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Charité Universitätsmedizin Berlin,
Germany

Reviewed by:
Jeni Prosperi,

Indiana University School of Medicine,
South Bend, United States

John Nemunaitis,
Gradalis, Inc., United States

*Correspondence:
Sarah A. Martin

sarah.martin@qmul.ac.uk

Specialty section:
This article was submitted to

Gastrointestinal Cancers:
Colorectal Cancer,

a section of the journal
Frontiers in Oncology

Received: 22 February 2022
Accepted: 02 May 2022
Published: 30 May 2022

Citation:
Shailes H, Tse WY, Freitas MO,

Silver A and Martin SA (2022) Statin
Treatment as a Targeted Therapy for

APC-Mutated Colorectal Cancer.
Front. Oncol. 12:880552.

doi: 10.3389/fonc.2022.880552

ORIGINAL RESEARCH
published: 30 May 2022

doi: 10.3389/fonc.2022.880552
Statin Treatment as a Targeted
Therapy for APC-Mutated
Colorectal Cancer
Hannah Shailes1, Wai Yiu Tse1, Marta O. Freitas1, Andrew Silver2 and Sarah A. Martin1*

1 Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United
Kingdom, 2 Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry,
Queen Mary University of London, London, United Kingdom

Background: Mutations in the tumor suppressor gene Adenomatous Polyposis Coli
(APC) are found in 80% of sporadic colorectal cancer (CRC) tumors and are also
responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP).

Methods: To identify novel therapeutic strategies for the treatment of APCmutated CRC,
we generated a drug screening platform that incorporates a human cellular model of APC
mutant CRC using CRISPR-cas9 gene editing and performed an FDA-approved drug
screen targeting over 1000 compounds.

Results: We have identified the group of HMG-CoA Reductase (HMGCR) inhibitors
known as statins, which cause a significantly greater loss in cell viability in the APC
mutated cell lines and in in vivo APC mutated patient derived xenograft (PDX) models,
compared to wild-type APC cells. Mechanistically, our data reveals this new synthetic
lethal relationship is a consequence of decreased Wnt signalling and, ultimately, a
reduction in the level of expression of the anti-apoptotic protein Survivin, upon statin
treatment in the APC-mutant cells only. This mechanism acts via a Rac1 mediated control
of beta-catenin.

Conclusion: Significantly, we have identified a novel synthetic lethal dependence
between APC mutations and statin treatment, which could potentially be exploited for
the treatment of APC mutated cancers.

Keywords: colorectal (colon) cancer, APC, synthetic lethality, personalized medicine, statin (HMG-CoA reductase
inhibitor), biomarker
INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes of cancer deaths in the UK. CRC is a highly
heterogeneous disease with diverse genetic and clinical features that influence therapeutic outcomes.
Truncation mutations in the Adenomatous Polyposis Coli (APC) gene are found in the inherited
syndrome familial adenomatous polyposis (FAP) and in more than 80% of sporadic colon tumors
(1–3). These mutations are the initiating events in CRC tumorigenesis, through the activation of the
Wnt signaling pathway (4).
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APC is a tumor suppressor gene and exerts its anti-
proliferative effects as an antagonist of the Wnt pathway (4),
whereby APC downregulates b-catenin through its association
with the APC/Axin/GSK3-b destruction complex. Loss of APC
leads to the inappropriate stabilization of b-catenin, which acts
as co-activator of transcription with the TCF/LEF transcription
factors (5, 6). Transcriptional targets of beta-catenin/TCF
include oncogenic genes such as c-myc and cyclin D1. This
suggests that deregulation of the Wnt pathway occurs through
mutations in APC thereby promoting tumorigenesis. APC
mutations occur typically within or around the mutation
cluster region and result in a truncated inactive APC protein,
as a consequence of either nonsense point mutations or
frameshift mutations (7). The ‘just-right’ Wnt signaling
hypothesis proposes that different APC mutations provide cells
with different selective advantages, determined by the optimal
level of Wnt activation necessary for tumorigenesis (8). In mice,
the position of an APC mutation can affect polyp number,
location, and stage (9, 10). For example, ApcD242 mice can
suppress intestinal tumorigenesis (11), ApcD716 mice develop
increased number of polyps , whi le a more dis ta l
mutation, Apc1634N, results in greatly reduced tumor burden
(12, 13). These data recapitulate findings from FAP patients in
which disease severity can correlate with the location of the
germline APC mutation (14). Increasingly, studies have
suggested that the position of the APC mutations can
determine the level of Wnt activation (8, 15). However, there is
little evidence that modulating the Wnt signalling pathway by
targeting APC represents a potential therapeutic approach
in CRC.

Targeted therapies including cetuximab, which targets the
epidermal growth factor receptor (EGFR), are currently
approved for treatment of CRC (16). However, cetuximab is
ineffective in the presence of K-Ras and B-RAF mutations that
are very common in CRC, therefore indicating that targeting
alternative driver mutations may be more effective (17, 18). In
drug development, gain-of-function mutations can be targeted
by small molecule inhibitors, but where there is loss of a tumor
suppressor gene, such as APC, it is often very difficult to identify
a direct therapeutic target. Moreover, if the tumor suppressor
gene has no inherent enzymatic activity to target with a small
molecule inhibitor (in the case of APC) this further compounds
the issue. To overcome this, the concept of exploiting synthetic
lethal relationships for cancer treatment has been proposed as an
approach to the targeting of tumor suppressor loss (19, 20).
Indeed, we have recently shown that this is a successful approach
for the targeting of other non-enzymatic tumor suppressor gene
scaffold proteins such as LIMD1 (21). Two genes are said to be
synthetically lethal if loss of either gene alone is compatible with
viability, but loss of both causes cell death. Therefore,
identification of a gene that is, for example synthetically lethal
with APC mutation would be clinically relevant. This approach
has been exploited successfully in the clinic using inhibitors of
poly(ADP-ribose) polymerase (PARP) for the treatment of
patients with germline mutations in the tumor suppressor
genes BRCA1 and BRCA2 (22).
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With the aim of identifying a tailored therapeutic approach
for the treatment of APC-mutant CRC patients, we performed a
compound screen to identify drugs that are synthetically lethal
with mutant APC. We generated APC-mutant clones using
CRISPR-Cas9 editing that express a 75KDa truncated APC
protein due to a mutation within the 7th Armadillo repeat that
introduces a premature stop codon, where APC interacts with
ASEF1/2. The wtAPC and APC-mutant cells were screened with
a library of 1170 FDA-approved drugs to identify synthetic lethal
compounds. Interestingly, we observed that the APC-mutant
cells were extremely sensitive to the statin family of drugs
(Lovostatin, Mevastatin & Simvastatin) in comparison to the
wtAPC cells. Mechanistic analysis indicated activation of Rac1,
followed by a decrease in Wnt signaling, and a decrease in the
level of survivin expression, a Wnt target protein, upon statin
treatment in the APC-mutant cells only. Significantly, this study
elucidates a novel synthetic lethal interaction between APC
mutation and statin treatment, which could potentially be
exploited for the treatment of a specific subset of APC
mutated cancers.
MATERIALS AND METHODS

Cell Culture
The human colorectal cancer RKO cell line was purchased from
ATCC and routinely grown in Dulbecco’s Modified Eagles
medium (DMEM; Sigma) supplemented with 10% fetal calf
serum (FBS; Invitrogen) and 100U/ml penicillin and 100ug/ml
streptomycin at 37°C/5% CO2. Cell lines were authenticated by
STR profiling (DNA Diagnostics Centre Inc.) and routinely
mycoplasma tested.

Generation of APC CRISPR-Cas9
Edited Cells
A non-targeting guide RNA (gRNA) and a gRNA targeting exon
15 within gene APC were individually cloned into the
LentiCRISPRv2 vector, according to the manufacturer’s
instructions and transduced into RKO cells, which were then
selected using puromycin at 0.5 µg/ml followed by clonal
selection for gene knockout. APC gRNA sequence used was,
5′-TTGGCATCCTTGTACTTCGC-3′.

FDA-Approved Compound Library Screen
The FDA-approved compound library incorporating 1170 drugs
was purchased from Selleck Chemicals. Cells were plated in 96-well
plates and treated with vehicle (0.01% DMSO) or the compound
library (average compound concentration of the library in media
was 10µM). After 4 days incubation with the drug library, cell
viability was assessed using the CellTiter Glo assay (Promega)
according to the manufacturer’s instructions. Luminescence
readings from each well were log transformed and normalized
according to the median signal on each plate and then standardized
by use of a Z-score statistic, using the median absolute deviation to
estimate the variation in each screen. Z-scores were compared to
identify compounds that cause selective loss of viability in APCmut*2
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cells, in comparison to Control*1 cells. For validation experiments,
cells were treated with increasing concentrations of Lovastatin,
Mevastatin and Simvastatin and cell viability was assayed after 5
days. Lovastatin, Mevastatin, Simvastatin, Mevalonic acid and
EHT1864 were purchased from Sigma-Aldrich. GGTTI-298 was
purchased from Calbiochem. FTI-277 was purchased from
Santa Cruz.

Cell Viability Assays
Cells were seeded in 96-well plates (1000 cells/well) 24h before
treatment. Lovastatin, Mevastatin and Simvastatin were serially
diluted in DMEM media, as indicated. After 4 days, cell viability
was assessed with the ATP-based, luminescence assay, CellTiter-
Glo (Promega).

TCF/LEF Reporter Assay
To measure TCF/LEF, we used plasmid-based TCF/LEF
luciferase reporter vectors (Cignal Report; Qiagen), according
to the manufacturer’s instructions. This assay includes the
inducible transcription factor-responsive construct expressing
firefly luciferase, and the constitutively expressing Renilla
luciferase construct which acts as an internal control. Cells
were transfected with 1 mL TCF/LEF reporter plasmid and 0.25
mL FuGENE in Opti-MEM (Invitrogen), and seeded into
individual wells of 96-well opaque plates. After 5 days, the
Dual-Luciferase Reporter Assay System (Promega) was used to
develop luciferase signals, which were measured using a Perkin
Elmer 1420 multilabel counter victor 3 plate reader. Firefly
luciferase levels were normalized to renilla luciferase.

Western Blotting
Cells were lysed in 20 mM Tris (pH 8), 200 mM NaCl, 1 mM
EDTA, 0.5% (v/v) NP40, 10% glycerol, supplemented with protease
inhibitors (Roche). Equivalent amounts of protein were
electrophoresed on either 3-8% tris-acetate or 4-12% tris-glycine
Novex precast gels (Invitrogen) and transferred to nitrocellulose
membrane. After blocking for 1h in 1xTBS/5% non-fat dried milk,
membranes were incubated overnight at 4°C in primary antibody
(Table 1). Membranes were incubated with anti-IgG-horseradish
peroxidase and visualized by chemiluminescent detection
(Supersignal West Pico Chemiluminescent Substrate, Pierce).
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Immunoblotting for b-actin or b-tubulin were performed as
loading controls.

siRNA Transfections
For siRNA transfections, cells were transfected with individual
siRNA oligos (Table 2; Dharmacon) using Lipofectamine
RNAiMax or Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions. As a control for each experiment,
cells were left un-transfected or transfected with a non-targeting
control siRNA and concurrently analyzed.

Rac1 and Rho Activation Assays
Rac1 activity was assessed using the Active Rac1 Pulldown and
Detection kit (16118, Thermo Fisher Scientific) and Rho activity
was assessed using the Active Rho Pulldown and Detection kit
(16116, Thermo Fisher Scientific) in accordance with the
manufacturer’s instructions. Briefly, RKO Control*1 and *2 and
APCmut *1 and *2 lysates (500mg) were centrifuged at 16,000 g at
4°C for 15 min, and then the supernatants were transferred to a new
tube. Rac1-activation controls, either GTPyS (10 mM) or GDP (100
mM) were added and incubated at 30°C for 15 min in a shaker. The
mixtures were then incubated with glutathione resin beads and
glutathione S-transferase-fused fusion protein (Rac1-binding
domain of Pak1 or Rho-binding domain of Rhotekin) at 4°C.
After 1 hr, the beads and proteins bound to the fusion protein
were washed three times with wash buffer at 4°C, eluted in SDS
sample buffer, and analyzed for bound Rac1 or Rho by western
blotting using anti-Rac1 or anti-Rho antibody, respectively.

Immunofluorescence
Cells were seeded on poly-L-lysine coated coverslips. After
permeablisation with 0.1% triton and fixation with 3.7%
paraformaldehyde, cells were incubated in anti- b-catenin
antibody (#ab32572, Abcam) in 2% BSA for 40 minutes at
37°C. Cells were incubated in secondary antibody in 2% BSA
TABLE 1 | Antibodies.

Protein Catalog # Source Antibody dilution Gel used

APC #2504 Cell signaling 1:250 3-8% tris-acetate
b-catenin #4270 Cell signaling 1:5000 4-12% tris-glycine
unphosphorylated ser33/ser37/thr41
b-catenin ab32572 Abcam 1:10,000 4-12% tris-glycine
Pak1 #2602 Cell signaling 1:1000 4-12% tris-glycine
Pak1 #2606 Cell signaling 1:1000 4-12% tris-glycine
phosphorylated ser144
Rac1 #16118 ThermoScientific 1:1000 4-12% tris-glycine
Rho #16116 ThermoScientific 1:650 4-12% tris-glycine
Survivin ab76424 Abcam 1:1000 4-12% tris-glycine
b-tubulin T8328 Sigma 1:10,000 4-12% tris-glycine
b-actin-HRP #5125 Cell signaling 1:10,000 4-12% tris-glycine
May 2022 | Volume 1
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siRNA Catalog # Source

BIRC5 (Survivin) M-003459-03 Dharmacon
Non-targeting Ctrl D-001206-14 Dharmacon
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for 30 minutes at 37°C and stained with DAPI for nuclei staining.
Coverslips were mounted and imaged with LSM 710. At least 150
cells were counted per condition. Images were analyzed and
quantified using ImageJ software.

Statistical Analysis
Unless stated otherwise, data represent standard error of the
mean of at least three independent experiments. The two-tailed
paired Student’s t test was used to determine statistical significant
with p<0.05 regarded as significant.
RESULTS

APC Mutation Confers Sensitivity to
Statin Treatment
With the aim of identifying a tailored therapeutic approach for the
treatment of a large proportion of CRC patients, we performed a
compound screen to identify drugs that are synthetically lethal with
mutant APC. To this end, we generated APC-mutated CRC cells
using CRISPR-Cas9 in the APC wild-type (wt) RKO CRC cells. We
established two CRISPR-Cas9 non-targeting gRNA control cell lines
(Control *1 and *2) and two CRISPR-Cas9 APC-mutant clones
(APCmut *1 and *2). The APC-mutant clones express a 75KDa
truncated APC protein and activate Wnt (Figures 1A–C) due to a
mutation in the 7th Armadillo repeat where APC interacts with
ASEF1/2.

We screened the two RKOwtAPC control cell lines and both the
RKO APC-mutated cell clones, with a library of 1170 FDA-
approved drugs to identify synthetic lethal compounds
Frontiers in Oncology | www.frontiersin.org 4
(Supplementary Figure 1). Interestingly, analysis of our screen
revealed that the RKO APC-mutated cells were extremely sensitive
to the statin group of drugs (Lovastatin & Mevastatin; Figures 2A,
B). To determine whether this was an effect due to the compound
screening approach and/or the specific concentration used, we next
treated the RKO Control *1 and *2 and APCmut *1 and *2 cell lines
with increasing concentrations of three different statin compounds
(Lovastatin, Mevastatin & Simvastatin; Figures 2C–E). We
observed a significant difference in sensitivity of the APC-mutated
cells, in comparison to the RKOControl cells, with SF50’s in the low
mM range (between 1-4 mM). Next, to ensure the synthetic lethality
observed between the APC mutation and statin treatment, was not
an artefact of our in vitro cell culture models, an in vivo CRC cancer
model was used that represented APC-mutant patient tumors. To
this end, we investigated sensitivity to statin treatment in a patient-
derived xenograft in vivo model (PDX) of APC mutated CRC. The
wtAPC and APC-mutated primary patient tumor cells were
successfully engrafted into nude mice and once established were
treated with simvastatin. (Figures 2F, G). Treatment with
simvastatin was found to slow down the growth of the PDX
APC-mutated tumors, but not wtAPC tumors. Taken together,
these data indicate that APC-mutant CRC tumor cells are
differentially and exquisitely sensitive to treatment with statin
compounds, both in vitro and in vivo.

Sensitivity to Statins in APC-Mutant Cells
Is Mediated via Geranylgeranyl
Pyrophosphate Protein Prenylation
Statins are small molecule inhibitors of 3-Hydroxy-3-
Methylglutaryl-CoA Reductase (HMGCR) in the mevalonate
A

B

C

FIGURE 1 | APC mutation is associated with increased Wnt signaling (A) Western blot analysis of protein lysates from RKO Control*1, Control*2, APCmut*1 and
APCmut*2 cells. Protein was extracted and expression was analyzed using APC and b-actin antibodies. b-actin was used as a loading control. (B) Western blot
analysis of protein lysates from RKO Control*1, Control*2, APCmut*1 and APCmut*2 cells. Protein was extracted and expression was analyzed using total b-catenin
and b-actin antibodies. b-actin was used as a loading control. (C) APC mutation increased TCF/LEF activity. RKO Control*1, Control*2, APCmut*1 and APCmut*2
cells were transfected with TCF/LEF luciferase reporter vectors and luciferase signals were analyzed using the Dual-Luciferase Reporter Assay System. Firefly
luciferase levels were normalized to renilla luciferase levels. Positive and negative controls were included. Data represent mean ± SEM of three independent
experiments. **p ≤ 0.005; *p ≤ 0.05.
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pathway, approved for the prevention of cardiovascular disease.
HMGCR catalyses the conversion of 3-hydroxyl-3-
methylglutaryl coenzyme A (HMG-CoA) to mevalonate and
this is the rate limiting step in the pathway involved in
cholesterol production (23). Inhibition of HMGCR results in
the reduction of plasma cholesterol levels.
Frontiers in Oncology | www.frontiersin.org 5
Previous studies have shown that HMGCR catalyses the
conversion of HMG-CoA into Mevalonate [also known as
Mevalonic acid (MVA)]. Therefore, to understand the role of
the mevalonate pathway in the sensitivity of APC-mutated cells
to statins, we next investigated whether addition of MVA could
rescue the effect of statin treatment in our cell lines. RKO
A B

D E

F G

C

FIGURE 2 | Statin compounds are synthetically lethal in APC mutated cells, in vitro and in vivo. RKO Control*1, and APCmut*2 cells were plated in 96-well plates
and treated with vehicle (0.01% DMSO) or the compound library (average compound concentration of the library in media was 10µM). After 4 days incubation with
the drug library, cell viability was assessed. Z-scores were compared to identify compounds that cause selective loss of viability in APC mutated cells, in comparison
to wt APC cells. Graphs represent Z-scores for (A) mevastatin and (B) lovastatin for each of the three replicate drug screens. RKO Control*1, Control*2, APCmut*1
and APCmut*2 cells were treated with increasing concentrations of (C) lovastatin (0, 2 µM, 4 µM, 6 µM, 8 µM & 10 µM), (D) mevastatin (0, 2 µM, 4 µM, 6 µM, 8 µM
& 10 µM) and (E) simvastatin (0, 1 µM, 2 µM, 3 µM & 4 µM). After 4 days treatment, cell viability was measured using an ATP-based luminescence assay. In vivo
efficacy experiments were performed on 40 NMRI nu/nu mice injected with either APC mutant patient derived tumor cells (F) or wt APC patient derived tumor cells
(G). When the tumors were measurable, mice were treated daily by gavage with 50mg/kg simvastatin or vehicle. Tumors were measured twice a week and tumor
size was normalized to initial treatment measurements. (C–E) Data represent mean ± SEM of three independent experiments. *p ≤ 0.05; ****p ≤ 0.00005; ns,
non-significant.
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Control*1 and APCmut*1 cells were pre-treated with MVA for
1hr, followed by the addition of lovastatin for 48 hours
(Figure 3A). Unexpectedly, instead of rescuing the sensitivity,
we observed a significantly greater decrease in cell viability in the
APCmut*1 cells when treated with MVA, followed by lovastatin
treatment. This effect was dependent on lovastatin treatment, as
cells treated with MVA alone remained viable.

Given the differential sensitivity to MVA upon lovastatin
treatment in the APC mutated cells, we investigated this effect
further by interrogating downstream of the mevalonate pathway.
Inhibition of HMGCR via statin treatment has been shown to be
involved in the reduction in isoprenoids including farnesyl
Frontiers in Oncology | www.frontiersin.org 6
pyrophosphate (FPP) and geranylgeranyl pyrophosphate
(GGPP). Isoprenoids are added to specific proteins as a post
translational modification, known as prenylation. Prenylation
adds long hydrophobic molecules to proteins to enable them to
anchor to cell membranes. Prenylation is mediated by either
farnesyl transferase (FTase) or geranylgeranyl transferase
(GGTase). To investigate the role of isoprenoids in statin
sensitivity, we analyzed whether inhibiting GGTase or FTase
with a geranylgeranyltransferase inhibitor (GGTI-298) or a
farnesyltransferase inhibitor (FTI-277) respectively, would also
induce sensitivity in the APC-mutated cells. GGTI-298 prevents
the formation of GGPP prenylated proteins and FTI-277 prevents
the formation of FPP prenylated proteins. To this end, we treated
the RKO Control*1 and APCmut*1 cells with GGTI-298 or FTI-
277 and measured cell viability (Figures 3B, C). Interestingly, we
observed that the APCmut*1 cells were significantly more sensitive
to GGTI compared to the RKO Control*1 cells. In comparison,
treatment with FTI-277 showed no differential sensitivity in the
RKO Control*1 and APCmut*1 cells. This suggests that statins
may mediate their selective sensitivity in APCmut cells through
proteins which undergo GGPP prenylation.
Active Rac1 Levels Increase Upon Statin
Treatment in APC-Mutated Cells
Our data suggest that proteins which undergo GGPP prenylation
could have a role in the mechanism of sensitivity to statins in
APC mutated cells. Protein families which undergo prenylation
include Rac1, Rho and Cdc42 (24). To investigate this further, we
first analyzed the GGPP prenylated protein, Rac1 because it has
previously been shown to be important in the Wnt signaling
pathway either by transporting b-catenin into the nucleus or by
promoting the formation of b-catenin-TCF/LEF complexes
(25, 26).

To analyse Rac1 activity, we treated the RKO Control*1 and
*2 and APCmut*1 and *2 cells with and without lovastatin for 72
hours and collected whole cell lysates. As a control for Rac1
activation, the parental RKO wtAPC cell line was treated with
either GDP (inactivates Rac1) or GTPyS (activates Rac1). Protein
lysates were run through a column containing a resin with a
GST-fusion protein with the Rac1-binding domain of Pak1,
where only active Rac1 interacts with Pak1 (27). Upon
immunoprecipitation, lysates were then analyzed by western
blotting for Rac1 expression (Figure 4). We observed that the
RKO Control*1 lysates had a similar level of active Rac1, before
and after lovastatin treatment (Figures 4A, B). Whereas the
APCmut*1 and *2 cell lysates had a lower basal level of active
Rac1, compared to the control cells. However, upon lovastatin
treatment, the level of active Rac1 was greatly increased. To
determine whether this was due to different levels of total Rac1 or
active Rac1 specifically, we treated RKO Control*1 and *2 and
APCmut*1 and *2 cells with lovastatin and after 72 hours, lysates
were immunoblotted and probed for total Rac1 expression
(Figure 4C). Interestingly, total Rac1 expression did not
increase in the APCmut cells after treatment, suggesting that
Rac1 activity was specifically increased in the APC mutant cells
upon lovastatin treatment.
A

B

C

FIGURE 3 | Sensitivity to statins in APC-mutant cells is mediated via the
Melavonate pathway and geranylgeranyl pyrophosphate protein prenylation.
(A) RKO Control*1, and APCmut*1 cells were pre-treated with either vehicle
(0.01% DMSO) or MVA (100mM) for 1 hr, followed by lovastatin (6mM)
treatment, as indicated. After 48 hrs, cell viability was assessed using an
ATP-based luminescence assay. (B) RKO Control*1 and APCmut*1 cells
were with either vehicle (0.01% DMSO) or GGTI (20mM). After 48 hts, cell
viability was assessed using an ATP-based luminescence assay. (C) RKO
Control*1 and APCmut*1 cells were treated with either vehicle (0.01%
DMSO) or FTI (40mM). After 48 hrs, cell viability was assessed using an
ATP-based luminescence assay. (A–C) Data represent mean ± SEM of
three independent experiments. ***p ≤ 0.0005; ns, non-significant.
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To understand whether increased Rac1 activity in APCmut
cells upon lovastatin treatment was specific to Rac1 or whether
statin treatment would increase the activity of other proteins
which undergo GGPP prenylation, we next analyzed levels of the
Frontiers in Oncology | www.frontiersin.org 7
GGPP prenylated protein Rho. To analyse Rho activity, we
treated the RKO Control*1 and *2 and APCmut*1 and *2 cells
with and without lovastatin for 72 hours and collected whole cell
lysates. Protein lysates were run through a column containing a
A B D E F G HC

A B

D

E F

G H

C

FIGURE 4 | Statin treatment increases active Rac1 levels in APC-mutant cells. (A) RKO Control*1 and APCmut*1 and (B) RKO Control*2 and APCmut*2 cells were
treated with either vehicle (0.01% DMSO) or 2 mM lovastatin for 72 hours. Whole cell lysates were collected and incubated with a column containing a resin with a GST-
fusion protein with the Rac1-binding domain of Pak1. Upon immunoprecipitation, samples were immunoblotted for Rac1 expression. The input lane shows levels of total
Rac1. GTPyS and GDP treated samples were included as positive and negative controls for Rac1 activity, respectively. (C) RKO Control*1, Control*2, APCmut*1 and
APCmut*2 cells treated with either vehicle (0.01% DMSO), 2 mM or 4 mM lovastatin for 72 hours. Protein was extracted and samples were immunoblotted for total Rac1
expression. b-tubulin was used as a loading control. (D) RKO Control*1 and APCmut*1 and (E) RKO Control*2 and APCmut*2 cells were treated with either vehicle
(0.01% DMSO) or 2 mM lovastatin for 72 hours. Whole cell lysates were collected and incubated with a column containing a resin with the GST-fusion protein containing
the Rho-binding domain of Rhotekin. Upon immunoprecipitation, samples were immunoblotted for Rho expression. The input lane shows levels of total Rho. GTPyS and
GDP treated samples were included as positive and negative controls for Rho activity, respectively. (F) RKO Control*1, Control*2, APCmut*1 and APCmut*2 cells treated
with either vehicle (0.01% DMSO), 2 mM or 4 mM lovastatin for 72 hours. Protein was extracted and samples were immunoblotted for total Rho expression. b-tubulin was
used as a loading control. (G) RKO Control*1, Control*2, APCmut*1 and APCmut*2 cells were treated with either vehicle (0.01% DMSO) or increasing concentrations of
the Rac1 inhibitor, EHT1864 (0, 5 µM, 10 µM, 15 µM). After 4 days treatment, cell viability was measured using an ATP-based luminescence assay. (H) RKO Control*1,
Control*2, APCmut*1 and APCmut*2 cells were treated with either vehicle (0.01% DMSO), lovastatin (6 µM) or EHT1864, alone or in combination. After 96 hrs treatment,
cell viability was measured using an ATP-based luminescence assay. ns, non-significant.
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resin with the GST-fusion protein containing the Rho-binding
domain of Rhotekin, which binds active Rho only. Upon
immunoprecipitation, lysates were immunoblotted and probed
for Rho expression. In contrast to Rac1, we detected no change in
the level of active Rho upon lovastatin treatment in the RKO
Control*1 and *2 and APCmut*1 and *2 cells (Figures 4D, E).
We also analyzed total Rho expression in whole cell lysates from
RKO Control*1 and *2 and APCmut*1 and *2 treated with
lovastatin for 72 hours (Figure 4F). The expression of total Rho
did not change upon statin treatment in the APC wt or APC
mutant cell lines. Therefore, the increased activity observed upon
lovastatin treatment in APCmut cells was specific to Rac1.

As we observed a significant activation of Rac1 upon statin
treatment in the APCmut cell lines, we next investigated whether
Rac1 activation was causing the sensitivity of the APCmut cells to
statin treatment. Firstly, we treated our cells with the Rac1
inhibitor EHT1864, which prevents Rac1 binding to GTP and
therefore prevents its activation [(28) Figure 4G]. Interestingly,
we did not observe any differential sensitivity to Rac1 inhibition
in the RKO Control*1 and *2 and APCmut*1 and *2 cells,
suggesting that increased Rac1 activity was not mediating the
differential sensitivity to statin treatment in our APC-mutant
cells. We next investigated if inhibiting Rac1 activation in
combination with statin treatment would rescue the sensitivity
of the APC mutant cell lines to statin treatment. To this end, the
RKO Control*1 and *2 and APCmut*1 and *2 cells were treated
with either EHT1864 or lovastatin alone or in combination and
cell viability was analyzed (Figure 4H). Our data showed that
addition of EHT1864 did not rescue the sensitivity of the APC
mutant cell lines to lovastatin. This suggests that the increase in
Rac1 activation was not solely responsible for the reduced cell
viability in the APC mutant cell lines, upon statin treatment.

Statin Treatment Increases b-Catenin
Transport Into the Nucleus in
APC-Mutated Cells
Rac1 has previously been shown to play a role in the Wnt
signalling pathway. Active Rac1 has been shown to activate
JNK2, which then phosphorylates b-catenin at ser191 and
ser605, enabling b-catenin to translocate to the nucleus (25,
26). Given our data showed an increase in active Rac1 following
lovastatin treatment in our APC-mutated cells, we investigated
whether statin treatment would influence the ability of b-catenin
to translocate from the cytoplasm to the nucleus, in APC-mutant
cells, due to Rac1.

To investigate this, the RKO Control*1 and *2 and APCmut*1
and *2 cell lines were treated with either vehicle or lovastatin for
72 hours. The cells were then fixed and stained with DAPI and
total b-catenin antibody (Figures 5A; B, Supplementary
Figure 2A). Interestingly, in the APCmut*1 cells, we observed a
significant increase in cells with nuclear b-catenin following
lovastatin treatment, suggesting increased b-catenin binding to
TCF/LEF and activation of Wnt target genes (Figure 5A). Statin
treatment did not increase b-catenin expression or localization in
the Control*1 and *2 cells.
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To determine whether increased Rac1 activity was required
for the localization of b-catenin in APC-mutated cells following
statin treatment, we inhibited Rac1 using EHT1864 in
combination with lovastatin treatment in the RKO Control*1
and *2 and APCmut*1 and *2 cells and analyzed levels of total b-
catenin in the cytoplasm and nucleus (Figures 5B, C;
Supplementary Figure 2B). In the APCmut*1 and *2 cells, we
previously observed decreased cytoplasmic b-catenin and
increased nuclear b-catenin upon lovastatin treatment alone
(Figure 5C; Supplementary Figure 2B). However, upon
treatment of the APCmut*1 and *2 cells with both lovastatin
and EHT1864 combined, nuclear b-catenin levels remained
similar to the vehicle-treated cells (Figure 5C; Supplementary
Figure 2B). Overall, this data suggests that an increase in Rac1
activity upon statin treatment was required for the localization of
b-catenin from the cytoplasm into the nucleus of APCmut*1 and
*2 cells.

Statin Treatment Is Associated With
Reduced Pak1 Phosphorylation, Leading
to Reduced Expression of the Wnt Target
Gene, Survivin in APC-Mutated Cells
Given that we observed increased nuclear b-catenin upon statin
treatment in the APCmut*1 and *2 cells, we investigated whether
this resulted in an increase in Wnt signaling and expression of
Wnt target genes. Firstly, we analyzed protein levels of total b-
catenin and unphosphorylated b-catenin after statin treatment.
When the Wnt pathway is inactive, b-catenin is phosphorylated
at ser33, ser37 and thr41 and signals b-catenin for degradation,
resulting in significantly reduced expression levels. When the
pathway is active, b-catenin remains unphosphorylated, enabling
b-catenin to accumulate in the nucleus and activate Wnt
target genes.

To investigate protein expression levels of total and
phosphorylated b-catenin, we treated the RKO Control*1 and *2
and APCmut*1 and *2 cells with vehicle or lovastatin and
immunoblotted whole cell lysates. We observed decreased
expression of both total and unphosphorylated b-catenin in the
APCmut*1 and *2 cells after statin treatment suggesting decreased
activation of Wnt signaling (Figures 6A, B; Supplementary
Figure 2C). To further our analysis of the Wnt signalling
pathway, we performed a TCF/LEF luciferase assay, which
measures the level of TCF/LEF binding to TRE and is an
indicator of the activation of the Wnt signalling pathway. In
keeping with the decreased expression of unphosphorylated and
total b-catenin, treatment with lovastatin caused a decrease in Wnt
activation in the RKO APCmut *1 and *2 cells. (Figure 6C). This
decrease in total and unphosphorylated (active) b-catenin
expression and decreased Wnt activation using the TCF/LEF
reporter assay after statin treatment in APC-mutated cells was
surprising, as we had previously observed an increase in nuclear b-
catenin upon statin treatment in APC-mutated cells. Our data
therefore suggested that statins may cause b-catenin to
accumulate in the nucleus, but in this case b-catenin was unable
to active Wnt signalling.
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To investigate this further, we analyzed the expression of the
Wnt-target gene survivin, as statin treatment can induce
decreased expression of this anti-apoptotic protein in CRC (29,
30). Therefore, we investigated whether increased nuclear b-
catenin upon statin treatment in APC-mutated cells, would
result in increased survivin expression. RKO Control*1 and
APCmut *1 and *2 cells were treated with either vehicle or
lovastatin and lysates were analyzed by western blot analysis.
After 72 hours of statin treatment, we observed that statin
treatment caused a significantly greater decrease in survivin
expression in the APCmut *1 and *2 cell lines, compared to the
Control*1 cells (Figure 6D). To understand whether survivin
levels were driving the sensitivity of our cells to statins, we
depleted survivin in the wtAPC RKO cell line using siRNA and
measured cell viability following statin treatment (Figure 6E).
Upon depletion of survivin, cells were significantly more
sensitive to lovastatin, in comparison to the siControl (siCON)
Frontiers in Oncology | www.frontiersin.org 9
transfected RKO cells. Therefore, our data suggests that reduced
survivin expression can influence the sensitivity of CRC cells to
lovastatin treatment.

Previous studies have shown that the serine threonine kinase
downstream of Rac1, Pak1 can phosphorylate b-catenin at
ser675, resulting in b-catenin stabilization and enhanced
transcription of Wnt target genes (31). Pak1 phosphorylation
at ser144 is unique to Rac1 and Cdc42, and results in Pak1
activation (32). To investigate Pak1 phosphorylation, RKO wt,
Control*1 and *2 and APCmut *1 and *2 cell lines were treated
with either vehicle or lovastatin for 72 hours. Following
treatment, protein lysates were immunoblotted and probed for
phosphorylated Pak1 (ser144) and total Pak1 expression
(Figure 6F). Upon statin treatment, there was a significant
decrease in phosphorylated Pak1 expression in the APC
mutant cells only. No difference was observed in the wtAPC
control lines following treatment. Therefore, these exciting data
A

B

C

FIGURE 5 | Statin treatment increases b-catenin transport into the nucleus via Rac1 in APC-mutated cells. (A) RKO Control*1, Control*2, APCmut*1 and APCmut*2
cells were treated with either vehicle (0.01% DMSO) or 4 mM lovastatin for 72 hours before fixing. Cells were then incubated with anti-b-catenin antibody and
visualized via confocal microscopy. Total number of cells with nuclear-localization of b-catenin were quantified and expressed as a % over total number of DAPI-
stained cells. (B) Representative images shown of RKO Control*1 and APCmut*1 cells treated with either vehicle (0.01% DMSO), 4 mM lovastatin or 1 mM EHT1864,
alone or in combination for 72 hours. DAPI staining is in blue, total b-catenin is in red. Scale bar indicates 20 mM. (C) RKO Control*1 and APCmut*1 cells were
treated with either vehicle (0.01% DMSO), 4 mM lovastatin or 1 mM EHT1864, alone or in combination for 72 hours before fixing. Cells were then incubated with anti-
b-catenin antibody and visualized via confocal microscopy. Total number of cells with nuclear-localization of b-catenin were quantified and expressed as a % over
total number of DAPI-stained cells. *p = 0.05, **p ≤0.005.
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indicate that statin treatment can reduce the activation of Pak1 in
APC-mutant cells.

Taken together, our data has defined a novel synthetic lethal
interaction upon APC loss and statin treatment. We have
elucidated for the first time that APC-mutated CRC cells are
differentially sensitive to statin treatment, due to an increase in
Rac1 activity which induced translocation of b-catenin to the
Frontiers in Oncology | www.frontiersin.org 10
nucleus. b-catenin accumulates in the nucleus but is prevented
from activating Wnt target genes due to the inhibition of Pak1
phosphorylation resulting in reduced transcription of Wnt target
genes, such as survivin. It is this reduced expression of survivin
expression that results in the synthetic lethal interaction upon
statin treatment in APC-mutated cells therefore defining this
new pathway as a potential new therapeutic target in CRC.
A B

D E

F

C

FIGURE 6 | APC mutant cells have reduced survivin expression which mediates sensitivity to statin treatment. (A) RKO Control*1, APCmut*1 and APCmut*2 cells
were treated with either vehicle (0.01% DMSO), 2 mM or 4 mM lovastatin for 72 hours. Protein was extracted and samples were immunoblotted for total b-catenin
expression. b-actin was used as a loading control. (B) RKO Control*1, APCmut*1 and APCmut*2 cells were treated with either vehicle (0.01% DMSO), 2 mM or 4 mM
lovastatin for 72 hours. Protein was extracted and samples were immunoblotted for unphosphorylated b-catenin (ser33/ser37/thr41) expression. b-actin was used as
a loading control. (C) RKO Control*1, Control*2, APCmut*1 and APCmut*2 cells were treated with either vehicle (0.01% DMSO) or 2 mM lovastatin for 72 hours,
followed by transfection with TCF/LEF luciferase reporter vectors. Luciferase signals were analyzed using the Dual-Luciferase Reporter Assay System. Firefly
luciferase levels were normalized to renilla luciferase levels. Positive and negative controls were included. (D) RKO Control*1, APCmut*1 and APCmut*2 cells
were treated with either vehicle (0.01% DMSO), 1 mM or 2 mM lovastatin for 72 hours. Protein was extracted and samples were immunoblotted for survivin
expression. b-actin was used as a loading control. (E) RKO WT APC cells were transfected with either non-targeting siRNA (siCON) or siRNA targeting survivin
(siSurvivin). After 24 hrs, cells were treated with either vehicle (0.01% DMSO) or increasing concentrations (2 µM, 4 µM, 6 µM, 8 µM, 10 µM) of lovastatin for 72
hours. Cell viability was assessed using an ATP-based luminescence assay. ****p ≤ 0.00005. (F) RKO WT APC, Control*1, Control*2, APCmut*1 and APCmut*2
cells were treated with either vehicle (0.01% DMSO) or 2 mM lovastatin for 72 hours. Protein was extracted and samples were immunoblotted for phosphorylated
Pak1/2/3 and total Pak1 expression. b-actin was used as a loading control.
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DISCUSSION

Although APC was identified as a key genetic driver of CRC
more than 30 years ago, this knowledge has not yet been
translated effectively into the clinic and successful tailored
therapy for CRC patients is still lacking. Despite the
overwhelming evidence that Wnt signaling drives CRC,
targeted Wnt therapies have not been successful in the clinic.
Many studies searching for synthetic lethal relationships in CRC
have focused on looking for relationships with other major
mutations such as KRAS (33–35). Previous studies have
identified specific synthetic lethal relationships with APC
mutations. One group identified that APC mutant CRC was
synthetically lethal with NSAIDs (36). Mutant APC increased
levels of the Wnt target gene c-Myc, resulting in higher B3
interacting-domain death agonist (BID) activation and NSAIDs
further activated BID, resulting in APC mutant cell specific
death, leaving the normal wtAPC cells unharmed (36). Also,
NSAIDs have been reported to inhibit COX2 which is thought to
be synthetically lethal with APC mutations because APC mutant
cells show increased expression of COX2 (37, 38). Additionally,
there is potential to target Tankyrase (TNKS) and proteins
upstream of TNKS to selectively kill APC mutant cells. TNKS
destabilises Axin which is the rate limiting component of the b-
catenin, therefore the inhibition of TNKS increases Axin and
levels of the b-catenin destruction complex, resulting in the
inhibition of Wnt signalling (39). Interestingly, the length and
position of the APCmutation has been linked to the sensitivity to
TNKS inhibitors, cell lines lacking all seven 20aa repeats were
more sensitive than those with two or more 20aa repeats (40).
Unfortunately, TNKS inhibitors are often toxic to normal
intestinal cells. However a study has identified that PrxII
regulates TNKS only in APC mutant CRC and the inhibition
of PrxII results in APC mutant cell specific death (41, 42).
Further studies have identified the compound TASIN as a
potential therapeutic to treat APC mutant cells (43, 44).
TASIN-1 inhibits a component of the cholesterol synthesis
pathway and it is thought that APC mutant cells are defective
in responding to decreases in cholesterol, resulting in APC
mutant specific cell death. This indicates the cholesterol
synthesis pathway, beyond statin treatment, could be an ideal
target for the treatment of APC mutant CRC.

Our data suggests that upon statin treatment levels of survivin
decrease to a greater extent in the APC mutant lines compared to
the APC wildtype lines, suggesting that in the APC mutant lines
the level of survivin decreases below a threshold tolerated,
resulting in the induction of apoptosis. This is supported by
other studies in CRC cells showing that statin treatment induced
a decrease in survivin levels (30, 45). Interestingly in different
cancer types including lung, hepatocellular carcinoma and head
and neck squamous cell carcinoma, the downregulation of
survivin was also considered to be part of the mechanism of
action of statins (46–48). Silencing survivin can increase
sensitivity to statin treatment in wtAPC expressing cells,
therefore suggesting survivin levels play a key role in the
response to statins in CRC.
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Many studies have investigated the potential of statins in
chemoprevention. Significantly, one preclinical study was
suggested that combination therapy of atorvastatin together
with low doses of the NSAID, celecoxib, can significantly
increase the chemopreventive efficacy in an APCMin/+ mice
(49). Case control studies have shown varying protective
effects; for example, one study identified statin treatment
resulted in a 4% decreased risk of CRC, whilst other studies
have shown no protective effect (50, 51). Unfortunately,
randomised studies have not supported a protective effect (51).
The studies used to investigate the association between statins
and CRC have been designed to test the safety of statins to treat
cardiovascular disease and are, therefore, not designed to assess
cancer risk, as the follow-up period is often too short.
Additionally, cardiovascular disease patients are at higher risk
of CRC because risk factors associated with cardiovascular
disease also include CRC risk factors such as low physical
activity and poor diet (51). Interestingly, a large meta-analysis
of 42 studies which included case-control studies, cohort studies
and randomised control trials, concluded that statins have a
slight protective effect, but that long-term use does not seem to
influence CRC risk (52). It has also been suggested that the link
between statins and reduced cancer risk may be due to
cholesterol levels associated with those taking statins, rather
than the result of statin treatment per se (53).

Our data suggests that regulation of survivin levels, following
statin treatment in APC-mutant cells may be the key to fully
understanding the link between statins and CRC.
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Supplementary Figure 1 | FDA-Compound screen on RKO Ctrl wtAPC and
APC mutant cells(A) Schematic showing the screen layout. The compound library
was aliquoted over 14 x 96 well plates. On day 1 cells RKO Control*1 and
Frontiers in Oncology | www.frontiersin.org 12
APCmut*2 cells were plated, followed by drug treatment on day 2 and day 4. Then
on day 6 cell viability was measured using CTG. (B) The Z score values were plotted
for each compound in the screen for both cells lines (RKO Control*1 and APCmut*2
cells) to illustrate the spread of data. Data represnts results are from one screen
replicate. RKO Control*1 are shown in red and APCmut*2 cells are shown in blue.

Supplementary Figure 2 | Statin treatment decreases cytoplasmic b-catenin in
APC-mutated cells(A) RKO Control*1, Control*2, APCmut*1 and APCmut*2 cells
were treated with either vehicle (0.01% DMSO) or 4 mM lovastatin for 72 hours
before fixing. Cells were then incubated with anti-b-catenin antibody and visualised
via confocal microscopy. Total number of cells with cytoplasmic-localization of b-
catenin were quantified and expressed as a % over total number of DAPI-stained
cells. (B) RKO Control*1 and APCmut*1 cells were treated with either vehicle
(0.01% DMSO), 4 mM lovastatin or 1 mM EHT1864, alone or in combination for 72
hours before fixing. Cells were then incubated with anti-b-catenin antibody and
visualised via confocal microscopy. Total number of cells with cytoplasmic-
localization of b-catenin were quantified and expressed as a % over total number of
DAPI-stained cells. **p≤0.005. (C) Quantification of replicates of western blots
(representative shown in Figure 6B) detecting levels of unphosphorylated b-
catenin, normalised to b-actin. *p≤0.005; ***p≤0.0005.
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