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ABSTRACT
Background  HIV, tuberculosis (TB) and malaria are the 
three most important infectious diseases in Ethiopia, 
and sub-Saharan Africa. Understanding the spatial 
codistribution of these diseases is critical for designing 
geographically targeted and integrated disease control 
programmes. This study investigated the spatial overlap 
and drivers of HIV, TB and malaria prevalence in Ethiopia.
Methods  HIV, TB and malaria data were obtained from 
different nationwide prevalence surveys, and geospatial 
covariates were obtained from publicly available sources. 
A Bayesian model-based geostatistical framework was 
applied to each survey leveraging the strength of high-
resolution spatial covariates to predict continuous disease-
specific prevalence surfaces and their codistribution.
Results  The national prevalence was 1.54% (95% CI 
1.40 to 1.70) for HIV, 0.39% (95% CI 0.34 to 0.45) for TB 
and 1.1% (95%CI 0.95 to 1.32) for malaria. Substantial 
subnational variation was predicted with the highest HIV 
prevalence estimated in Gambela (4.52%), Addis Ababa 
(3.52%) and Dire Dawa (2.67%) regions. TB prevalence 
was highest in Dire Dawa (0.96%) and Gambela (0.88%), 
while malaria was highest in Gambela (6.1%) and 
Benishangul-Gumuz (3.8%). Spatial overlap of their 
prevalence was observed in some parts of the country, 
mainly Gambela region. Spatial distribution of the diseases 
was significantly associated with healthcare access, 
demographic, and climatic factors.
Conclusions  The national distribution of HIV, TB and 
malaria was highly focal in Ethiopia, with substantial 
variation at subnational and local levels. Spatial distribution 
of the diseases was significantly associated with 
healthcare access, demographic and climatic factors. 
Spatial overlap of HIV, TB and malaria prevalence was 
observed in some parts of the country. Integrated control 
programmes for these diseases should be targeted to 
these areas with high levels of co-endemicity.

BACKGROUND
Infectious diseases are significant contribu-
tors to the global burden of death and disa-
bility.1 HIV, tuberculosis (TB) and malaria 
are the three most serious infectious diseases 
in the world, causing high morbidity and 
mortality rates especially in low-income and 
middle-income countries.2 The Sustainable 

Development Goals (SDGs) aim to end 
malaria, TB and HIV as a public health threat 
by 2030.3 Understanding the spatial distribu-
tion of these diseases is essential to inform 
control and prevention strategies. Although 
there has been a significant reduction in the 
global burden of these diseases in the past 
few decades, they all remain in the top 10 
causes of mortality in low-income and middle-
income countries.1 According to 2020 WHO 
reports, there was a total of 277 million cases 
of HIV, TB and malaria and 2.5 million deaths 
associated with these three diseases globally.4 
The African continent accounts for a dispro-
portionately high global burden of HIV 
(73%), TB (25%) and malaria (94%).4 While 
there is considerable geographical overlap 
in the distribution of these three diseases at 
regional levels, the codistribution of these 

WHAT IS ALREADY KNOWN?
	⇒ HIV, tuberculosis (TB) and malaria are the three most 
important infectious diseases in Ethiopia.

	⇒ The synergy between HIV, TB and malaria infection is 
strong at an individual level.

WHAT ARE THE NEW FINDINGS?
	⇒ The distribution of HIV, TB and malaria was highly 
focal in Ethiopia, with substantial variation at subna-
tional and local levels.

	⇒ Spatial overlap of high HIV, TB and malaria preva-
lence was observed in some parts of the country.

	⇒ The spatial distribution of the diseases was asso-
ciated with healthcare access, demographic and 
climatic factors.

WHAT DO THE NEW FINDINGS IMPLY?
	⇒ Multi-disease control approaches should be empha-
sised to curb the coexisting three infections, howev-
er, relevant interventions should be implemented in 
areas with lower prevalences.

	⇒ Improving healthcare access can reduce the burden 
of HIV, TB and malaria in Ethiopia.

	⇒ Geographically targeted service integration may en-
hance the efficiency and cost-effectiveness of dis-
ease control programmes.
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diseases is yet to be investigated subnationally in high-
burden countries.

The synergy between HIV, TB and malaria infec-
tion is strong at an individual level. While TB is the 
most common opportunistic infection leading to death 
among people living with HIV,5 HIV infection is the most 
important risk factor for developing active TB.6 Studies 
have also reported that HIV-infected individuals are at 
increased risk of complicated and severe malaria and 
death.7 8 Malaria and TB are strongly influenced by socio-
economic factors such as housing quality and sanitation.9 
Previous research has studied the interactions between 
HIV and TB or malaria,9 10 but limited research has inves-
tigated the codistribution of all three diseases.

An understanding of the spatial codistribution of 
these diseases is critical to designing targeted and inte-
grated interventions for surveillance, diagnosis, treat-
ment and prevention that will help achieve the goals 
of national disease control programmes. Integrated 
disease control programmes can present cost-effective 
benefits and synergistic effects compared with vertical 
programmes.11 12 However, accurate knowledge of where 
to strengthen integrated programmes is key to achieving 
maximum impact, especially in low-income countries like 
Ethiopia.

Ethiopia is one of the countries highly affected by HIV, 
TB and malaria. There are several studies investigating the 
spatial distribution of HIV, TB and malaria in Ethiopia, 
which have confirmed the presence of spatial clustering 
associated with common risk factors such as behavioural, 
climatic and clinical factors.13–15 To the best of our knowl-
edge, this is the first study to combine all three diseases 
simultaneously to investigate their spatial codistribution. 
The aim of this study was to develop predictive maps for 
each of the three diseases, investigate their spatial codis-
tribution, and identify the demographic and climatic 
factors that influence their distribution in Ethiopia.

METHODS
Country context
Ethiopia is the second-most populous country in 
Africa, with an estimated population size of more than 
115 million people in 2020.16 There are marked differ-
ences in population structure, socioeconomic condi-
tions, disease burden and climatic conditions across the 
country. Ethiopia has a surface area of approximately 
1.1 million km² and a population density of 215 people 
per square kilometre.16 It has a variety of geographical 
features with altitudes ranging from 125 m below sea level 
to 4620 m above sea level. Ethiopia is administratively 
divided into ten regional states and two administrative 
cities (first-level), which are further divided into zones 
(second-level), districts (third-level), and villages (fourth-
level).

In Ethiopia, infectious diseases such as HIV, TB 
and malaria are the leading causes of morbidity 
and mortality.17 In 2019, it was estimated that there 

were ~15 000 deaths caused by HIV/AIDS, ~21 000 deaths 
caused by TB and  ~5000 deaths caused by malaria, 
giving >40 000 deaths caused by the Big Three infectious 
diseases in Ethiopia.4 18 19

The healthcare system of the country contains a 
mixture of public, private and non-governmental sectors. 
The public healthcare system is structured into a three-
tier system: (1) primary care: composed of health posts, 
health centres and primary hospitals; (2) secondary care: 
composed of general hospitals and (3) tertiary care: 
composed of specialised hospitals.20 It is estimated that 
more than half of the population lives more than 10 km 
from the nearest health facility, concentrated in regions 
with poor transport infrastructure.21

Data sources
Data for the primary outcome measures (ie, HIV, TB and 
malaria prevalence) and exposure variables (ie, climatic 
variables and population density) were assembled from 
multiple sources.

HIV prevalence data were obtained from the Ethio-
pian Demographic and Health Survey (EDHS 2016). 
The EDHS survey was conducted between January and 
June 2016 to provide estimates of HIV prevalence based 
on a nationally representative sample. A finger-prick 
blood specimen collected from both women and men 
aged 15–49 years, was tested using an ELISA. All samples 
testing positive on the first test were subjected to a second 
test. If the results of the first and second tests were discor-
dant, a third confirmatory assay was used.

TB prevalence data were obtained from the Ethiopian 
national TB prevalence survey. A detailed description of 
the survey is provided elsewhere.22 Briefly, it was the first 
nationally representative TB survey conducted in Ethi-
opia. The survey was conducted between 2010 and 2011, 
with 85 clusters included in the survey, including 14 clus-
ters in urban areas, 63 clusters in rural areas and 8 clus-
ters in pastoralist areas. Symptom screening, chest X-ray, 
sputum smear microscopy and TB culture were reported 
among 46 697 adults and adolescents aged 15 years and 
above.23

Malaria prevalence data were obtained from the Ethi-
opia national malaria indicator survey, a nationally repre-
sentative household malaria survey collected between 
September and December 2015.24 Malaria parasite testing 
was done using multi-species CareStart rapid diagnostic 
tests and microscopic examination of both thick and thin 
smear blood slides.24 Microscopy slide testing was used 
for the determination of the prevalence of malaria. The 
surveys were aggregated to cluster level and malaria prev-
alence at each cluster was calculated from the number of 
people who received a diagnostic test and the number of 
people who tested positive.

Potential covariates were selected based on the avail-
ability of country-wide representative data at a high level of 
resolution and based on biological plausibility and social 
pathways affecting disease risk and based on them having 
been previously found to explain spatial variation in risk. 
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Climatic variables such as mean annual temperature 
and mean annual precipitation were obtained from the 
WorldClim website.25 Altitude data were obtained from 
the Shuttle Radar Topography Mission.26 Data on travel 
time to the nearest city and travel times to the nearest 
healthcare facility in minutes (ie, hospital or clinic) were 
obtained from the Malaria Atlas Project.27 Population 
density, estimated as the number of people per grid cell, 
was obtained from WorldPop.28 Distance to the nearest 
water body was obtained from previous studies.29 30 All 
these data were extracted at a spatial resolution of 1 km2. 
The data sources of the covariates with their definitions 
are provided in online supplemental table S1. A polygon 
shapefile for the Ethiopian administrative boundaries was 
obtained from the Database for Global Administrative 
Areas, a free online database.31 The dependant variables 
(HIV, TB and malaria prevalence) were geo-referenced, 
and covariates were linked to disease prevalence data by 
extracting their value in the 1 km2 grid cell in which each 
disease prevalence observation was located using ArcGIS 
(ESRI, Redlands, California, USA) geographical informa-
tion system (GIS) software.

Spatial analysis
Bayesian model-based geostatistics (MBG) was used to 
generate spatially continuous estimates of the national 
prevalence of HIV, TB and malaria mapped at a reso-
lution of 1 km2. Within the MBG framework, a logistic 
regression model was fitted to the prevalence data using 
both fixed effects and spatial random effects. Three 
different models were constructed independently for 
the prevalence of HIV, TB and malaria. Here, we present 
how the model for the prevalence of TB was constructed, 
but the approach was identical for the other diseases. A 
spatial binomial regression model was fitted for TB preva-
lence survey data, including fixed effects for mean annual 
temperature, mean annual precipitation, altitude, travel 
time to the nearest city, distance to a water body, popu-
lation density and geostatistical random effects.32 The 
proportion of TB cases at each surveyed location j as the 
outcome variable was assumed to follow a binomial distri-
bution:

	﻿‍ Yj ∼ Binomial
(
nj, pj

)
‍�

where ‍Yj ‍ is the observed number tested positive for TB, 

‍nj‍ is the total number of individuals tested for TB and ‍pj ‍ 
is the predicted TB prevalence at location ‍j‍ (j=1, …, 85). 
Mean predicted TB prevalence was modelled via a logit 
link function with a linear predictor, defined as:

	﻿‍ logit
(
pj
)

= α +
∑z

z=1 βzXz,j + ζj ‍�
where α is the intercept, β is a matrix of covariate coeffi-
cients, ﻿﻿‍X‍ is a design matrix of ‍z‍ covariates and ‍ζj ‍ are spatial 
random effects modelled using a zero-mean Gaussian 
Markov random field with a Matérn covariance function. 
The covariance function was defined by two parameters: 
the spatial scale ‍ρ‍, which represents the distance beyond 
which correlation becomes negligible, and ﻿﻿‍ σ‍, which is 
the marginal SD.33 34 Non-informative priors were used 

for α (uniform prior with bounds –∞ and ∞) and we set 
normal priors with mean=0 and precision (the inverse of 
variance)=1×10−4 for each β. We used default priors for 
the parameters of the spatial random field.35 Parameter 
estimation was done using the Integrated Nested Laplace 
Approximation (INLA) approach in the R statistical soft-
ware (R-INLA).33 34 Sufficient values (ie, 150 000 samples) 
from each simulation run for the variables of interest 
were stored to ensure full characterisation of the poste-
rior distributions.

Predictions of the prevalence of each infection at 
unsampled locations were made at 1 km² resolution by 
interpolating the spatial random effects and adding 
them to the sum of the products of the coefficients for 
the spatially variant fixed effects at each prediction loca-
tion.36 The intercept was added, and the overall sum was 
back-transformed from the logit scale to the prevalence 
scale, providing prediction surfaces that show the esti-
mated prevalence of disease for all prediction locations. 
An area of coinfection is defined as a geographical area 
with disease prevalences higher than the upper quartile of 
75%. To obtain a co-endemicity map, the spatial predicted 
prevalence surface for each disease were overlaid in the 
GIS software. This process allows for the identification of 
overlapped areas where the prevalence of two or three 
diseases are highest. This approach has been applied in 
various studies addressing similar objectives.37 38

Model validation
Models were validated using the conditional predictive 
ordinates (CPO) and the probability integral transform 
(PIT) statistics.39 40 Both CPO and PIT were obtained 
as ‘leave-one-out’ cross-validation in INLA. These were 

defined as follows:
‍
CPOi = π

(
yi

y−i

)
‍

	﻿‍ PITi = π
(
ynew
i −

(
yi/y − i

))
‍�

The CPO expresses the posterior probability of observing 
the value of the outcome at location ‍i‍ when the model 
is fitted to all data except the ‍yi ‍. Large values indicate 
a better fit and small values indicate a poorer fit of the 
model to that observation and, perhaps, that it is an 
outlier. PIT measures the probability of a new value ‍y

new
i ‍ 

to be lower than the actual observed value. For a well-
calibrated model, the PIT values should be uniformly 
distributed. Larger values of CPO and PIT imply a better 
fit. Models with different combinations of covariates were 
constructed and compared. The Watanabe-Akaike Appli-
cable Information Criterion (WAIC) statistic was used to 
select the best-fitting model.

RESULTS
Data were available from 643 georeferenced locations for 
HIV, 85 for TB, and 643 for malaria. The survey locations 
covered all regions of the country (figure 1).

Prevalence of HIV, TB and malaria at national and regional 
levels
Table  1 shows the national and regional prevalence of 
HIV, TB and malaria in Ethiopia. The national prevalence 
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was 1.54% for HIV (95% CI 1.40 to 1.70), 0.39% (95% 
CI 0.34 to 0.45) for TB and 1.1% (95%CI 0.95 to 1.32) 
for malaria among all ages. Substantial variation was 
observed in the prevalence of these diseases at regional 
levels, with the highest prevalence of TB observed in 
Dire Dawa (0.96%) and Gambela (0.88%) regions and 
the highest prevalence of malaria observed in Gambela 
(6.1%) and Benishangul-Gumuz (3.8%) regions. The 
prevalence of HIV was highest in Gambela (4.52), Addis 
Ababa (3.52%) and Dire Dawa (2.67%) regions and 
lowest in Somali (0.09%), Southern Nations, Nation-
alities, and People’s (0.36%) and Benishangul-Gumuz 
regions (0.79%).

Spatial distribution of HIV, TB and malaria prevalence
The prevalence of HIV, TB and malaria varied substan-
tially within regions. Figure 2 shows the predicted prev-
alence of HIV, TB and malaria in Ethiopia at the pixel 
level. The prevalence of HIV was spatially varied, with 
the highest prevalence (ie, hotspot areas) predicted in 
Gambela region and major cities such as Addis Ababa, 
Dire Dawa, Harer and Desie (figure  2A). The periph-
eral areas of the country (eg, Afar and Somali regions) 
bordering Djibouti, Somalia, Eritrea and Kenya had the 
highest prevalence of TB while the central, northern and 
western parts of the country had the lowest prevalence of 

TB (figure 2B). High malaria prevalence was predicted 
in the northwest (eg, Humera, Metema, Sanja, Quara) 
and eastern (eg, Kebridehar, Gode) parts of the country 
and in the Great Rift Valley (figure  2C). In contrast, a 
low prevalence of malaria was predicted in the central 
parts of the country. Prediction uncertainty, as indicated 
by a high SD, was greatest in the border regions (Afar and 
Somali) for all diseases (online supplemental figure S1).

Spatial codistribution of HIV, TB and malaria prevalence
Areas of spatial overlap of combinations of two or three 
diseases were predicted in focal areas across the country 
(figure 3). For example, the burden of all three diseases 
was high in Gambela region. Geographical overlap of 
high TB and HIV prevalence was also observed in the 
Afar region.

Drivers of HIV, TB and malaria prevalence
Table  2 shows the results of the Bayesian geostatistical 
models. Travel times to the nearest city in minutes (mean 
regression coefficient (β): –0.532; 95% credible interval 
(95% CrI) –0.960 to –0.122) was negatively associated 
with HIV prevalence; whereas population density (people 
per square kilometre, β: 0.010; 95% CrI 0.005 to 0.014) 
and distance to water body (km, β: 0.182; 95% CrI 0.053 
to 0.311) were positively associated with HIV prevalence. 

Figure 1  Geographical locations of data points and prevalence of (A) HIV, (B) tuberculosis and (C) malaria in Ethiopia.

Table 1  National and regional prevalence of TB, HIV and malaria in Ethiopia

Regions HIV prevalence (%) TB prevalence (%) Malaria prevalence (%)

Addis Ababa 3.52 0.67 NA

Afar 1.29 0.57 0.3

Amhara 1.19 0.32 0.8

Benishangul-Gumuz 0.79 0.00 3.8

Dire Dawa 2.67 0.96 0.0

Gambela 4.52 0.88 6.1

Oromiya 1.21 0.33 0.3

SNNPR 0.36 0.50 0.5

Somali 0.09 0.43 0.0

Tigray 1.08 0.30 0.8

Ethiopia 1.52 0.39 1.1

HIV, Human immunodeficiency virus; NA, Not avialable ; SNNPR, Southern Nations, Nationalities, and People’s Region; TB, 
tuberculosis.

https://dx.doi.org/10.1136/bmjgh-2021-007599
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Population density was also positively associated with TB 
prevalence (β: 0.008; 95% CrI 0.001 to 0.014). Climatic 
factors such as annual mean temperature (°C, β: 0.346; 
95% CrI 0.258 to 0.434) and annual mean precipitation 
(mm, β: 0.312; 95% CrI 0.262 to 0.362) as well as travel 
time to the nearest city in minutes (minutes, β: 0.113; 
95% CrI 0.084 to 0.142) were found to be positively 
associated with malaria prevalence. In contrast, popula-
tion density (β: –0.005; 95% CrI –0.006 to –0.004) and 
distance to health facility (minutes, β: –0.300; 95% CrI 
–0.347 to –0.254) were negatively associated with malaria 
prevalence.

Results of model validations for HIV prevalence (online 
supplemental figure S2), TB prevalence (online supple-
mental figure S3) and malaria prevalence (online supple-
mental figure S4) are presented in online supplemental 
file 1. The CPO and PIT indicated that the predictive 
models were well fitted. According to the WAIC statistic, 
the model that contained all covariates was the best-fitting 
model for all diseases (online supplemental table S2).

DISCUSSION
The national HIV prevalence in Ethiopia was 1.5%, 
which is lower than the African HIV prevalence (3.9%) 
but nearly two times the global average HIV prevalence 

(0.8%).41 The prevalence of TB in Ethiopia was 0.39%, 
which is similar to other African countries such as Kenya 
(0.56%),42 Zambia (0.63%)43 and Gambia (0.21%),44 
but higher than other high TB burden countries in Asia 
such as India (0.03%)45 and China (0.06%).46 The prev-
alence of malaria in our study was 1.1%, which is lower 
than in other African countries, but it varied greatly at a 
lower administrative level,47 with large populations still 
exposed to substantial malaria risk.

Our study showed that remoteness, demography and 
climatic factors were associated with the spatial distribu-
tion of HIV, TB and malaria. As the transmission mech-
anisms and preventive measures of TB, HIV and malaria 
are complex and multi-factorial, there are some risk 
factors that affect the spatial codistribution of the three 
diseases. For example, our study showed that population 
density was a common variable in all three diseases which 
was positively associated with both HIV and TB preva-
lence and negatively associated with malaria prevalence. 
Our study also showed a positive association of distance 
to a water body with HIV prevalence while a negative 
effect on travel times and a positive effect on population 
density was observed. Staying further away from water 
bodies may be a proxy indicator of economic, environ-
mental and social needs which may have an impact on 
HIV prevalence. For example, food insecurity which can 
be caused by a lack of water sources can drive sexual 
risk-taking behaviours and migration, as well as increase 
susceptibility to infections that are common among 
people living with HIV.48 Moreover, longer travel times 
to cities may indicate low urbanicity and a low population 
density which favours a lower risk of HIV and TB coinfec-
tion. Previous studies also found that people living in a 
capital city were at a high risk of TB and HIV infection.13 49 
This may be because transmission of TB and HIV may 
be more common in urban settings due to overcrowding 
and higher population density. Other explanations aside 
from the close association between HIV and TB may 
be indirect factors related to low income, high rates of 
migration especially in infected individuals migrating 
from high prevalent areas, as well as high levels of social 
networking. HIV risk behaviours such as commercial sex 
work and drug use are also common in capital cities.50 
Consistent with previous studies, climatic factors such as 
high annual mean temperature and high annual mean 

Figure 2  The predicted geospatial maps for the prevalence of (A) HIV, (B) tuberculosis and (C) malaria in Ethiopia.

Figure 3  Predicted areas of codistribution for tuberculosis, 
HIV and malaria, Ethiopia. High prevalence is defined as a 
prevalence of more than the upper quartile.
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precipitation as well as long travel time to the nearest city 
were positively associated with malaria prevalence.51 52 In 
contrast, the population density was negatively associated 
with malaria prevalence, which is not surprising given 
malaria is more common in rural areas.

Substantial spatial variation was observed in all three 
diseases at regional and local levels in Ethiopia. Previous 
studies have reported similar spatial clustering of HIV, 
TB and malaria in Ethiopia.13 15 53 However, the current 
study provided additional information in which the 
spatial distribution of HIV, TB and malaria overlapped 
in some parts of the country. For example, hotspots of 
a high prevalence of all three diseases were observed 
in Gambela region. This region is located in the west 
of Ethiopia, bordering South Sudan, and characterised 
by low healthcare access, low socioeconomic index and 
high temperature and rainfall.54 These demographic 
and climatic factors have been reported as some of the 
main drivers of TB transmission.55 The high prevalence 
of HIV, TB and malaria along the border areas might be 
due to inadequate case management and weaker health-
care systems.54 It could be also due to cross-border travel 
and high rates of infection across the border.56 Previous 
studies in Ethiopia showed that malaria transmission is 
endemic in lowland areas with warm and humid climates 
like the Gambela region and appears to be epidemic 
in highland areas.57 The high prevalence of HIV in 
Gambela region could be due to cultural practices such 
as polygamy practices and male uncircumcision.

Spatial overlap of TB and HIV prevalence was also 
observed in Harari, Dire Dewa and Afar regions. While 
there were hotspots of TB and malaria in the Somali 
region, there was little HIV in this region. In addition, 
while TB and malaria hotspots were generally observed 
in the most rural and peripheral areas sharing interna-
tional borders, high HIV prevalence was mostly observed 
in the capital cities. These findings suggested that 
although there was overlap in the distribution of infec-
tious diseases in some parts of the country, this was not 
the case throughout the country. This highlights that 

targeting service integration approaches that consider 
the profile of diseases at a local level would be more effec-
tive than nationwide service integration. Geographically 
targeted service integration may enhance the efficiency 
and cost-effectiveness of disease control programmes. 
Thus, mapping the codistribution of infectious diseases 
such as HIV, TB and malaria would be a key step in 
strengthening integrated disease control programmes.

The SDGs articulate a goal to end HIV, TB and malaria 
epidemics by 2030.3 Health service integration has been 
recommended by WHO as one strategy to enhance the 
prevention and control of these diseases. Integration of TB, 
HIV and malaria services has been implemented in many 
resource-limited countries including Ethiopia.58 Ethiopia 
has implemented an Integrated Disease Surveillance and 
Response (IDSR) strategy since 1996,59 which has made 
a significant contribution to the control and prevention 
of communicable diseases by filling the gaps observed in 
vertical disease control programmes.60 However, several 
challenges were identified with the implementation of 
IDSR such as limited financial resources, lack of coordi-
nation, inadequate training and supervision.60 Targeting 
the IDSR strategy according to local disease profiles may 
help overcome these challenges.

This study has some important limitations, including 
the difference in data collection periods. While the data 
for HIV and malaria were collected in 2016 and 2015, 
respectively, the data for TB were collected between 
2010 and 2011. Additionally, due to a lack of available 
data, some important ecological level variables were not 
included in our geospatial models, which might affect 
the validity of the prediction maps. Finally, the data on 
TB was much sparser than for malaria and HIV, and the 
spatial predictions are therefore likely to be less robust 
and strongly driven by the effect of covariates particularly 
in areas with no observed data on those which are sparsely 
populated. In another study we have investigated supple-
menting the national survey on TB with data from other 
studies, using a geospatial meta-analytic approach.22

Table 2  Regression coefficient mean and 95% credible intervals (CrI) of covariates included in a Bayesian spatial model with 
Binomial response for the prevalence of tuberculosis, HIV and malaria in Ethiopia

Covariates

HIV Tuberculosis Malaria

Regression coefficients
Mean (95% CrI)

Regression coefficients
Mean (95% CrI)

Regression coefficients
Mean (95% CrI)

Temperature 0.23 (−0.92 to 1.430) −0.62 (−1.58 to 0.35) 0.34 (0.26 to 0.43)

Precipitation −0.01 (−0.47 to 0.426) −0.22 (−0.57 to 0.09) 0.31 (0.26 to 0.36)

Altitude −0.11 (−1.31 to 1.133) −0.72 (−1.76 to 0.33) −0.06 (−0.15 to 0.02)

Travel time to city −0.53 (−0.96 to –0.122) 0.18 (−0.12 to 0.48) 0.11 (0.08 to 0.14)

Population density 0.01 (0.005 to 0.014) 0.008 (0.001 to 0.014) −0.005 (−0.006 to –0.005)

Distance to water body 0.18 (0.05 to 0.31) 0.05 (−0.13 to 0.24) −0.002 (−0.011 to 0.007)

Distance to health facility −0.44 (−1.04 to 0.12) −0.29 (−0.91 to 0.29) −0.300 (−0.35 to –0.254)

Intercept −5.97 (−6.67 to –5.37) −5.58 (−6.42 to –4.90) −5.667 (−5.88 to –5.44)

Bold shows ‘statistically significant’ results within a Bayesian framework (no zero within the 95% CrI).
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CONCLUSION
Our study found that the national prevalence of TB, HIV 
and malaria varied substantially at subnational and local 
levels. The spatial distribution of the diseases was asso-
ciated with demographic and climatic factors. Spatial 
overlap of TB, HIV and malaria prevalence was observed 
in some parts of the country, with one area with a high 
prevalence of all three diseases being the Gambela 
region. This highlights that targeting service integra-
tion approaches at a local level would be more effective 
than nationwide service integration. These findings can 
guide policymakers in Ethiopia to design geographically 
targeted and integrated disease control programmes to 
achieve maximum impact.
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