTTTA-3’. The PCR products were cloned

into the pCR4-TOPO vector (Invitrogen Corp., Carlsbad, CA). At least 100 PCR clones were

sequenced for each surviving cell pool with the primer 5’-TTTGTTTTTGTAATTCTTTA-3’.

Depletion of MELK in MT4C5, HEK293 and CD3/CD28-stimulated PBL

MT4C5, HEK293 and CD3/CD28-stimulated PBL were transduced with lentivirus vectors that

confer puromycin resistance and express either non-targeting short hairpin RNAs (shRNA)

(5’-CAACAAGATGAAGAGCACCAA-3’) (Sigma-Aldrich Co, St. Louis, MO) or those target-

ing human MELK (Sigma-Aldrich Co, St. Louis, MO). The shRNA targeting the 30-UTR of

MELK (5’-CTCTTAACTATGTCTCTTTGT-3’) was used to generate 293-MELK-KD-1 cells

or MT4C5-MELK-KD-1 cells for reconstitution experiments; the shRNA targeting the coding

sequence of MELK (5’-GCCTGAAAGAAACTCCAATTA-3’) was used to generate

293-MELK-KD-2 cells, MT4C5-MELK-KD-2 or PBL-MELK-KD-2 cells; and the shRNA tar-

geting the coding sequence of MELK (5’-GACTAAAGCTTCACTATAATG-3’) was used to

generate 293-MELK-KD-3 or PBL-MELK-KD-3 cells. Pools of cells expressing shRNA were

established after selection with puromycin (2 μg/ml) for MT4C5 cells, puromycin (0.5 μg/ml)

for CD3/CD28-stimulated PBL and puromycin (4 μg/ml) for HEK293 cells.

Establishment of MT4C5 cells stably expressing MELK or a MELK

mutant (T167A)

Non-T MT4C5 cells were transduced with lentivirus vectors that confer blasticidin resistance

and express MELK or a MELK mutant (T167A). Transduced cell pools were established after

selection with 6 μg/ml blasticidin and 2 μg/ml puromycin for 7 days.

Reconstitution of MELK in MELK-depleted MT4C5 cells

Both Non-T MT4C5 and MELK-KD-1 MT4C5 cells established with the shRNA targeting the

30-UTR of MELK were transduced with lentivirus vectors encoding a blasticidin resistance

gene and expressing the coding region of MELK or T167A MELK mutant. Two independent

pools of reconstituted cells were established for the wild-type and mutant MELK after selection

with 2 μg/ml puromycin and 6 μg/ml blasticidin.

Semi-quantitative multiplex RT-PCR

Total cellular RNA was extracted using an RNeasy Tissue Kit (QIAGEN Inc., Valencia, CA).

For evaluation ofMELKmRNA expression, semi-quantitative RT-PCR was performed with

PrimeScript One-Step RT-PCR kit ver. 2.0 (TAKARA BIO Inc., Shiga, Japan). Primers 5’-

ATGAAAGATTATGATGA -3’ and 5’-TTATACCTTGCAGCTAGATA-3’ were used for
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amplification of the entire humanMELK coding sequence (GenBank accession number

NM_014791.3). To specifically quantify endogenous humanMELKmRNA, we used a set of

primers 5’-CAAGGCAAATCATATCTTGGATCAG-3’ and 5’-GCGATCATAACAGTCTT

TATGTAGG-3’ that amplify part of the coding and 3’-noncoding sequences so that exogenous

MELKmRNA can be excluded. Primers 5’-TAACAAGGATTACCATCTACAGGCC-3’ and

5’-AATCTGACTGTGTTTGACACTTCAG-3’ were used for amplification of cDNA for the

T167A MELK mutant. In each reaction tube, 1 μg of total cellular RNA and 0.4 μM of each

primer were added. For standardization, glyceraldehyde-3-phosphate dehydrogenase

(GAPDH)-specific primers 5’-AGGCTGGGGCTCATTTGC-3’ and 5’-GTGCTCAGTGT

AGCCCAGGATC-3’ were used to quantify human GAPDHmRNA. PCR products were

resolved on 0.8% agarose gels, visualized by ethidium bromide-staining, and the band intensity

quantified by densitometric scanning.

Measurement of viral RNA levels after viral entry

For infection, 5 × 105 target MT4C5 cells were incubated for 2 h with HIV-1 stock containing

1 × 106 RT counts that were pre-treated with 100 U of DNase I (Roche Applied Science, India-

napolis, IN) in the presence of 10 mM MgCl2 for 20 min at 37˚C. DNA-free total cellular RNA

was then extracted using RNeasy Mini Kits with on-column DNase digestion (QIAGEN Inc.,

Valencia, CA). HIV-1 stock inactivated by incubation at 65˚C for 30 min was used as a nega-

tive control. Primers 5’-ATTCCTGAGTGGGAGTTTG-3’ (nt 3780–3798) and 5’-AACTTTC

TATGTAGATGGGGC-3’ (nt 3863–3883) and a probe 5’- FAM-CAATACCCCTCCCTTA

GTGAAGTTATGGTAC-TAMRA-3’ (nt 3800–3830) were used for amplification and detec-

tion of the pol region of the HIV-1NL4-3 virion-associated RNA by quantitative RT-PCR using

TaqMan One-Step RT-PCR (Applied Biosystems, Carlsbad, CA). For standardization, a

primer/probe set of the 18S ribosomal RNA was used [61]. Real-time RT-PCR was carried out

in a StepOnePlus Real-Time PCR system (Applied Biosystems, Carlsbad, CA). The ratios of

each viral RNA level to 18S ribosomal RNA level are given.

Fluorescence resonance energy transfer-based HIV-1 virion fusion

assay

A fusion assay was performed using HIV-1 possessing β-lactamase-Vpr chimeric proteins

(BlaM-Vpr) and MT4C5-derived cells loaded with CCF2 dye, a fluorescent substrate for

β-lactamase, as previously described [66]. In brief, X4 HIV-1 containing BlaM-Vpr (HIV-

1NL-E-BlaM-Vpr) [67] was obtained by cotransfecting 293T cells with pNL-E plus pMM310 [68]

encoding Escherichia coli β-lactamase fused to the amino terminus of Vpr [69]. MT4C5-der-

ived cells (1×106) were infected with 10 or 100 ng of HIV-1NL-E-BlaM-Vpr as a measured amount

of p24 by spinoculation at 1200×g for 2 h at 25˚C as previously described [70]. Thereafter, cells

were washed and incubated in RPMI containing 10% heat-inactivated fetal bovine serum for 2

h at 37˚C to induce viral fusion. Cells were then washed and loaded with CCF2-AM for 1 h at

RT using a GeneBLAzer In Vivo Detection Kit (Invitrogen Corp., Carlsbad, CA). The dye-

loaded cells were incubated overnight at RT and assayed by flow cytometry. Cells permissive

for HIV-1 fusion were detected by their fluorescence at 447 nm after excitation with a 405-nm

violet laser in a FACSCanto II. Dead cells were stained with propidium iodide and were gated

out during analysis. AMD3100 was used as a control for fusion inhibition.

Measurement of viral cDNA levels after viral entry

For infection, 5 × 105 target MT4C5 cells were incubated for 4, 8 or 24 h with HIV-1 stock con-

taining 50 ng of p24 or 7 × 105 RT counts that were pre-treated with 100 U of DNase I (Roche
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Applied Science, Indianapolis IN) in the presence of 10 mM MgCl2 for 20 min at 37˚C. Total

cellular DNA was then extracted using a DNeasy Blood & Tissue Kit (QIAGEN Inc., Valencia,

CA). HIV-1 stock inactivated by incubation at 65˚C for 30 min was used as a negative control.

Primers 5’-GGCTAACTAGGGAACCCACTGC-3’ (nt 496–517) and 5’-CTGCTAGAGA

TTTTCCACACTGAC-3’ (nt 612–635) and a probe 5’- TAGTGTGTGCCCGTCTGTTG

TGTGAC-3’ (nt 554–579) were used in real-time PCR for amplification and detection of the

R/U5 region of the HIV-1NL4-3 early reverse transcription product [71]; and primers 5’-ATT

CCTGAGTGGGAGTTTG-3’ (nt 3780–3798) and 5’-AACTTTCTATGTAGATGGGGC-3’ (nt

3863–3883) and a probe 5’- FAM-CAATACCCCTCCCTTAGTGAAGTTATGGTAC-TAM

RA-3’ (nt 3800–3830) were used for amplification and detection of the pol region of the HIV-

1NL4-3 late reverse transcription product; primers 5’-CAGGAAGTAGGAAAAGCAATGT-3’

(nt 7496–7517) and 5’-CGAGATCTTCAGACCTGGA-3’ (nt 7609–7627) and a probe 5’-

FAM-CCTCCCATCA GTGGACAAATTAGATGTTC-TAMRA-3’ (nt 7523–7551) were used

for amplification and detection of the env region of the HIV-1NL4-3 late reverse transcription

product; and primers 5’-CCCTCAGACC CTTTTAGTCAGTG-3’ (nt 9668–9690) and 5’-

TGGTGTGTAGTTCTGCCAATCA-3’ (nt 77–98) and a probe 5’-FAM-TGTGGATCTACC

ACACACAAGGCTACTTCC-TAMRA-3’ (nt 46–75) were used for amplification of the

2-LTR circle from the HIV-1NL4-3 cDNA. Real-time PCR was carried out in a StepOnePlus

Real-Time PCR system (Applied Biosystems, Carlsbad, CA). To determine the absolute copy

numbers of viral DNA or 2-LTR circles in HIV-1 infected cells, we employed a calibration

curve using the pNL4-3 or pGEM/NL-2LTR [71] serially diluted with a constant amount of

whole cell DNA from uninfected cells. The absolute amount of beta-globin DNA determined

in the same way was used to normalize the results, as described previously [39]. The ratios of

each viral cDNA level to beta-globin DNA level are given. In the case of cells transduced with a

lentivirus vector containing the R/U5 region, amplified viral cDNA level in HIV-1-infected

cells was determined after subtraction of the level in uninfected cells.

Immunoblotting

Whole cell lysates were prepared as follows: Cells were washed once with PBS, suspended in

PBS (500 μl per 1 × 107 cells) and mixed with an equal volume of 2 × sample buffer (4% sodium

dodecyl sulfate, 125 mM Tris-HCl, pH 6.8, 10% 2-mercaptoethanol, 10% glycerol, and 0.002%

bromphenol blue). Proteins were solubilized by heating for 5 min at 95˚C. Cell lysates were

subjected to SDS-PAGE; proteins were transferred to PVDF membranes and reacted with a

rabbit monoclonal antibody to MELK (Abcam Inc, Cambridge, MA), mouse monoclonal anti-

body to HIV-1 p24 (Abcam Inc, Cambridge, MA), goat polyclonal antibody to gp120 (Abcam

Inc, Cambridge, MA), HIV-1-positive pooled serum from infected individuals (subtype B),

mouse monoclonal antibody to FLAG (Wako Pure Chemical Industries, Ltd., Osaka, Japan),

mouse monoclonal antibody to alpha-tubulin (Sigma-Aldrich Co, St. Louis, MO) or phospho-

specific antibodies that recognize only phosphorylated Ser-149 in CA (CA-149p) produced by

Sigma-Aldrich’s Phosphorylation-Specific Antibody Production Services (Sigma-Aldrich Co,

St. Louis, MO) (see Supporting information for details).

Analysis of HIV-1 replication in human T cells

MT4C5 cells (1 × 105) were exposed to HIV-1 stock containing 10 pg of p24. Virus production

was monitored for 14 days post-infection by measuring RT activity in the culture supernatants.

Mean values from three independent experiments are shown.
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Single-round infection assay

Parental and shRNA-expressing MT4C5 cells (5 × 105) were infected for 24 h with 10 ng (p24)

of VSV-G/NL4-3luc, HIV-1env/NL4-3luc, or VSV-G/MLV-luc normalized by reverse tran-

scriptase (RT) counts corresponding to 10 ng (p24) of VSV-G/NL4-3luc in 24-well plates.

Cells were then harvested and lysed 24 h post-infection. LuSIV cells [72] (5 × 105) were

infected for 24 h in 24-well plates with HIV-1 CA mutants normalized by RT counts corre-

sponding to 50 ng (p24) of HIV-1wt. Cells were then harvested and lysed 24 h post-infection.

TZM-bl cells [73] (5 × 104) were infected for 48 h in 48-well plates with HIV-1 CA mutants

normalized by RT counts corresponding to 50 ng (p24) of HIV-1wt. Cells were then harvested

and lysed 48 h post-infection. The luciferase activity was measured using the GloMAX multi-

detection system (Promega Corp, Madison, WI).

Fate-of-capsid assay

The fate-of-capsid assay was performed with minor modifications [39] as previously described.

Briefly, 5 × 106 of 293, 293-non-target shRNA or 293-MELK-KD-3 cells were replated in a 10

cm plastic dish one day before assay. Cells were inoculated with 5 × 106 RT counts of VSV-G/

NL4-3luc virus. After incubation at 4˚C for 30 min, cells were incubated at 37˚C for 4 or 8 h.

MT4C5-derived cells (5 × 106) were inoculated with 2 × 107 RT counts of wild-type HIV-1

(HIV-1NL4-3 strain) prepared in HeLa cells. After incubation at 4˚C for 30 min, cells were incu-

bated at 37˚C for 2, 8 or 24 h. Cells were then washed twice with ice-cold PBS(-) containing

0.005% Trypsin/EDTA to detach virions from the cellular surface and once with ice-cold PBS

(-) to remove Trypsin/EDTA. Washed cells were resuspended in 1 ml of hypotonic lysis buffer

[10 mM Tris-HCl (pH 8.0), 10 mM KCl, 1 mM EDTA and protease inhibitor cocktail (NACA-

LAI TESQUE, INC, Kyoto, Japan)] and incubated on ice for 15 min. Swollen cells were lysed

in a 7 ml-Dounce homogenizer with a ‘tight’ pestle (15 gentle strokes making a half-turn of the

pestle per each stroke) and cell lysates cleared by centrifugation at 2,000 × g for 3 min at 4˚C.

Cleared cell extracts (0.8 ml) were layered over 20%–60% sucrose cushions prepared in PBS

and centrifuged at 4˚C and 35,000 rpm for 70 min in a Beckman SW50.1 rotor; 50 μl of the cell

extract was reserved as a ‘cell lysate’ fraction. After centrifugation, three fractions of 1.1 ml

each were collected from the top of the gradient. Aliquots of each fraction of the step gradients

were subsequently processed for immunoblotting. The amount of CA protein in each fraction

was quantified using HIV-1 CA (p24) enzyme-linked immunosorbent assay kits (ZeptMetrix

Corporation, Buffalo, NY).

Isolation of envelope-stripped cores

Envelope-stripped HIV-1 cores were prepared as described previously [20]. Briefly, HIV-

1-containing culture supernatants were prepared by transiently transfecting HeLa cells with

pNL4-3 using LipofectAMINE LTX PLUS (Invitrogen Corp., Carlsbad, CA). Two ml of 20%

sucrose solution was placed at the bottom of model SW55 centrifuge tubes and overlaid with 3

ml of HIV-1-containing culture supernatant described above. Samples were then centrifuged

for 60 min at 35,000 rpm at 4˚C. Particulate HIV-1 were resuspended in PBS(-) containing a

protease inhibitor cocktail (NACALAI TESQUE, INC, Kyoto, Japan). This suspension was

loaded onto the top of a discontinuous sucrose density gradient composed of 1.0 ml 30%

sucrose solution at the bottom of model SW55 centrifuge tubes covered by 1.0 ml 0.1% Triton

X-100 in 10% sucrose solution and then centrifuged in a model SW55Ti rotor for 120 min at

35,000 rpm at 4˚C. Particulate CA protein was used for pull-down assays with Strep-tagged

MELK or processed for immunoblotting using anti-p24 antibody (CA). The amount of
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particulate CA protein was quantified using HIV-1 CA (p24) enzyme-linked immunosorbent

assay kits (ZeptMetrix Corporation, Buffalo, NY).

Negative staining electron microscopy

Envelope-stripped HIV-1 cores isolated by ultracentrifugation were absorbed onto Formvar-

coated copper grids, and stained with 2% phosphotungstic acid solution. The images were

recorded with a Tecnai F20 transmission electron microscope (FEI Company, Hillsboro, OR)

at 200kV.

Affinity precipitation of HIV-1 cores with Strep-tag II fusion protein

HeLa cells were transfected with pCAG-OSF-MELK, pCAG-OSF-GFP, pCAG-OSF-CypA,

or pCAG-FOS2-rhT5α, harvested 48 h post-transfection and lysed in a 7 ml-Dounce homog-

enizer. Cell extracts were incubated with Strep-Tactin Sepharose for 2 h at 4˚C. Purified

Strep-tagged protein complexes were incubated with envelope-stripped HIV-1 cores (1,000

ng p24) for 2 h at 4˚C. After extensive washing, Strep-tagged protein complexes were

released by boiling in SDS-PAGE loading buffer and the proteins were analyzed by 12%

SDS-PAGE and Western blotting using mouse anti-FLAG antibody (FLAG) and mouse anti-

p24 antibody (CA).

Preparation of recombinant proteins and synthetic peptides

E.coli BL21 CodonPlus-RIL cells (Agilent Inc. Santa Clara, CA) transformed with pGEX-4T-3

or pGEX-HIV-CA were used for purification of GST proteins using standard methods. Fifteen

independent synthetic peptides covering HIV-1 CA were designed and provided by Sigma-

Aldrich (Sigma-Aldrich Co, St. Louis, MO). The amount of CA protein was quantified using

HIV-1 CA (p24) enzyme-linked immunosorbent assay kits (ZeptMetrix Corporation, Buffalo,

NY).

In vitro phosphorylation assay

In vitro phosphorylation assays were performed with the ADP-Glo MELK kinase assay kit, fol-

lowing the manufacturer’s instructions (Promega Corp, Madison, WI). Briefly, 100 ng of

recombinant activated MELK was incubated with either GST, GST-HIV-CA or Env-stripped

HIV-1 core proteins ranging from 100 to 2,000 ng or synthetic peptides, ZIPtide, ranging from

500 to 2,000 ng for 60 min at 30˚C in the presence of ultrapure ATP. Light emission was mea-

sured using the GloMAX multidetection system (Promega Corp, Madison, WI). ZIPtide was

used as a phosphorylation standard for MELK. For the detection of phosphorylated CA pro-

tein in the multimerized viral core, 200 ng of recombinant activated MELK was incubated

with envelope-stripped HIV-1 core containing 100 ng of p24 at 30˚C in the presence of ultra-

pure ATP. The phosphorylation reaction was terminated by the addition of 2 × sample buffer.

The proteins were subsequently processed for immunoblotting using rabbit polyclonal anti-

bodies to phospho-S149-CA, mouse monoclonal antibody to HIV-1 p24 (Abcam Inc, Cam-

bridge, MA), mouse monoclonal antibody to HIV-1 p17 (Abcam Inc, Cambridge, MA), goat

polyclonal antibody to gp120 (Abcam Inc, Cambridge, MA), or rabbit monoclonal antibody to

MELK (Abcam Inc, Cambridge, MA).

Phos-tag assay

Briefly, 5 × 106 Non-T or MELK-KD MT4C5 cells were inoculated together with 2 × 107 RT

counts of wild-type HIV-1 (HIV-1NL4-3 strain) or 5 × 106 RT counts of VSV-G/NL4-3luc or
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VSV-G/NL4-3 CA-S149A viruses. After incubation at 4˚C for 30 min, cells were further incu-

bated at 37˚C for 8 h. Cells were then washed twice with ice-cold PBS(-) containing 0.005%

Trypsin/EDTA to remove virions from the cell surface and once with ice-cold PBS(-) to

remove Trypsin/EDTA. Washed cells were resuspended in 1 ml of hypotonic lysis buffer [10

mM Tris-HCl (pH 8.0), 10 mM KCl, 1 mM EDTA, protease inhibitor cocktail (NACALAI

TESQUE, INC, Kyoto, Japan) and phosphatase inhibitor cocktail (Roche Diagnostics GmbH,

Mannheim, Germany)] and incubated on ice for 15 min. Swollen cells were lysed in a 7 ml-

Dounce homogenizer with a ‘tight’ pestle (15 gentle strokes making a half-turn of the pestle at

each stroke) and cell lysates cleared by centrifugation at 2,000 × g for 3 min at 4˚C. Proteins

were separated in 10% precast SDS-polyacrylamide gels prepared with 50 μM acrylamide-pen-

dant Phos-tag ligand (Wako Pure Chemical Industries, Ltd., Osaka, Japan) and were analyzed

by immunoblotting with mouse anti-p24 antibody.

Statistical analysis

All data are obtained from at least three independent experiments. The average values are pre-

sented with error bars indicating the standard deviation (SD) and the statistical significance

was analyzed using one-way analysis of variance (ANOVA) with Dunnett’s or Tukey’s multiple

comparison tests, two-way analysis of variance (ANOVA) with Tukey’s or Sidak’s multiple

comparison test, or Student’s t-test. All the statistical analyses were performed using Prism 6

software (GraphPad Software, Inc). P values below 0.05 (P<0.05, �; P<0.01, ��; P<0.001, ���)

were considered significant. Unpaired two-tailed Student’s t-test was used for the data shown

in Fig 2B, 2C, 2H and 2J to test whether the means of the two groups were significantly differ-

ent (five biological replicates). One-way analysis of variance (ANOVA) with Dunnett’s multi-

ple comparison test was used for data in Figs 1C, 2I, 3A, 6B, 6C, 7B, 7C, 7E and 7F to

determine whether the means of multiple groups were significantly different from a single

group (five biological replicates). One-way ANOVA with Tukey’s multiple comparison test

was used in Fig 4D to determine whether the means of four groups were significantly different

from each other (five biological replicates). Two-way ANOVA with Tukey’s multiple compari-

son test was used in Figs 3C, 3D and 5A to determine significant difference by comparing of

the means specified by two factors (five biological replicates). Two-way ANOVA with Sidak’s

multiple comparison test was used in Fig 7A and 7D to determine significant difference by

pairwise comparison of the means specified by two factors (five biological replicates).

Supporting information

S1 Methods. Supporting methods including additional methods.

(DOCX)

S1 Table. Host factors detected by Genome-wide RNAi screen in this study. Explanation of

column headings in the table: No: Number of identified host factor in this screen; Symbol; gene

symbol; 21 mer target sequence: shRNA sequences identified in infection-resistant cells free

from HIV-1 DNA; GPP Clone ID: Identification data of shRNA provided by Genetic Perturba-

tion Platform (GPP); GO-Biological Process: Identified biological process based upon gene

ontology; GO-Cellular component: Identified cellular component based upon gene ontology.

Information on gene ontology shown in this table was obtained from the Gene Ontology

Annotation Database (http://www.ebi.ac.uk/GOA).

(XLSX)

S1 Fig. Cell surface expression of CD4 and CXCR4 molecules in parental, non-target

shRNA and MELK-KD MT4C5 cells. Cells were stained with anti-CD4 (left panels) or anti-
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CXCR4 mAb (right panels). As controls, MT4C5 cells were stained with isotype control mAbs

(top panels).

(TIFF)

S2 Fig. Effect of MELK depletion on cell-cycle progression. Effects of MELK depletion on

cell cycle progression were determined using propidium iodide (PI) staining and FACS analy-

sis. Non-T and MELK-KD-2 MT4C5 cells were treated with [top and middle panels Demecol-

cine (+), Non-T and MELK-KD-2] or without [top and middle panels Demecolcine (-), Non-

T and MELK-KD-2] 0.05 μg/ml Demecolcine (Wako Pure Chemical Industries, Ltd., Osaka,

Japan) for 16 h to synchronize them in M phase. Demecolcine was then removed and the cells

were cultured for 24 h with fresh growth medium, stained with PI, and analyzed by FACS [top

and middle panels 1 day after washout (wo), Non-T and MELK-KD-2]. Graphs show the dis-

tribution of cells in distinct cell cycle phases from five independent experiments (bottom pan-

els). The average percentages of cells in each cell cycle phase (SubG0/G1, G0/G1, S and G2/M)

are shown [bottom left panel: Demecolcine (-), bottom middle panel: Demecolcine (+), bot-

tom right panel: 1 day after wo]. Error bars are standard deviations calculated from five inde-

pendent experiments. Statistical significance was determined by unpaired two-tailed Student’s

t test. ns, not significant (P>0.05).

(TIFF)

S3 Fig. The inhibition of HIV-1 infection by MELK depletion depends on its expression

level. (A) Lysates of HEK293 cells stably expressing non-target shRNA or MELK-specific

shRNA (MELK-KD-1, 2 and 3) were immunoblotted with anti-MELK or anti-alpha-tubulin

antibodies. (B) Total RNA from the cells in (A) was extracted and examined forMELKmRNA

expression by multiplex RT-PCR amplification (MELK). The primer set for amplification of

GAPDHmRNA was included in each reaction as an internal control (GAPDH). (C) Effect of

MELK depletion on single-round HIV-1 infection in HEK293 cells. HEK293 cells described

in (A) and (B) were infected with VSV-G-pseudotyped NL4-3luc. The mean luciferase

value from non-target shRNA HEK293 cells was arbitrarily set as 100%. Error bars reflect the

standard deviations calculated from five independent experiments. (D) Lysates of CD3/

CD28-stimulated PBLs stably expressing non-target shRNA or MELK-specific shRNA

(PBL-MELK-KD-2 and 3) were immunoblotted with anti-MELK or anti-alpha-tubulin anti-

bodies. (E) Total RNA was extracted andMELKmRNA expression determined by multiplex

RT-PCR amplification (MELK). A primer set for amplification of GAPDHmRNA was

included in each reaction as an internal control (GAPDH). (F) Effect of MELK depletion on a

single-round of HIV-1 infection in CD3/CD28-stimulated PBL. PBL, Non-T,

PBL-MELK-KD-2 and PBL-MELK-KD-3 cells described in (D) and (E) were infected with

VSV-G-pseudotyped NL4-3luc. The mean luciferase value from non-target shRNA CD3/

CD28-stimulated PBL was arbitrarily set as 100%. Error bars are standard deviations calculated

from five independent experiments. Statistical significance was determined by one-way analy-

sis of variance (ANOVA) with Dunnett’s multiple comparison test (C and F). ns, not signifi-

cant (P>0.05); �P<0.05, ��P<0.01, ���P<0.001.

(TIFF)

S4 Fig. Immunoblot analyses showing MELK bound to envelope-stripped cores of HIV-1.

(A) HeLa cells were transfected with pCAG-OSF or pCAG-OSF-MELK. Transfected HeLa cell

extracts were incubated with Strep-Tactin Sepharose and OSF-tagged proteins were purified.

OSF-tagged control (lanes 1 and 3) and MELK (lanes 2 and 4) proteins were then incubated

with purified HIV-1 virions (lanes 1 and 2) or envelope-stripped cores (lanes 3 and 4), and

complex formation was assessed by immunoblotting (IB) using rabbit anti-MELK antibody
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(MELK) and mouse anti-p24 antibody (CA). (B) Purified OSF-tagged control (lane 1) and

MELK (lane 2) proteins were incubated with soluble CA (input). Complex formation was

assessed by immunoblotting (IB) using rabbit anti-MELK antibody (MELK) and mouse anti-

p24 antibody (CA).

(TIFF)

S5 Fig. Fate-of-capsid assay with replication-competent HIV-1 at 4 and 8 h post-infection.

Effect of MELK depletion on the fate of the HIV-1 CA in MT4C5 cells at 4 and 8 h post-infec-

tion analyzed as in Fig 2I.

(TIFF)

S6 Fig. MELK depletion causes a delay of CA disassembly in HEK293 cells. (A) Virion-asso-

ciated viral RNA was quantified by quantitative RT-PCR 2 h after infection of Non-T or

293-MELK-KD-3 cells with wild-type HIV-1. (B) Effect of MELK depletion on the fate of the

HIV-1 CA in HEK293 cells analyzed as in Fig 2I. (C) Percentage of the pelletable CA within

total CA as quantified by p24 ELISA shown in S6B Fig. (D) Non-T or MELK-KD-3 HEK293

cells were infected with VSV-G-pseudotyped HIV-1 for 2, 4 or 8 h in the presence or absence

of the proteasome inhibitor MG132 (0, 5, or 20 μM). Whole cell lysates were immunoblotted

with anti-p24 (CA) or anti-alpha-tubulin (α-tubulin) antibodies (left panels). Experiments

were performed five times and one representative set of data is shown. The amounts of CA in

the whole cell lysates were quantified by HIV-1 p24 ELISA (right panels). Error bars indicate

the standard deviations calculated from five independent experiments. (E) Results of p24

ELISA showing the steady-state levels of CA in fraction #3 in Fig 2I and S6B Fig at the indi-

cated time points (MT4C5, left panel; HEK293, right panel). Statistical significance was deter-

mined by two-way analysis of variance (ANOVA) with Sidak’s multiple comparison test (D),

or unpaired two-tailed Student’s t test (A, B, and C). ns, not significant (P>0.05); �P<0.05,
��P<0.01, ���P<0.001.

(TIFF)

S7 Fig. Verification of MELK expression by immunoblot or semi-quantitative RT-PCR

analyses. Panel protein: Parental MT4C5 (lane 1), Non-T (lane 2) or MT4C5-MELK-KD-1

cells (lanes 3) transduced with control vector (lane 4) or vector for wild-type MELK (lanes 5

and 6, two independent cell pools) or catalytically inactive T167A MELK mutant (lanes 7 and

8, two independent cell pools) were used. Cell lysates were immunoblotted with anti-MELK or

anti-α-tubulin antibodies. Panel mRNA: Total RNA from cells listed above was extracted.

TotalMELKmRNAs (upper panel), endogenousMELKmRNA (middle panel) and exogenous

mutantMELKmRNA (bottom panel) were quantified by RT-PCR amplification with specific

primer sets (MELK). The primer set for amplification of GAPDHmRNA was included in each

reaction as an internal control (GAPDH). Experiments were performed three times and one

set of representative data is shown.

(TIF)

S8 Fig. In vitro luminescent kinase assay with recombinant active MELK and increasing

amounts of recombinant CA protein. Phosphorylation of recombinant CA by MELK was

monitored as in Fig 3C. Error bars reflect the standard deviations calculated from three inde-

pendent experiments.

(TIFF)

S9 Fig. Quantitative DNA-PCR analyses of viral cDNA metabolism after HIV-1 infection

of MT4C5 cells. (A-F) Total DNA was extracted from non-target shRNA (Non-T) or MELK-

depleted (MELK-KD-2) MT4C5 cells at the indicated time points (4, 8 and 24 h) after wild-
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type or indicated mutants of HIV-1 infection and analyzed for the amounts of late RT product

containing the env region. Experiments were performed at least three times and error bars are

standard deviations calculated from three independent experiments. The ratios of each viral

cDNA level to beta-globin DNA level are given. (G) Quantitative RT-PCR analyses of virion-

associated viral RNA at 2 h after infection of Non-T or MELK-KD-2 MT4C5 cells with wild-

type HIV-1 or CA S149E HIV-1 mutant. Error bars indicate the standard deviations calculated

from five independent experiments. Statistical significance was determined by unpaired two-

tailed Student’s t test (G). ns, not significant (P>0.05); �P<0.05, ��P<0.01, ���P<0.001.

(TIFF)

S10 Fig. Phenotypic characterization of Ser/Glu or Thr/Glu HIV-1 CA mutants. (A, B)

Virus production was monitored by assessing RT activity (A) or p24 antigen (B) in culture

supernatants of HeLa cells. (C) Viral infectivity was evaluated by infection of TZM-bl (upper

panel) and LuSIV (lower panel) indicator cell lines with culture supernatants shown in (A)

normalized by RT activity. Relative luciferase activities are shown as percentages (%) of that of

NL4-3wt with standard deviations calculated from five independent experiments.

(TIFF)

S11 Fig. Phenotypic characterization of Ser/Ala HIV-1 CA (S149A) mutants. (A) MT4C5,

Non-T and MELK-KD-2 cells were infected with VSV-G-env-pseudotyped NL4-3luc CA-wt

or CA-S149A normalized by reverse transcriptase (RT) counts corresponding to 10 ng (p24)

of VSV-G/NL4-3luc CA-wt. Relative luciferase activities are shown with standard deviations

calculated from five independent experiments. (B) The CA-S149A results in each cell pool

were compared on the same Y axis setting. Statistical significance was determined by unpaired

two-tailed Student’s t test (A), or one-way analysis of variance (ANOVA) with Dunnett’s mul-

tiple comparison test (B). ns, not significant (P>0.05); �P<0.05, ��P<0.01, ���P<0.001.

(TIFF)

S12 Fig. Alignment of the amino acid sequences of the inner region of HIV-1 capsid (from

the 120th to 152nd amino acid position) of the known HIV-1 subtypes. The sequences are

aligned with the HIV.HXB2 sequence. The arrow indicates the 149th amino acid from the N-

terminus of HIV-1 capsid. Dashes indicate amino acid sequence identity.

(TIFF)

S13 Fig. Effects of Siomycin A on HIV-1 replication in human T cells. (A) Immunoblot

analyses with anti-MELK (upper panel) or α-tubulin (lower panel) monitoring endogenous

MELK expression in MT4C5 cells treated with increasing amounts of Siomycin A. (B) Semi-

quantitative RT-PCR analysis ofMELK and GAPDHmRNA expression in MT4C5 cells

described in (A). (C) Effect of Siomycin A on HIV-1 replication in MT4C5 cells. The virion-

associated RT activity was monitored at the indicated time points in culture supernatants of

MT4C5 cells treated with Siomycin A (10 nM: open circles, 50 nM: closed triangles, 100 nM:

open diamonds) and those of MELK-KD-2 (closed diamonds). Error bars reflect the standard

deviations calculated from three independent experiments.

(TIFF)

Acknowledgments

We would like to thank Dr. I.S. Chen (California University, Los Angels, USA) for provision

of pNL4-3luc (env -/ nef -), Dr. Rika Ann Furuta (Japanese Red Cross Osaka Blood Center,

JAPAN) for providing human PBMCs, Dr. Sayaka Sukegawa (NIH/NIAID, USA) for con-

struction of pCAG-FOS-rhT5α and pCSII-EF-IB-rhT5α-HA, Ms. Akiko Hamano (Tokyo

Essential role for MELK in HIV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006441 July 6, 2017 30 / 35

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006441.s012
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006441.s013
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006441.s014
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006441.s015
https://doi.org/10.1371/journal.ppat.1006441


Medical and Dental University) and Ms. Yoshiko Takahashi (Hanaichi UltraStructure

Research Institute, Aichi, JAPAN) for experimental support.

Author Contributions

Conceptualization: HT SY.

Data curation: HT SY HS.

Formal analysis: HT SY.

Funding acquisition: HT SY.

Investigation: HT HS TN KT YTY HI TM TY SY.

Methodology: HT TN KT YTY.

Project administration: HT SY.

Resources: HT TN KT.

Supervision: HT SY.

Validation: HT HS TN KT YTY TM TY HI.

Visualization: HT TN KT YTY SY.

Writing – original draft: HT TN KT SY.

Writing – review & editing: HT SY.

References

1. Goff SP. Host factors exploited by retroviruses. Nature reviews Microbiology. 2007; 5(4):253–63.

https://doi.org/10.1038/nrmicro1541 PMID: 17325726.

2. Freed EO. HIV-1 and the host cell: an intimate association. Trends in microbiology. 2004; 12(4):170–7.

https://doi.org/10.1016/j.tim.2004.02.001 PMID: 15051067.

3. Hilditch L, Towers GJ. A model for cofactor use during HIV-1 reverse transcription and nuclear entry.

Current opinion in virology. 2014; 4:32–6. https://doi.org/10.1016/j.coviro.2013.11.003 PMID:

24525292;

4. Ambrose Z, Aiken C. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins.

Virology. 2014; 454-455C:371–9. https://doi.org/10.1016/j.virol.2014.02.004 PMID: 24559861;

5. Fassati A. Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus research. 2012;

170(1–2):15–24. https://doi.org/10.1016/j.virusres.2012.09.012 PMID: 23041358.

6. Forshey BM, von Schwedler U, Sundquist WI, Aiken C. Formation of a human immunodeficiency virus

type 1 core of optimal stability is crucial for viral replication. Journal of virology. 2002; 76(11):5667–77.

PMID: 11991995; https://doi.org/10.1128/JVI.76.11.5667-5677.2002

7. Rihn SJ, Wilson SJ, Loman NJ, Alim M, Bakker SE, Bhella D, et al. Extreme genetic fragility of the HIV-

1 capsid. PLoS pathogens. 2013; 9(6):e1003461. https://doi.org/10.1371/journal.ppat.1003461 PMID:

23818857;

8. von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional surfaces of the human immunodefi-

ciency virus type 1 capsid protein. Journal of virology. 2003; 77(9):5439–50. PMID: 12692245; https://

doi.org/10.1128/JVI.77.9.5439-5450.2003

9. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, et al. Specific recognition and accelerated

uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proceedings of the National Acad-

emy of Sciences of the United States of America. 2006; 103(14):5514–9. https://doi.org/10.1073/pnas.

0509996103 PMID: 16540544;

10. Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, Shi J, et al. RING domain mutations uncouple TRIM5al-

pha restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. Journal of

virology. 2012; 86(3):1717–27. https://doi.org/10.1128/JVI.05811-11 PMID: 22114335;

Essential role for MELK in HIV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006441 July 6, 2017 31 / 35

https://doi.org/10.1038/nrmicro1541
http://www.ncbi.nlm.nih.gov/pubmed/17325726
https://doi.org/10.1016/j.tim.2004.02.001
http://www.ncbi.nlm.nih.gov/pubmed/15051067
https://doi.org/10.1016/j.coviro.2013.11.003
http://www.ncbi.nlm.nih.gov/pubmed/24525292
https://doi.org/10.1016/j.virol.2014.02.004
http://www.ncbi.nlm.nih.gov/pubmed/24559861
https://doi.org/10.1016/j.virusres.2012.09.012
http://www.ncbi.nlm.nih.gov/pubmed/23041358
http://www.ncbi.nlm.nih.gov/pubmed/11991995
https://doi.org/10.1128/JVI.76.11.5667-5677.2002
https://doi.org/10.1371/journal.ppat.1003461
http://www.ncbi.nlm.nih.gov/pubmed/23818857
http://www.ncbi.nlm.nih.gov/pubmed/12692245
https://doi.org/10.1128/JVI.77.9.5439-5450.2003
https://doi.org/10.1128/JVI.77.9.5439-5450.2003
https://doi.org/10.1073/pnas.0509996103
https://doi.org/10.1073/pnas.0509996103
http://www.ncbi.nlm.nih.gov/pubmed/16540544
https://doi.org/10.1128/JVI.05811-11
http://www.ncbi.nlm.nih.gov/pubmed/22114335
https://doi.org/10.1371/journal.ppat.1006441


11. Hulme AE, Perez O, Hope TJ. Complementary assays reveal a relationship between HIV-1 uncoating

and reverse transcription. Proceedings of the National Academy of Sciences of the United States of

America. 2011; 108(24):9975–80. https://doi.org/10.1073/pnas.1014522108 PMID: 21628558;

12. Yang Y, Fricke T, Diaz-Griffero F. Inhibition of reverse transcriptase activity increases stability of the

HIV-1 core. Journal of virology. 2013; 87(1):683–7. https://doi.org/10.1128/JVI.01228-12 PMID:

23077298;

13. Cosnefroy O, Murray PJ, Bishop KN. HIV-1 capsid uncoating initiates after the first strand transfer of

reverse transcription. Retrovirology. 2016; 13(1):58. https://doi.org/10.1186/s12977-016-0292-7 PMID:

27549239;

14. Rankovic S, Varadarajan J, Ramalho R, Aiken C, Rousso I. Reverse transcription mechanically initiates

HIV-1 capsid disassembly. Journal of virology. 2017. https://doi.org/10.1128/JVI.00289-17 PMID:

28381579.

15. Fricke T, Valle-Casuso JC, White TE, Brandariz-Nunez A, Bosche WJ, Reszka N, et al. The ability of

TNPO3-depleted cells to inhibit HIV-1 infection requires CPSF6. Retrovirology. 2013; 10:46. https://doi.

org/10.1186/1742-4690-10-46 PMID: 23622145;

16. De Iaco A, Santoni F, Vannier A, Guipponi M, Antonarakis S, Luban J. TNPO3 protects HIV-1 replica-

tion from CPSF6-mediated capsid stabilization in the host cell cytoplasm. Retrovirology. 2013; 10:20.

https://doi.org/10.1186/1742-4690-10-20 PMID: 23414560;

17. Fricke T, Brandariz-Nunez A, Wang X, Smith AB, Diaz-Griffero F. Human cytosolic extracts stabilize

the HIV-1 core. Journal of virology. 2013; 87(19):10587–97. https://doi.org/10.1128/JVI.01705-13

PMID: 23885082;

18. Lukic Z, Dharan A, Fricke T, Diaz-Griffero F, Campbell EM. HIV-1 Uncoating is Facilitated by Dynein

and Kinesin-1. Journal of virology. 2014. https://doi.org/10.1128/JVI.02219-14 PMID: 25231297.

19. Cartier C, Sivard P, Tranchat C, Decimo D, Desgranges C, Boyer V. Identification of three major phos-

phorylation sites within HIV-1 capsid. Role of phosphorylation during the early steps of infection. The

Journal of biological chemistry. 1999; 274(27):19434–40. PMID: 10383459.

20. Brun S, Chaloin L, Gay B, Bernard E, Devaux C, Lionne C, et al. Electrostatic repulsion between HIV-1

capsid proteins modulates hexamer plasticity and in vitro assembly. Proteins. 2010; 78(9):2144–56.

https://doi.org/10.1002/prot.22729 PMID: 20455269.

21. Wacharapornin P, Lauhakirti D, Auewarakul P. The effect of capsid mutations on HIV-1 uncoating. Virol-

ogy. 2007; 358(1):48–54. https://doi.org/10.1016/j.virol.2006.08.031 PMID: 16996553.

22. Brun S, Solignat M, Gay B, Bernard E, Chaloin L, Fenard D, et al. VSV-G pseudotyping rescues HIV-1

CA mutations that impair core assembly or stability. Retrovirology. 2008; 5:57. https://doi.org/10.1186/

1742-4690-5-57 PMID: 18605989;

23. Jiang J, Ablan SD, Derebail S, Hercik K, Soheilian F, Thomas JA, et al. The interdomain linker region of

HIV-1 capsid protein is a critical determinant of proper core assembly and stability. Virology. 2011; 421

(2):253–65. https://doi.org/10.1016/j.virol.2011.09.012 PMID: 22036671;

24. Misumi S, Inoue M, Dochi T, Kishimoto N, Hasegawa N, Takamune N, et al. Uncoating of human immu-

nodeficiency virus type 1 requires prolyl isomerase Pin1. The Journal of biological chemistry. 2010; 285

(33):25185–95. https://doi.org/10.1074/jbc.M110.114256 PMID: 20529865;

25. Veronese FD, Copeland TD, Oroszlan S, Gallo RC, Sarngadharan MG. Biochemical and immunological

analysis of human immunodeficiency virus gag gene products p17 and p24. Journal of virology. 1988;

62(3):795–801. PMID: 3123712;

26. Mervis RJ, Ahmad N, Lillehoj EP, Raum MG, Salazar FH, Chan HW, et al. The gag gene products of

human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of

posttranslational modifications, and evidence for alternative gag precursors. Journal of virology. 1988;

62(11):3993–4002. PMID: 3262776;

27. Cartier C, Deckert M, Grangeasse C, Trauger R, Jensen F, Bernard A, et al. Association of ERK2 mito-

gen-activated protein kinase with human immunodeficiency virus particles. Journal of virology. 1997; 71

(6):4832–7. PMID: 9151881;

28. Cartier C, Hemonnot B, Gay B, Bardy M, Sanchiz C, Devaux C, et al. Active cAMP-dependent protein

kinase incorporated within highly purified HIV-1 particles is required for viral infectivity and interacts with

viral capsid protein. The Journal of biological chemistry. 2003; 278(37):35211–9. https://doi.org/10.

1074/jbc.M301257200 PMID: 12842892.

29. Giroud C, Chazal N, Gay B, Eldin P, Brun S, Briant L. HIV-1-associated PKA acts as a cofactor for

genome reverse transcription. Retrovirology. 2013; 10:157. https://doi.org/10.1186/1742-4690-10-157

PMID: 24344931;

30. Dochi T N T, Inoue M, Takamune N, Shoji S, Sano K, Misumi S. Phosphorylation of human immunodefi-

ciency virus type 1 (HIV-1) capsid protein at serine 16, required for peptidyl-prolyl isomerase (Pin1)-

Essential role for MELK in HIV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006441 July 6, 2017 32 / 35

https://doi.org/10.1073/pnas.1014522108
http://www.ncbi.nlm.nih.gov/pubmed/21628558
https://doi.org/10.1128/JVI.01228-12
http://www.ncbi.nlm.nih.gov/pubmed/23077298
https://doi.org/10.1186/s12977-016-0292-7
http://www.ncbi.nlm.nih.gov/pubmed/27549239
https://doi.org/10.1128/JVI.00289-17
http://www.ncbi.nlm.nih.gov/pubmed/28381579
https://doi.org/10.1186/1742-4690-10-46
https://doi.org/10.1186/1742-4690-10-46
http://www.ncbi.nlm.nih.gov/pubmed/23622145
https://doi.org/10.1186/1742-4690-10-20
http://www.ncbi.nlm.nih.gov/pubmed/23414560
https://doi.org/10.1128/JVI.01705-13
http://www.ncbi.nlm.nih.gov/pubmed/23885082
https://doi.org/10.1128/JVI.02219-14
http://www.ncbi.nlm.nih.gov/pubmed/25231297
http://www.ncbi.nlm.nih.gov/pubmed/10383459
https://doi.org/10.1002/prot.22729
http://www.ncbi.nlm.nih.gov/pubmed/20455269
https://doi.org/10.1016/j.virol.2006.08.031
http://www.ncbi.nlm.nih.gov/pubmed/16996553
https://doi.org/10.1186/1742-4690-5-57
https://doi.org/10.1186/1742-4690-5-57
http://www.ncbi.nlm.nih.gov/pubmed/18605989
https://doi.org/10.1016/j.virol.2011.09.012
http://www.ncbi.nlm.nih.gov/pubmed/22036671
https://doi.org/10.1074/jbc.M110.114256
http://www.ncbi.nlm.nih.gov/pubmed/20529865
http://www.ncbi.nlm.nih.gov/pubmed/3123712
http://www.ncbi.nlm.nih.gov/pubmed/3262776
http://www.ncbi.nlm.nih.gov/pubmed/9151881
https://doi.org/10.1074/jbc.M301257200
https://doi.org/10.1074/jbc.M301257200
http://www.ncbi.nlm.nih.gov/pubmed/12842892
https://doi.org/10.1186/1742-4690-10-157
http://www.ncbi.nlm.nih.gov/pubmed/24344931
https://doi.org/10.1371/journal.ppat.1006441


dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2

(ERK2). Journal of General Virology. 2014.

31. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, et al. Transportin-SR2 imports HIV into

the nucleus. Current biology: CB. 2008; 18(16):1192–202. https://doi.org/10.1016/j.cub.2008.07.079

PMID: 18722123.

32. Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL. New member of the Snf1/AMPK kinase

family, Melk, is expressed in the mouse egg and preimplantation embryo. Molecular reproduction and

development. 1997; 47(2):148–56. https://doi.org/10.1002/(SICI)1098-2795(199706)47:2<148::AID-

MRD4>3.0.CO;2-M PMID: 9136115.

33. Blot J, Chartrain I, Roghi C, Philippe M, Tassan JP. Cell cycle regulation of pEg3, a new Xenopus pro-

tein kinase of the KIN1/PAR-1/MARK family. Developmental biology. 2002; 241(2):327–38. https://doi.

org/10.1006/dbio.2001.0525 PMID: 11784115.

34. Le Page Y, Chartrain I, Badouel C, Tassan JP. A functional analysis of MELK in cell division reveals a

transition in the mode of cytokinesis during Xenopus development. J Cell Sci. 2011; 124(Pt 6):958–68.

https://doi.org/10.1242/jcs.069567 PMID: 21378312.

35. Lin ML, Park JH, Nishidate T, Nakamura Y, Katagiri T. Involvement of maternal embryonic leucine zip-

per kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member

of the Bcl-2 family. Breast Cancer Res. 2007; 9(1):R17. https://doi.org/10.1186/bcr1650 PMID:

17280616;

36. Vulsteke V, Beullens M, Boudrez A, Keppens S, Van Eynde A, Rider MH, et al. Inhibition of spliceosome

assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1.

The Journal of biological chemistry. 2004; 279(10):8642–7. https://doi.org/10.1074/jbc.M311466200

PMID: 14699119.

37. Beullens M, Vancauwenbergh S, Morrice N, Derua R, Ceulemans H, Waelkens E, et al. Substrate spec-

ificity and activity regulation of protein kinase MELK. The Journal of biological chemistry. 2005; 280

(48):40003–11. https://doi.org/10.1074/jbc.M507274200 PMID: 16216881.

38. Arhel N, Munier S, Souque P, Mollier K, Charneau P. Nuclear import defect of human immunodeficiency

virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. Journal of virology.

2006; 80(20):10262–9. https://doi.org/10.1128/JVI.00974-06 PMID: 17005705;

39. Hori T, Takeuchi H, Saito H, Sakuma R, Inagaki Y, Yamaoka S. A carboxy-terminally truncated human

CPSF6 lacking residues encoded by exon 6 inhibits HIV-1 cDNA synthesis and promotes capsid disas-

sembly. Journal of virology. 2013; 87(13):7726–36. https://doi.org/10.1128/JVI.00124-13 PMID:

23658440;

40. Donzella GA, Schols D, Lin SW, Este JA, Nagashima KA, Maddon PJ, et al. AMD3100, a small mole-

cule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature medicine. 1998; 4(1):72–7. PMID:

9427609.

41. Zhao G, Ke D, Vu T, Ahn J, Shah VB, Yang R, et al. Rhesus TRIM5alpha disrupts the HIV-1 capsid at

the inter-hexamer interfaces. PLoS pathogens. 2011; 7(3):e1002009. https://doi.org/10.1371/journal.

ppat.1002009 PMID: 21455494;

42. Diaz-Griffero F, Qin XR, Hayashi F, Kigawa T, Finzi A, Sarnak Z, et al. A B-box 2 surface patch impor-

tant for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction. Journal of virol-

ogy. 2009; 83(20):10737–51. https://doi.org/10.1128/JVI.01307-09 PMID: 19656869;

43. Liu C, Perilla JR, Ning J, Lu M, Hou G, Ramalho R, et al. Cyclophilin A stabilizes the HIV-1 capsid

through a novel non-canonical binding site. Nat Commun. 2016; 7:10714. https://doi.org/10.1038/

ncomms10714 PMID: 26940118;

44. Francis AC, Marin M, Shi J, Aiken C, Melikyan GB. Time-Resolved Imaging of Single HIV-1 Uncoating

In Vitro and in Living Cells. PLoS pathogens. 2016; 12(6):e1005709. https://doi.org/10.1371/journal.

ppat.1005709 PMID: 27322072;

45. Dharan A, Talley S, Tripathi A, Mamede JI, Majetschak M, Hope TJ, et al. KIF5B and Nup358 Coopera-

tively Mediate the Nuclear Import of HIV-1 during Infection. PLoS pathogens. 2016; 12(6):e1005700.

https://doi.org/10.1371/journal.ppat.1005700 PMID: 27327622;

46. Da Silva Santos C, Tartour K, Cimarelli A. A Novel Entry/Uncoating Assay Reveals the Presence of at

Least Two Species of Viral Capsids During Synchronized HIV-1 Infection. PLoS pathogens. 2016; 12

(9):e1005897. https://doi.org/10.1371/journal.ppat.1005897 PMID: 27690375;

47. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body compo-

nent TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004; 427(6977):848–53.

https://doi.org/10.1038/nature02343 PMID: 14985764.

48. Chatterji U, Bobardt MD, Gaskill P, Sheeter D, Fox H, Gallay PA. Trim5alpha accelerates degradation

of cytosolic capsid associated with productive HIV-1 entry. The Journal of biological chemistry. 2006;

281(48):37025–33. https://doi.org/10.1074/jbc.M606066200 PMID: 17028189.

Essential role for MELK in HIV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006441 July 6, 2017 33 / 35

https://doi.org/10.1016/j.cub.2008.07.079
http://www.ncbi.nlm.nih.gov/pubmed/18722123
https://doi.org/10.1002/(SICI)1098-2795(199706)47:2<148::AID-MRD4>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2795(199706)47:2<148::AID-MRD4>3.0.CO;2-M
http://www.ncbi.nlm.nih.gov/pubmed/9136115
https://doi.org/10.1006/dbio.2001.0525
https://doi.org/10.1006/dbio.2001.0525
http://www.ncbi.nlm.nih.gov/pubmed/11784115
https://doi.org/10.1242/jcs.069567
http://www.ncbi.nlm.nih.gov/pubmed/21378312
https://doi.org/10.1186/bcr1650
http://www.ncbi.nlm.nih.gov/pubmed/17280616
https://doi.org/10.1074/jbc.M311466200
http://www.ncbi.nlm.nih.gov/pubmed/14699119
https://doi.org/10.1074/jbc.M507274200
http://www.ncbi.nlm.nih.gov/pubmed/16216881
https://doi.org/10.1128/JVI.00974-06
http://www.ncbi.nlm.nih.gov/pubmed/17005705
https://doi.org/10.1128/JVI.00124-13
http://www.ncbi.nlm.nih.gov/pubmed/23658440
http://www.ncbi.nlm.nih.gov/pubmed/9427609
https://doi.org/10.1371/journal.ppat.1002009
https://doi.org/10.1371/journal.ppat.1002009
http://www.ncbi.nlm.nih.gov/pubmed/21455494
https://doi.org/10.1128/JVI.01307-09
http://www.ncbi.nlm.nih.gov/pubmed/19656869
https://doi.org/10.1038/ncomms10714
https://doi.org/10.1038/ncomms10714
http://www.ncbi.nlm.nih.gov/pubmed/26940118
https://doi.org/10.1371/journal.ppat.1005709
https://doi.org/10.1371/journal.ppat.1005709
http://www.ncbi.nlm.nih.gov/pubmed/27322072
https://doi.org/10.1371/journal.ppat.1005700
http://www.ncbi.nlm.nih.gov/pubmed/27327622
https://doi.org/10.1371/journal.ppat.1005897
http://www.ncbi.nlm.nih.gov/pubmed/27690375
https://doi.org/10.1038/nature02343
http://www.ncbi.nlm.nih.gov/pubmed/14985764
https://doi.org/10.1074/jbc.M606066200
http://www.ncbi.nlm.nih.gov/pubmed/17028189
https://doi.org/10.1371/journal.ppat.1006441


49. Yoshida H, Goedert M. Phosphorylation of microtubule-associated protein tau by AMPK-related

kinases. Journal of neurochemistry. 2012; 120(1):165–76. https://doi.org/10.1111/j.1471-4159.2011.

07523.x PMID: 21985311.

50. Chung S, Suzuki H, Miyamoto T, Takamatsu N, Tatsuguchi A, Ueda K, et al. Development of an orally-

administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer.

Oncotarget. 2012; 3(12):1629–40. PMID: 23283305; https://doi.org/10.18632/oncotarget.790

51. Kinoshita E, Kinoshita-Kikuta E, Koike T. Separation and detection of large phosphoproteins using

Phos-tag SDS-PAGE. Nature protocols. 2009; 4(10):1513–21. https://doi.org/10.1038/nprot.2009.154

PMID: 19798084.

52. Nakano I, Joshi K, Visnyei K, Hu B, Watanabe M, Lam D, et al. Siomycin A targets brain tumor stem

cells partially through a MELK-mediated pathway. Neuro-oncology. 2011; 13(6):622–34. https://doi.org/

10.1093/neuonc/nor023 PMID: 21558073;

53. Bhat UG, Halasi M, Gartel AL. Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer

cells. PloS one. 2009; 4(5):e5592. https://doi.org/10.1371/journal.pone.0005592 PMID: 19440351;

54. Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH, Gartel AL. Identification of a chemical

inhibitor of the oncogenic transcription factor forkhead box M1. Cancer research. 2006; 66(19):9731–5.

https://doi.org/10.1158/0008-5472.CAN-06-1576 PMID: 17018632.

55. Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, et al. Identification of novel inter-

actions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. Journal of molecular

biology. 2003; 325(4):759–72. PMID: 12507478.

56. Pornillos O, Ganser-Pornillos BK, Yeager M. Atomic-level modelling of the HIV capsid. Nature. 2011;

469(7330):424–7. https://doi.org/10.1038/nature09640 PMID: 21248851;

57. Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP. Structures of the HIV-1 capsid protein dimeriza-

tion domain at 2.6 A resolution. Acta crystallographica Section D, Biological crystallography. 1999; 55

(Pt 1):85–92. https://doi.org/10.1107/S0907444998007689 PMID: 10089398.

58. Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, et al. Human nucleoporins promote

HIV-1 docking at the nuclear pore, nuclear import and integration. PloS one. 2012; 7(9):e46037. https://

doi.org/10.1371/journal.pone.0046037 PMID: 23049930;

59. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, et al. HIV-1 capsid-cyclophilin inter-

actions determine nuclear import pathway, integration targeting and replication efficiency. PLoS patho-

gens. 2011; 7(12):e1002439. https://doi.org/10.1371/journal.ppat.1002439 PMID: 22174692;

60. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, et al. Production of acquired immu-

nodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infec-

tious molecular clone. Journal of virology. 1986; 59(2):284–91. PMID: 3016298;

61. Saitoh Y, Yamamoto N, Dewan MZ, Sugimoto H, Martinez Bruyn VJ, Iwasaki Y, et al. Overexpressed

NF-kappaB-inducing kinase contributes to the tumorigenesis of adult T-cell leukemia and Hodgkin

Reed-Sternberg cells. Blood. 2008; 111(10):5118–29. https://doi.org/10.1182/blood-2007-09-110635

PMID: 18305221.

62. Sayah DM, Sokolskaja E, Berthoux L, Luban J. Cyclophilin A retrotransposition into TRIM5 explains owl

monkey resistance to HIV-1. Nature. 2004; 430(6999):569–73. https://doi.org/10.1038/nature02777

PMID: 15243629.

63. Sakuma R, Noser JA, Ohmine S, Ikeda Y. Rhesus monkey TRIM5alpha restricts HIV-1 production

through rapid degradation of viral Gag polyproteins. Nature medicine. 2007; 13(5):631–5. https://doi.

org/10.1038/nm1562 PMID: 17435772.

64. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, et al. Human ESCRT and ALIX

proteins interact with proteins of the midbody and function in cytokinesis. The EMBO journal. 2007; 26

(19):4215–27. https://doi.org/10.1038/sj.emboj.7601850 PMID: 17853893;

65. Higuchi M, Tsubata C, Kondo R, Yoshida S, Takahashi M, Oie M, et al. Cooperation of NF-kappaB2/

p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-

1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell

line. Journal of virology. 2007; 81(21):11900–7. https://doi.org/10.1128/JVI.00532-07 PMID: 17715223;

66. Cavrois M, De Noronha C, Greene WC. A sensitive and specific enzyme-based assay detecting HIV-1

virion fusion in primary T lymphocytes. Nature biotechnology. 2002; 20(11):1151–4. https://doi.org/10.

1038/nbt745 PMID: 12355096.

67. Yamamoto T, Tsunetsugu-Yokota Y, Mitsuki YY, Mizukoshi F, Tsuchiya T, Terahara K, et al. Selective

transmission of R5 HIV-1 over X4 HIV-1 at the dendritic cell-T cell infectious synapse is determined by

the T cell activation state. PLoS pathogens. 2009; 5(1):e1000279. https://doi.org/10.1371/journal.ppat.

1000279 PMID: 19180188;

Essential role for MELK in HIV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006441 July 6, 2017 34 / 35

https://doi.org/10.1111/j.1471-4159.2011.07523.x
https://doi.org/10.1111/j.1471-4159.2011.07523.x
http://www.ncbi.nlm.nih.gov/pubmed/21985311
http://www.ncbi.nlm.nih.gov/pubmed/23283305
https://doi.org/10.18632/oncotarget.790
https://doi.org/10.1038/nprot.2009.154
http://www.ncbi.nlm.nih.gov/pubmed/19798084
https://doi.org/10.1093/neuonc/nor023
https://doi.org/10.1093/neuonc/nor023
http://www.ncbi.nlm.nih.gov/pubmed/21558073
https://doi.org/10.1371/journal.pone.0005592
http://www.ncbi.nlm.nih.gov/pubmed/19440351
https://doi.org/10.1158/0008-5472.CAN-06-1576
http://www.ncbi.nlm.nih.gov/pubmed/17018632
http://www.ncbi.nlm.nih.gov/pubmed/12507478
https://doi.org/10.1038/nature09640
http://www.ncbi.nlm.nih.gov/pubmed/21248851
https://doi.org/10.1107/S0907444998007689
http://www.ncbi.nlm.nih.gov/pubmed/10089398
https://doi.org/10.1371/journal.pone.0046037
https://doi.org/10.1371/journal.pone.0046037
http://www.ncbi.nlm.nih.gov/pubmed/23049930
https://doi.org/10.1371/journal.ppat.1002439
http://www.ncbi.nlm.nih.gov/pubmed/22174692
http://www.ncbi.nlm.nih.gov/pubmed/3016298
https://doi.org/10.1182/blood-2007-09-110635
http://www.ncbi.nlm.nih.gov/pubmed/18305221
https://doi.org/10.1038/nature02777
http://www.ncbi.nlm.nih.gov/pubmed/15243629
https://doi.org/10.1038/nm1562
https://doi.org/10.1038/nm1562
http://www.ncbi.nlm.nih.gov/pubmed/17435772
https://doi.org/10.1038/sj.emboj.7601850
http://www.ncbi.nlm.nih.gov/pubmed/17853893
https://doi.org/10.1128/JVI.00532-07
http://www.ncbi.nlm.nih.gov/pubmed/17715223
https://doi.org/10.1038/nbt745
https://doi.org/10.1038/nbt745
http://www.ncbi.nlm.nih.gov/pubmed/12355096
https://doi.org/10.1371/journal.ppat.1000279
https://doi.org/10.1371/journal.ppat.1000279
http://www.ncbi.nlm.nih.gov/pubmed/19180188
https://doi.org/10.1371/journal.ppat.1006441


68. Terahara K, Ishige M, Ikeno S, Mitsuki YY, Okada S, Kobayashi K, et al. Expansion of activated mem-

ory CD4+ T cells affects infectivity of CCR5-tropic HIV-1 in humanized NOD/SCID/JAK3null mice. PloS

one. 2013; 8(1):e53495. https://doi.org/10.1371/journal.pone.0053495 PMID: 23301078;

69. Tobiume M, Lineberger JE, Lundquist CA, Miller MD, Aiken C. Nef does not affect the efficiency of

human immunodeficiency virus type 1 fusion with target cells. Journal of virology. 2003; 77(19):10645–

50. PMID: 12970449; https://doi.org/10.1128/JVI.77.19.10645-10650.2003

70. O’Doherty U, Swiggard WJ, Malim MH. Human immunodeficiency virus type 1 spinoculation enhances

infection through virus binding. Journal of virology. 2000; 74(21):10074–80. PMID: 11024136;

71. Suzuki Y, Misawa N, Sato C, Ebina H, Masuda T, Yamamoto N, et al. Quantitative analysis of human

immunodeficiency virus type 1 DNA dynamics by real-time PCR: integration efficiency in stimulated and

unstimulated peripheral blood mononuclear cells. Virus genes. 2003; 27(2):177–88. PMID: 14501196.

72. Roos JW, Maughan MF, Liao Z, Hildreth JE, Clements JE. LuSIV cells: a reporter cell line for the detec-

tion and quantitation of a single cycle of HIV and SIV replication. Virology. 2000; 273(2):307–15. https://

doi.org/10.1006/viro.2000.0431 PMID: 10915601.

73. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, et al. Emergence of resistant human immunode-

ficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrobial agents and

chemotherapy. 2002; 46(6):1896–905. PMID: 12019106;

Essential role for MELK in HIV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006441 July 6, 2017 35 / 35

https://doi.org/10.1371/journal.pone.0053495
http://www.ncbi.nlm.nih.gov/pubmed/23301078
http://www.ncbi.nlm.nih.gov/pubmed/12970449
https://doi.org/10.1128/JVI.77.19.10645-10650.2003
http://www.ncbi.nlm.nih.gov/pubmed/11024136
http://www.ncbi.nlm.nih.gov/pubmed/14501196
https://doi.org/10.1006/viro.2000.0431
https://doi.org/10.1006/viro.2000.0431
http://www.ncbi.nlm.nih.gov/pubmed/10915601
http://www.ncbi.nlm.nih.gov/pubmed/12019106
https://doi.org/10.1371/journal.ppat.1006441

