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XGB‑DrugPred: computational 
prediction of druggable proteins 
using eXtreme gradient boosting 
and optimized features set
Rahu Sikander1*, Ali Ghulam2 & Farman Ali3

Accurate identification of drug-targets in human body has great significance for designing novel drugs. 
Compared with traditional experimental methods, prediction of drug-targets via machine learning 
algorithms has enhanced the attention of many researchers due to fast and accurate prediction. In this 
study, we propose a machine learning-based method, namely XGB-DrugPred for accurate prediction 
of druggable proteins. The features from primary protein sequences are extracted by group dipeptide 
composition, reduced amino acid alphabet, and novel encoder pseudo amino acid composition 
segmentation. To select the best feature set, eXtreme Gradient Boosting-recursive feature elimination 
is implemented. The best feature set is provided to eXtreme Gradient Boosting (XGB), Random Forest, 
and Extremely Randomized Tree classifiers for model training and prediction. The performance of 
these classifiers is evaluated by tenfold cross-validation. The empirical results show that XGB-based 
predictor achieves the best results compared with other classifiers and existing methods in the 
literature.

The analysis of Human Genome Project can provide the opportunity for pharmacologists to design novel drugs 
with specific targets in disease. Due to complicated system biology of most diseases, the newly developed drugs 
are not only limited but their effect in treating disease is also poor1. Thus, it is indispensable to design unique 
and effective drugs for diseases. A protein that interacts with drug is called druggable protein. Mostly druggable 
proteins are classified into nuclear receptors and functional proteins. It has been reported by past studies that 
druggable proteins are closely involved in cancers, cardiovascular, immune system, and other chronic diseases2.

Recently, the emergence of computerized algorithms and modeling in biology has made great progress in 
drug discovery3. These computational approaches are developed to determine the drug-disease interaction and 
how drugs affect targets in diseases. The computational approaches in drug-target discovery are based on either 
statistical or machine learning models. For instance, several researchers have implemented the secondary struc-
ture information of proteins and functional domains for analysis of drug-target interaction4. Some researchers 
adopted 3D structural features to analyze whether drug can bind on the surface of a protein5–7. However, due to 
the non-availability of 3D structure information of all proteins in the databank, their application is limited8,9.

With the passage of time, machine learning models were established for prediction of drug-target proteins. 
These models presented amino acid composition and di-peptide composition for identification of targets10–12. 
Sequence-based calculations of amino acid/protein features are useful because it can be computed easily and 
mostly predict protein function accurately. In this connection, many researchers employed different feature 
extraction methods and classification algorithms for prediction of drug-target interaction. Yu et al. used PRO-
FEAT software to explore 1080 feature vector with support vector machine and random forest13. Chen et al. 
integrated basic features of protein using sequence, secondary, and subcellular localization as well as support 
vector machine for prediction of drug-targets in ion channels12. Han et al. yielded overall accuracy of 84% by 
implementing support vector machine with tenfold cross-validation14. Jamali et al. fused amino acid composition, 
dipeptide composition with physicochemical features and performed the classification by neural network15. The 
authors achieved 92.1% accuracy with fivefold cross-validation. Yamanishi et al. investigated protein sequence 
similarity, structural similarity, and protein interaction networks. The model was trained by nuclear regression to 
identify drug-target using genomic and chemical space16. Bleakley et al. introduced bipartite local model (BLM) 
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approach to improve the prediction accuracy17. In other efforts, Lin et al. first extracted features by dipeptide 
composition, reduced sequence algorithms, and PseAAC and then integrated2. The best features were selected 
by genetic algorithm. The optimal features were fed into Bagging-SVM ensemble classifier and achieved an 
accuracy of 93.78%. Furthermore, Chen X et al. discussed the new evaluation validation framework and the 
formulation of drug-target interactions prediction problem by more realistic regression formulation based on 
quantitative bioactivity data18.

All the above-cited methods have shown great contribution in prediction of drug-target interaction, however, 
each predictor has its limitation. For example, structure-based methods are expensive and limited applications 
due to the unavailability of structural information of all proteins in the databanks19–21. Most existing predictors 
have used conventional feature extraction methods such as amino acid composition, dipeptide composition, and 
position specific scoring matrix, however, these approaches do not effectively explore the important features. 
Moreover, integrated form of these features produces high dimensional vector space that leads to redundant 
features as well as high computational time. Due to the crucial role of druggable proteins in diverse cellular 
and biological processes, it is needed to design a computational method that can efficiently predict druggable 
proteins. To cover the above limitations of the existing predictors, we present a promising predictor, called 
XGB-DrugPred. In this study, the features are explored by group dipeptide composition, reduced amino acid 
alphabet, and novel encoder pseudo amino acid segmentation (S-PseAAC). To obtain multi-perspective feature 
vector, we concatenated all features to make a super set. A novel feature selection algorithm namely eXtreme 
Gradient Boosting-recursive feature elimination is adopted for selection of best features. The optimal features 
are provided to eXtreme Gradient Boosting, Random Forest, and Extremely Randomized Tree. Each classifier 
is trained and prediction performance is assessed by tenfold CV with five parameters i.e., accuracy, sensitivity, 
specificity, F-measure, and Mathew’s correlation coefficient. Among all models, XGB-based model has not only 
secured the best performance but also achieved the highest results compared with existing predictors in the 
literature. The schematic view of the proposed model has shown in Fig. 1.

Material and methods
Dataset.  A benchmark dataset usually contains positive samples (proteins that can interact with drugs) and 
negative samples (proteins that cannot interact with drugs). For a fair comparison with existing methods, we 
used the dataset constructed by Jamali et  al.15. The 1611 druggable proteins were retrieved from DrugBank 
database as explained by past study. Among these proteins, similar sequences in terms of features and content 
were removed using CD-HIT tool. The final positive samples set contains 1224 druggable proteins. Similarly, the 
negative samples set is constructed by combining datasets proposed by Bakheet et al.22 and Li et al.10. Initially, 
these sequences were collected from Swiss-Prot database. After eliminating the similar sequences, the remaining 
sequences were 1319 non-druggable proteins. The final benchmark dataset contains 1611 druggable proteins 
and 1224 non-druggable proteins.

Figure 1.   Schematic view of the proposed model.
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Feature encoding methods.  Grouped dipeptide composition.  Grouped Dipeptide Composition (GDPC) 
feature descriptor is an advance form of the DPC encoder. In this approach, amino acids are grouped into five 
classes using their physicochemical properties i.e., aromatic group (W, Y, and F), positive charge group (H, K, 
and R), aliphatic group (A, I, M, G, L, and V), uncharged group (C, T, P, S, Q, and N), and negative charged group 
(D, E, and G)23. The feature space of the GDPC can be formulated as:

Here, Tmn is the frequency of dipeptide indicated by amino acid of groups mandn while T represents the length 
of peptide or protein sequence.

Reduced amino acid alphabet.  Feature extraction is a key step in the construction of a computational method. 
However, high dimension feature vector may cause several issues such as high time complexity and overfitting. 
To deal with these problems, we applied reduced amino acid alphabet (RAAA) as feature extraction approach. 
RAAA uses the physiochemical properties and grouped the amino acid residues into smaller groups which not 
only reduced the complexity of protein sequences but also explore the structural local regions and structural 
similarity24. We clustered the amino acids into five groups i.e., (C(5), C(8), C(9), C(11), and C(13) according to 
the procedure defined by Etchebest et al.25. which is explained in the following equation:

In C
(

j
)

 , j shows the number of clusters in each group and the clusters are separated by semicolon.

Pseudo amino acid composition segmentation.  A protein sequence contains 20 amino acids. To compute 
the occurrence frequency of these amino acids in a protein sequence, Amino Acid Composition (AAC) was 
introduced26. However, AAC avoids the sequence order information and correlation factors. To cover these 
deficiencies, Pseudo Amino Acid Composition (PseAAC) was designed19. PseAAC can consider global sequence 
order information and local sequence order information in a protein sequence. PseAAC uses to compute the 
sequence correlation factors in addition to AAC. We can formulate PseAAC using the following equation:

where the first 20 dimensions of A shows the frequency of amino acids and λ computes the correlation factors. 
In order to capture the local region’s information encoded in PseAAC, we extended the notion of segmentation 
into PseAAC and thus generated a novel descriptor (S-PseAAC).

Feature selection approach.  In feature vector, some features are effective and can improve the perfor-
mance of the model. The feature selection method is used to select these effective features to enhance the perfor-
mance of the proposed method. We selected the best features by employing the combination of XGB and RFE 
approaches. First, the XGB formulates the significant point of each feature and assigns weight to each feature. 
Second, the weighted sum of the scores of each feature in all boost trees is utilized to achieve the final importance 
score. Third, the features are arranged according to the final score. Fourth, after getting the importance ranking 
of features, Finally, RFE eliminates the less informative features from the feature space27. This process continues 
to N times until the required number of features is attained.

In this work, we selected 17, 73, and 36 best features from GDPC, RAAA, and S-PseAAC, respectively. These 
best features were concatenated to make a superset.

eXtreme gradient boosting.  XGB is a dominating classifier that was introduced by Chen and Guestrin28. 
In recent years, XGB showed shining performance in many classifications and challenging problems. XGB incor-
porates several novel features into gradient tree boosting notion which enhances its speed and performance. It is 
a scalable system almost in all scenarios and therefore wins several machine-learning-based competitions29. The 
scalability of XGB is due to several algorithmic optimizations and important features including handling sparse 
data with new tree learning scheme, handling instance weights in approximate tree learning using theoretically 
justified weighted quantile sketch procedure30. Distributed and parallel computing makes the learning process 
quicker that leads to fast model exploration28. More importantly, XGB applies the regularization notion in the 
loss function which not only avoids overfitting issues but also controls the complexity.

In this work, we generate competent models from several individual weak learners in an iterative way. Ini-
tially, the first model is trained by selecting samples randomly from the dataset having equal weights and equal 
chances to contribute in the training. Each model is tested on all samples in the dataset and the weights of the 
misclassified samples are updated to pick for selection in the next model training. Sequentially, several models 
are designed. During the testing phase, a test sample is classified according to the prediction of majority models. 
The working chart of the XGB is shown in Fig. 2.

We used several hyperparameters like estimator, eta, max depth, alpha, and lambda to improve the model 
performance. The “estimator” is used to generate the number of trees, “eta” regulates the learning rate, “max 
depth” controls the depth of the tree, “lambda” is used to avoid the overfitting, and “alpha” shrinks the high 

(1)f (m, n) =
Tmn

T − 1
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dimensional dataset. These hyperparameters are tuned by grid search approach. The list of these hyperparameters 
and their values are reported in Table 1.

Performance evaluation.  After designing a computational predictor, the performance is evaluated using 
different validation methods. The most employed validation schemes are jackknife and k-fold cross-valida-
tions31–37. However, jackknife approach has high cost and computational time38–44. This study implements ten-
fold cross-validation and five parameters i.e., accuracy (Acc), sensitivity (Sn), specificity (Sp), F-measure, and 
Mathew’s correlation coefficient (MCC) for examining the performance of the model.

The Acc, Sn, Sp, F-measure, and MCC can be formulated using the following equations:

(4)Acc = 1−
DP+

− + DP−
+

DP+ + DP−

(5)Sn = 1−
DP+

−

DP+

(6)Sp = 1−
DP−

+

DP−

(7)MCC =

1−

(

DP+−+DP−+
DP++DP−

)

√

(

1+
DP+−+DP−+

DP+

)(

1+
DP+−+DP−+

DP−

)

Figure 2.   Simple architecture of XGB.

Table 1.   Hyperparameters of the proposed model.

Hyperparameter Value

No. of estimator 500

Era 0.1

Max depth 8

lambda 1

alpha 1



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5505  | https://doi.org/10.1038/s41598-022-09484-3

www.nature.com/scientificreports/

where DP+ and DP− represent the true positive (druggable protein) and true negative (non-druggable protein), 
respectively. Similarly, DP−+ denotes the number of false negative predictions that the model incorrectly predicted 
as true and DP+− shows the samples that the model incorrectly predicted as false that are initially labeled as true.

Results and discussion
Performance of classifiers before feature selection.  In this work, features from dataset are captured 
by group dipeptide composition, reduced amino acid alphabet, and novel encoder pseudo amino acid segmen-
tation. The feature vector of each feature descriptor is fed into three classifiers i.e., Random Forest, Extremely 
Randomized Tree, and eXtreme Gradient Boosting. The performance of all classifiers is evaluated with tenfold 
CV and summarized the results in Table 2. The ERT using RAAA secures Acc of 81.10%, Sn of 88.10%, Sp of 
75.59%, F-measure of 82.84%, and MCC of 0.64. ERT enhances the performance on GDPC and S-PseAAC, and 
achieves 84.65% and 89.33% accuracies, respectively. The results show that both GDPC and S-PseAAC captured 
informative features. RF generated better performance than ERT and yielded an accuracy of 82.61% on RAAA. 
RF also improved the prediction results with GDPC, S-PseAAC, and All features set dimensions. Among all, RF 
has secured the highest results on the combination of All features set.

From Table 2, we can see that XGB raises the results on all parameters i.e., Acc, Sn, Sp, F-measure, and MCC. 
The best results of XGB have been noted over All features set and acquired an accuracy of 92.09%. These results 
are not only higher than RAAA, GDPC, and S-PseAAC but also surpassed RF and ERT classifiers. Comparing 
the performance of individual feature extraction methods i.e., RAAA, GDPC, and S-PseAAC, it is noted that 
S-PseAAC generates good prediction results with all classifiers. S-PseAAC with ERT has increased the accura-
cies by 7.51% and 4.68% than RAAA and GDPC, respectively. Similarly, 7.11% and 5.86% higher accuracies are 
secured by S-PseAAC using RF than RAAA and GPDC. S-PseAAC with XGB further improved the performance 
and attained the highest accuracy i.e., 90.51%. It is verified by S-PseAAC that extending segmentation strategy 
into PseAAC is more helpful in extracting the local discriminative information and contributing greatly to the 
design of XGB-DrugPred model.

Performance of classifiers after feature selection.  The multi-perspective feature set extracted from 
different encoders may reflect decisive information. However, high dimensional feature vector may affect the 
performance of a model. To eliminate the redundant, noisy, and less informative features as well as reduce the 
computational time, we adopted XGB-RFE as feature selection algorithm. With XGB-RFE, we ranked features 
of each descriptor i.e., GDPC, RAAA, and S-PseAAC according to their importance. We selected 17, 73, and 
36 optimal features from GDPC, RAAA, and S-PseAAC, respectively. These best features are provided to ERT, 
RF, and XGB machine learning algorithms for model training, validated the performance of each classifier with 
tenfold, and reported prediction results in Table 2. From Table 2, we can see that after applying feature selection 
approach, all classifiers improved the prediction performance mostly on all feature vectors. For instance, the 
accuracy of ERT with RAAA before feature selection algorithm is 81.82% and after applying feature selection 
is 82.21%. RF enhances the accuracy by 0.79% using the RAAA. XGB has attained an accuracy of 84.82% after 
feature selection over RAAA which is 1.03% higher than before applying feature optimization technique with 

(8)F −measure = 2 ∗ (precision ∗ recall/precision+ recall)

(8)Precision =
DP+

DP+
− + DP+

(9)Recall =
DP+

DP−
+ + DP+

Table 2.   Performance of classifiers before feature selection.

Classifier Feature descriptor Acc (%) Sn (%) Sp (%)
F-measure 
(%) MCC

ERT

RAAA​ 81.82 88.10 75.59 82.84 0.64

GDPC 84.65 83.04 85.92 82.67 0.68

S-PseAAC​ 89.33 88.89 89.76 89.24 0.78

All features 88.14 87.83 88.41 88.69 0.80

RF

RAAA​ 82.61 86.51 78.74 83.21 0.65

GDPC 83.86 83.93 83.80 82.10 0.67

S-PseAAC​ 89.72 87.30 92.13 89.43 0.79

All features 90.12 85.22 94.20 88.69 0.80

XGB

RAAA​ 83.79 84.92 82.95 83.92 0.67

GDPC 86.22 80.36 90.85 83.72 0.72

S-PseAAC​ 90.51 91.27 89.76 90.55 0.81

All features 92.09 91.30 92.75 91.30 0.84
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same feature encoder and classifier. Similarly, the classifiers on the models of other feature vectors have shown 
remarkable outcomes. On S-PseAAC, the accuracies reported by ERT, RF, and XGB are 90.12%, 90.91%, and 
91.70%, respectively which are higher than RAAA and GDPC descriptors. This reveals that incorporating seg-
mentation into PseAAC can capture important local patterns. It is reported by past studies that combination of 
heterogeneous features set may generate better results45. In this connection, we combined the optimal features 
of all encoders and provided them to classifiers. Table 3 describes that all classifiers have achieved promising 
results with All feature sets. However, among all classifiers, XGB yielded 94.86% accuracy which is 2.77% higher 
than before feature selection on All features set. It is concluded that the selection of the best features performed 
a significant role in the development of the proposed model.

Comparison of the proposed model with existing methods.  To assess the efficacy of the proposed 
predictor, we compare the prediction results with existing predictors including PseAAC-DPC-RS, Jamali et al., 
and GA-Bagging-SVM. The accuracy, sensitivity, specificity, and MCC of the first-best predictor (GA-Bagging-
SVM) are 93.78%, 92.86%, 94.45%, and 0.87, respectively while our predictor yielded 94.86% accuracy, 93.75% 
sensitivity, 95.74% specificity, and 0.89 MCC. Analyzing the prediction results, we can see from Table 4 that 
XGB-DrugPred has achieved 1.08% Acc, 0.89% Sn, 1.29% Sp, and 0.02 MCC higher than the best method. The 
XGB-DrugPred boosted 2.76% Acc, 0.95% Sn, 4.4% Sp, and 0.05 MCC than second-best method. Similarly, our 
predictor surpassed the PseAAC-DPC-RS on all evaluation parameters. After performing the comparison, it is 
observed that proposed predictor for prediction of druggable proteins is more effective than all existing predic-
tors in the literature. The ROC curves and AUC values of the proposed model and the existing models have 
provided in Fig. 3.

Conclusion
Druggable protein prediction with experimental methods is laborious and high cost. The pharmaceutical industry 
employed machine learning predictors to capture properties of successful drug-targets to predict novel drugs 
with the same properties. In this connection, we also make efforts and developed a novel predictor for drugga-
ble proteins. This work explores the features by RAAA, GDPC, and S-PseAAC. The optimal feature selection is 
performed by XGB-RFE. The classification is carried out by ERT, RF, and XGB. Among these, XGB with the best 
feature set achieved the highest performance. The superior performance of the XGB-DrugPred is due to several 
reasons including the application of appropriate feature encoding methods, effective feature selection scheme, 
and powerful classifier. In future work, we make efforts to establish a web server for the proposed predictor that 
will be fruitful for academicians and researchers. More importantly, our novel predictor will be helpful to capture 
a more universal view of a potential target.

Table 3.   Performance of classifiers after feature selection.

Classifier Feature descriptor Acc (%) Sn (%) Sp (%)
F-measure 
(%) MCC

ERT

RAAA​ 82.21 84.91 79.53 82.63 0.64

GDPC 81.10 77.44 85.12 81.10 0.62

S-PseAAC​ 90.12 84.82 94.33 88.37 0.80

All features 92.09 91.96 92.20 91.15 0.84

RF

RAAA​ 83.40 83.33 83.46 83.33 0.66

GDPC 82.28 77.45 87.60 82.07 0.65

S-PseAAC​ 90.91 84.85 85.73 89.20 0.81

All features 93.28 92.86 93.62 92.44 0.86

XGB

RAAA​ 84.82 84.92 82.68 83.92 0.67

GDPC 83.07 81.95 84.30 83.52 0.66

S-PseAAC​ 91.70 88.39 94.33 90.41 0.83

All features 94.86 93.75 95.74 94.17 0.89

Table 4.   Comparison with existing predictors.

Predictor Acc (%) Sn (%) Sp (%) MCC

PseAAC-DPC-RS 90.98 87.88 94.11 0.82

Jamali et al 92.10 92.80 91.34 0.84

GA-Bagging-SVM 93.78 92.86 94.45 0.87

XGB-DrugPred 94.86 93.75 95.74 0.89
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Future direction
MicroRNAs (miRNAs) have been proved to be targeted by the small molecules recently, which made using small 
molecules to target miRNAs become a possible therapy for human diseases46. Therefore, it is very meaningful 
to investigate the relationships between small molecules and miRNAs. In this connection, several experimental 
and computational models have been developed and implemented to identify novel small molecule-miRNA 
associations47–49. The small molecules inhibit a specific function of a multifunctional protein and may have 
beneficial effect against diseases. It is reported that small molecules make up 90% of pharmaceutical drugs (such 
as insulin, aspirin, and antihistamines)50. Like druggable proteins, a kind of small molecules comprises amino 
acids. Thus, in addition to druggable proteins, the proposed study can predict the small molecules of drugs or 
the association of small molecules of drugs with miRNA using primary sequences. As small molecule-miRNA 
associations are significant for discovering novel drugs against many human diseases. Therefore, in future, we 
will try to develop computational methods for accurate prediction of small molecule-miRNA associations using 
effective feature extraction and selection algorithms.

Data and material availability
In future work, we will make efforts to establish a web-server that is freely accessible for researchers and acad-
emicians. Presently, the source code and datasets are available freely at link https://​github.​com/​wangp​hd0/​drug.
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