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Abstract: The aim of this review is to provide a survey of the recent advances and the main remaining
challenges related to the ultrananocrystalline diamond (UNCD) nanowires and other nanostructures
which exhibit excellent capability as the core components for many diverse novel sensing devices,
due to the unique material properties and geometry advantages. The boron or nitrogen doping
introduced in the gas phase during deposition promotes p-type or n-type conductivity. With the
establishment of the UNCD nanofabrication techniques, more and more nanostructure-based devices
are being explored in measuring basic physical and chemical parameters via classic and quantum
methods, as exemplified by gas sensors, ultraviolet photodetectors, piezoresistance effect-based
devices, biological applications and biosensors, and nitrogen-vacancy color center-based magnetic
field quantum sensors. Highlighted finally are some of the remaining challenges and the future
outlook in this area.

Keywords: ultrananocrystalline diamond (UNCD); boron doping; nitrogen doping; nanowire (NW);
gas sensor; ultraviolet (UV); photodetector (PD); nanoplasmonic; piezoresistance (PZR); biosensor;
nitrogen-vacancy (NV); magnetic field quantum sensor

1. Introduction

Diamond is well known for its superior mechanical, electrical, piezoelectric, optical,
tribomechanical, and other properties. As the hardest material, diamond is inert and highly
compatible biologically and transparent from infrared (IR) to ultraviolet (UV) optically.
Moreover, its electrical conductivity can be controlled via the doping technique to change
from an insulator to the ultimate semiconductor. In the past, the progress in the production
of inexpensive, high-quality diamond thin films has never stopped, and a breakthrough
happened in the 1960s [1] with the arrival of a low-pressure, low-temperature chemical
vapor deposition (CVD) synthesis method. Since then, synthetic diamond thin films have
become commercially available. Although it is almost indistinguishable from gemstone
material in property, the thin-film single-crystal diamond (SCD) produced by CVD is
currently limited by its size and cost. Hence, the CVD-grown thin-film polycrystalline
diamond (PCD) is considered the most affordable and is composed of tiny diamond
crystallites fused by atomic-scale non-diamond (usually graphitic) grain boundaries.

According to the surface morphologies as shown in Figure 1a–d, polycrystalline
diamond films are normally categorized into microcrystalline diamond (MCD), nanocrys-
talline diamond (NCD), and ultrananocrystalline diamond (UNCD). CVD-grown MCDs
are made of relatively large faceted crystallites arranged in different orientations with a
grain size of 0.5–100 µm [2,3] and a root-mean-square (RMS) surface roughness typically
~10% of the film thickness, while thin-film NCDs contain many smaller and less facetted
crystallites with a grain size in the range of 10–100 nm and surface roughness in the range
of 10–50 nm RMS [4]. Invented at Argonne National Laboratory in 2002, UNCDs consist
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of finest grains of 3–5 nm in size and grain boundary of ~0.4 nm, and they possess excel-
lent thickness uniformity over large area wafers (≥150 mm diameter) and a far smoother
surface, with 4–7-nm RMS roughness which is independent of the film thickness [5–9].
Figure 1e shows the Raman spectra of these thin-film materials measured with a visible
laser beam at 532-nm wavelength, which indicates that a profound difference occurs at the
1332-cm−1 peak.
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Figure 1. Surface morphologies of different CVD-grown polycrystalline diamond (PCD) films: (a) MCD, (b) and (c) NCD,
and (d) UNCD. Inset: electron scattering spectra of the UNCD film. (e) Raman spectra of MCD (a), NCD (b,c) and UNCD
(d) films, analyzed with a visible laser beam at 532-nm wavelength. Reprinted with permission from [8]; © 2021, Elsevier.

As a comparison, the properties of CVD-grown SCD and UNCD films are given in
Table 1. Unlike SCD, UNCD is widely accepted as the nanoscale composite of ultra-small
diamond crystallites with sp3 hybridization surrounded by grain boundaries of a mixture of
hydrocarbon and amorphous carbon (a-C), with sp2 character being predominant. However,
UNCD still retains sufficient diamond-like properties, which are extremely useful for
applications where nanoscale precision machining is needed, due to its finest grain size,
small surface roughness, and high surface uniformity, in addition to electrical property
modification and surface functionalization. Of all CVD-grown diamond thin films, UNCD
is the most promising material platform for the fabrication of well-defined nanowire
devices and nano-electro-mechanical systems (NEMS) [10–13].

Any materials with one or more dimensions that are constrained to the nanometer
scale are considered nanomaterials. According to this definition, geometries such as
nanotubes, nanorods, nanoribbons, nanofibers, and nanowires exemplify 1D nanomaterials
with two dimensions reduced to the nanometer scale. Hence, a structure of a constrained
cross-sectional area to tens of nanometers or less and an unconstrained length is considered
a nanowire. In this review, we will mainly concentrate on the UNCD NWs which are
normally formed through either self-assembling or nanofabrication processes.

Over the past decade, great progress has been made in the fabrication of UNCD
nanowires, which has enabled significant developments in diamond-based sensor technol-
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ogy, taken to a radically new level of performance, and brought in new applications. Since
there are already a few reviews on other diamond-related materials or self-assembled/as-
synthesized diamond NWs [14–16], this review focuses mainly on the investigations of var-
ious sensors based on UNCD NWs and other nanodevices fabricated using electron-beam
lithography and reactive ion etching techniques conducted by our group in recent years.

Table 1. Property comparison of synthesized SCD and UNCD films. Data from [11–13].

Property SCD UNCD

Growth Chemistry H2/CH4 Ar/CH4
Bonding Character sp3 2–5% sp2

Grain Size (undoped, nm) 1–10,000 (depending on the
sample size)

3–5

Grain Size (doped, nm) - 7–10
Grain Boundary (undoped,
nm)

- ~0.4

Grain Boundary (N-doped,
nm)

- 1–2

Surface Roughness (nm) - 4–7
Surface Uniformity (150-mm
dia. Si Wafer)

±5%

Density (g/cm3) 2.8–3.51 3.30
Poisson Ratio 0.1–0.16 0.057+/−0.038
Young’s Modulus (GPa) 820–900 ~850
Hardness (GPa) 100 98
Macroscopic Friction
Coefficient in Air

0.01–0.02 0.02–0.05

Dielectric Constant 5.6 5.68
Mohs Hardness 10 10
Intrinsic Resistivity (Ohm-cm) 1012–1016 103–104

2. UNCD Synthesis and NW Fabrications
2.1. Synthesis of UNCD Films

According to the activation energy source, the CVD synthesis technique can be clas-
sified as hot-filament CVD (HFCVD) [17], microwave plasma CVD (MPCVD) [18], and
radio-frequency CVD (RFCVD) [19], etc. Among several methods of growing high-quality
diamond in the laboratory, MPCVD is one such method widely used for the deposition of
UNCD films on non-diamond substrates such as Si and SiC [20]. During the early stage
of the optimal UNCD growth, the initial surface pretreatment, or “seeding”, is crucial to
enhance the nucleation of diamond grains, and the reported seeding techniques include
polishing/scratching the substrate using diamond nanoparticles (DNP) [21], ultrasonica-
tion of DNP slurry [22], pre-coating and converting of carbon-based material to diamond
nuclei [23], and so on. The system contains a microwave generator of up to 2-kW power
at 2.45-GHz or 915-MHz frequency. The chamber is maintained at around 100 Torr with
a gas mixture of 95–99% Ar, 0–3% of H2, and 1% of CH4. Methane is used as the carbon-
containing gas due to its high purity, the same structure (tetrahedral) as diamond, and
the ease of control of deposition reaction. Driven by the microwave plasmas, the collision
between the electrons and gases generates a high fraction of ionized species and therefore
provides abundant chemically active ions for UNCD growth. The substrate temperature
varies from 400 to 800 ◦C.

Although UNCD and NCD are two closely related synthetic diamond films, they
have distinct growth processes and nanostructures. In NCD growth under hydrogen-rich
growth conditions, the hydrogen abstraction takes place to replace each C–H bonding of
the CH4 with the C–C bonding individually. This process gives the time for the columnar
diamond crystal to grow, which leads to higher surface roughness. Unlike NCD, due to its
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unique growth mechanism under Ar-rich growth conditions, the decomposition of CH4
can be described in only two steps as shown below [24]:

2CH4 → C2H2 + 3H2 (1)

C2H2 → C2 + H2 (2)

The carbon dimer (C2) radicals can directly insert into the surface of the diamond film
due to their low activation energy, which avoids the need for hydrogen abstraction [25].
During the UNCD growth, such a diamond structural formation path is expedited and
simplified at a much higher renucleation rate as compared to NCD growth. Therefore,
the grain coarsening does not occur, and the continuous growth of the diamond crystal
is confined [11]. Compared with NCD, UNCD has a smaller surface roughness, which
does not change with the increase in UNCD film thickness. This feature of UNCD films
makes it possible to push the dimensions of miniature devices fabricated using the EBL-RIE
(Electron-Beam Lithography-Reactive Ion Etching) approach to the limit and to take the
advantage of nanowire and NEM devices based on this affordable diamond material for
sensor and other applications.

2.2. UNCD Doping Techniques

As a natural insulator, the high-resistivity UNCD film can be doped during the
synthesis process with nitrogen as a donor or boron as an accepter, to form p- or n-type
semiconductors. With the addition of nitrogen (N2) in the gas mixture during the synthesis
process, nitrogen atoms can incorporate in the grain boundaries and form the nitrogen-
doped UNCD (N-UNCD) n-type conductivity in the UNCD film, as demonstrated by
Hall and Seebeck’s coefficient measurements [26,27]. As the nitrogen in the gas phase
increases to 20% in the reactor, the N-UNCD measured at room temperature (RT) shows
a decrease in electrical resistivity down to 10−2 Ω·cm, or an increase in conductivity up
to 100 Ω−1cm−1 [28]. Listed below are typical parameters used in the N-UNCD growth
process. The MPCVD starts to pump down to 10−6 Torr first. The growth takes place for
1 hour in a gas mixture of argon (89%), methane (4%), hydrogen (2%), and nitrogen (5%)
under 80-mbar gas pressure with 2000-W plasma power. The synthesized N-UNCD film
has a thickness of 100 nm and an RMS surface roughness of 4–7 nm [11]. The conductivity
increase in N-UNCD is due to the grain boundary conduction since nitrogen is preferentially
incorporated into the grain boundaries. The amount of nitrogen in the grain boundaries
rises as the percentage of nitrogen in the plasma increases. In general, the so-called “0%”
nitrogen sample might have been doped with N2 from the residual nitrogen in a reactor.
With a lower base pressure in a reactor, UNCD films could be grown with a conductivity of
orders of magnitude less than 0.1 Ω−1cm−1.

In contrast, by adding diborane (B2H6) or trimethyl borane (TMB) (B(CH3)3) during
the growth process, the boron-doped UNCD (B-UNCD) can be synthesized as a p-type
semiconductor. Unlike the incorporation mechanism of nitrogen doping, the boron doping
is substitutional; therefore, the doping level can be very high [29]. When the boron
concentration reaches 3 × 1020 cm−3, the conductivity of the doped diamond film will
drastically transform from insulating to metallic. At a temperature lower than 4 K, the
superconductivity can be observed [30]. As an example, the energy-dispersive X-ray
spectroscopy (EDS) spectrum in Figure 2a shows that the boron level in the doped diamond
NWs is around 0.227, expressed as B/C atom ratio. The 100-nm-thick B-UNCD sample is
prepared by using HFCVD with a 1-µm SiO2 sacrificial layer underneath. As a comparison,
the secondary ion mass spectrometer (SIMS) spectrum of an N-UNCD sample is shown in
Figure 2b, where the deposited layer has a thickness of approximately 1 µm.

To avoid the possible B contamination of the chamber, post-growth thermal diffu-
sion has been demonstrated for the B-doping of UNCD films [31]. A commercial boron-
containing spin-on-dopant (SOD) solution is spin-coated to form a 200-nm-thick film on
the UNCD surface. Then, the sample is annealed in the N2 environment through a certain
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temperature profile up to ~1000 ◦C using a rapid thermal processor (RTP). Although it was
reported that the X-ray diffraction (XRD) and Raman spectroscopy showed no evidence of
graphitization and structural damage in UNCD films after the thermal diffusion, the boron
distribution was not uniform along the UNCD thickness direction. It was also unclear
whether this boron doping was substitutional, and how large the stress was, caused by this
thermal diffusion process.
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Obviously, the capability of both n-type and p-type doping of UNCD, combined
with the well-controlled nanostructure fabrication technique described below, enables
access to an enormous range of applications using the semiconductor property of diamond,
such as field emission (FE)-based miniature devices [34], photovoltaic and energy storage
devices [35], water treatment, electrochemical devices [36], biosensors and bioactuators
such as nerve stimulating electrodes [37], sensors based on the piezoresistivity effect,
and power electronics [38] in extreme environments such as high pressure, high and low
temperature, chemical corrosion, and high radiation.

2.3. Electron-Beam Lithography (EBL) and Inductively Coupled Plasma Reactive Ion Etching
(ICP-RIE)

EBL is the process of writing a pattern using a focused e-beam on a thin organic
polymer film called “resist” to change its chemical bonding and thus the solubility in
the developer. The focused e-beam writes the smallest features with a resolution in the
range of 0.06–0.15 nm, depending on the incident electron energy. After the subsequent
development step, the patterned resist film acts as a binary mask for further processing such
as reactive ion etching (RIE). The fabrication of more complicated devices may need this
procedure more than once to finally engrave the UNCD film into a useful nanoscale device.

With the smallest size reported typically in the range of a few nanometers on bulk
silicon (100) and 50-nm-thick silicon nitride membrane, EBL is the standard high-resolution
technique to pattern the nanoscale features as designed [39]. The obtained minimum size
is ultimately limited by the scattering effect [40] of the electrons, the specific nature of the
resist interacting with the high-energy electrons and the material properties to be processed.
In general, a 100-keV EBL system is used to pattern the nanoscale structures on UNCD
films. Since e-beam lithography transfers a pattern electronically, it permits great flexibility
in trying out different patterns on the same batch for a controlled experiment.

After the EBL process, the pattern needs to be converted from the resist layer to the
UNCD substrate to make a real device. This transfer process normally takes place top-down
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by reactive ion etching the UNCD material not covered by the resist, which is also known
as plasma etch or dry etch since no wet chemistry is involved. To achieve a high-resolution
pattern transfer, the etching process is preferably straight down, which means isotropic
etching. To prevent the strong physical sputtering from destroying the pattern layer, an
inductive coupling plasma (ICP) is introduced into the RIE system. Therefore, the plasma
is generated and controlled separately from the plasma etching.

The standard RIE systems for the UNCD nanoscale device fabrication process use
the same equipment employed for silicon (Si) wafers. The following is a UNCD etching
recipe to achieve a removal rate of approximately 650 ± 80 nm/min [41]: RIE power =
200 W, ICP power = 2500 W, O2 = 50 sccm (cm3/min in standard conditions for temperature
and pressure), SF6 = 0.5 sccm, pressure = 9 mTorr and temperature = 20 ◦C. This recipe
can be modified for different etch rates. For example, SF6 can be replaced with other
fluorine-containing gasses such as CF4. Above all, ICP-RIE has been routinely used for the
high-resolution, high-aspect-ratio etching of UNCD films, removing the etching mask, and
releasing NWs from a SiO2 substrate.

2.4. EBL-ICP-RIE-Based UNCD NW Fabrications

In general, the UNCD NWs can be categized into two groups: self-assembled or
as-synthesized NWs, and EBL-RIE processed NWs. According to its orientation, an NW
can be aligned either vertically or horizontally. The horizontally aligned UNCD NWs are
preferably used for various sensor applications such as gas, UV, and piezoresistivity sensors,
while the vertically aligned UNCD NWs are particularly useful for DNA sensing [42],
nitrogen-vacancy (NV) color centers [43], and field electron emission [44,45]. Below, we will
concentrate on the two most common techniques developed for the fabrication of UNCD
nanostructures using the EBL/RIE approach [46]: top-down and bottom-up processing.
The former refers to a subtractive process in which UNCD is removed from the top to
produce the well-defined nanostructure, while the latter refers to an additive process in
which deposition occurs only at defined places to build up the desired nanodevices from
the substrate.

2.4.1. Top-Down Fabrication Technique of UNCD Nanostructures

The top-down fabrication techniques have been successfully used to obtain prede-
fined nanostructures on wafer-sized UNCD thin films [47–49]. Figure 3 illustrates the
schematic of a typical top-down fabrication process based on EBL and RIE techniques and
Figure 4 shows some examples of UNCD NWs and other nanodevices fabricated using this
technique. To begin with, a 10-nm-thick tungsten (W) layer is deposited onto the 4-inch-
diameter Si substrate as an interlayer to enhance nucleation density [50,51]. The wafer is
then seeded with DNPs by immersing into a nanodiamond suspension via ultrasonication.
The UNCD films are grown using the MPCVD technique.
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Figure 4. Examples of UNCD nanofabrication. (a) Wafer-scale fabrication of UNCD NR array. Tilted scanning electron
microscopy (SEM) images of (b) UNCD NRs, and (c) NTs with 25-nm wall thickness. Reprinted with permission from [46],
© 2021, IOP Publishing. (d) A long, free-standing UNCD NW supported by multiple pads. (e) Single free-standing UNCD
NW and (f) the magnified SEM image of 25-nm width. (g) An array of UNCD NWs of 2 to 18 µm in length. (h) Serpent
type UNCD NWs separated by a pitch of 200 nm. Reprinted with permission from [52]. (i) SEM image of the ring-shaped
resonator, and (j) A zoom-in view of the resonator shows that the single NW has 40-nm width. Reprinted with permission
from [46], © 2021, IOP Publishing.

Then, the UNCD surface is coated with a layer of hydrogen silsesquioxane (HSQ)
to form a negative tone electron beam resist. A 100-nm spin-on-glass layer is formed on
the sample by spinning Flowable Oxide (FOx) 12, 1:1 diluted by methyl isobutyl ketone
(MIBK), at speed of 5000 rpm. Onto the resist, NW patterns are written by a 100-kV EBL
system with dosages ranging from 1200 to 1350 µC/cm2, depending on the NW widths.
The wafer with the exposed resist is then developed in 50 ◦C MF-CD 26 for 2 min and
rinsed in 50 ◦C deionized (DI) water for 1 min. Finally, two steps of RIE are performed
to fabricate UNCD NWs. The NW patterns are firstly transferred from the HSQ mask to
the UNCD film underneath by ICP-RIE to create UNCD NWs with typically 1200-W ICP
power and 10-W RF power. At an oxygen flow rate of 50 sccm and a chamber pressure of
10 mTorr, an etching rate of ~50 nm/min is achieved. It takes around 2 min to etch UNCD
down to the tungsten layer. Finally, the HSQ mask removal and W/Si undercutting are
realized by fluoride-based RIE with a typical recipe of 10-sccm sulfur hexafluoride (SF6)
gas flow rate, 310-W ICP power, 10-W RF power, and 10-mTorr chamber pressure. The
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release of the NWs from W/Si and cleaning of the HSQ mask thoroughly are accomplished
in around 6 min.

As the most common technique for nanoscale patterning, EBL has enabled the fabri-
cation of UNCD NWs, nanorods (NRs), and nanotubes (NTs) with sizes down to tens of
nanometer range at a high density. Examples given in Figure 4 include a UNCD NR array
of 50 nm in diameter (Figure 4a,b) and an NT array of 25-nm wall thickness (Figure 4c).
Figure 4d,e show free-standing UNCD NWs supported by bowtie-shaped pads. It can be
seen from the magnified view in Figure 4f that the straight NW has a width as narrow
as 30 nm. A UNCD NW array (NWA) of different lengths ranging from 2 to 18 µm has
been fabricated on the same batch, as shown in Figure 4g. A dense integration in serpent
type of UNCD NWs separated by a gap of 200 nm is given in Figure 4h. Figure 4i,j show
a ring-shaped resonator with a single NW of 40 nm in width. The fabrication of these
UNCD nanostructures with well-controlled features is essential for sensor and “lab on a
chip” applications.

By using EBL to pattern a resist layer as an etch mask followed by the RIE process,
various diamond-based nanostructures have also been fabricated, including SCD and PCD
NWs, SCD nanorods (NRs), and nanotubes (NTs) [53–55]. However, it is still challenging
to produce horizontally aligned UNCD NWs with a nanoscale width and a relatively long
length without any residual stress. Additionally, the minimum width of diamond NWs has
not reached such a level of as small as a few nanometers. As far as the device performance,
efficiency, and resolution are concerned, the realization of a smaller dimension and larger
surface-to-volume ratio will provide a further improvement, especially for sensors with
high spatial resolution.

2.4.2. Bottom-Up Fabrication Technique of UNCD Nanostructures

Although the conventional top-down approach provides well-controlled features,
the multiple processing steps often lower the yield and introduce the issues of UNCD
contamination and degradation. Therefore, the patterning of UNCD nanostructures from
the growth stage has become very attractive. It has been shown that an effective seeding
process is important to obtain high-quality UNCD films. An initial nucleation density
above 1011 cm−2 is required to produce a continuous, pinhole-free UNCD thin film [56]. To
improve the seeding density, a 5–10-nm-thick tungsten (W) layer is often deposited on a Si
substrate first. Such a thin layer attracts nanodiamond seeds evenly during ultrasonication
and reduces the initial incubation time. Due to the tungsten carbide formed at the inter-
face, much better uniformity and smaller surface roughness are achieved [57,58]. Since
the nucleation process controls the conformity of the UNCD thin film [59], by tuning the
seeding density at specific regions, the diamond-based nanostructures can only grow at
these predefined locations. To achieve this goal, two major paths have been developed: (1)
etching the seeded substrate lithographically to define the pattern, and (2) seeding the pat-
terned substrate. An ink-jet printing method has also been proposed to pattern the seeding
layer [60]; however, it is too challenging to pattern a seeding layer of nanosized features.

Two paths have been developed for nanoscale patterning, as shown in Figure 5, by
using either positive or negative tone resist. For example, the negative resist path uses
the magnetron sputtering system to deposit a 10-nm tungsten layer onto 4- and 6-inch Si
wafers. The ma-N 1405 negative resist 1:1 diluted by anisole is then spun onto the tungsten
layer at 8000 rpm for 45 s, followed by 90 s 100 ◦C baking to form a 200-nm-thick resist
layer which is patterned with nanoscale features by EBL at a dosage of 900 µC/cm2 with a
400-pA current. The etch mask is finally formed after the EBL-exposed resist is developed
using ma-D 533/S for 20 s at room temperature, then rinsed with DI water and blow-dried
by N2. Then, the sample is placed into the ICP-RIE system. The etching of the patterned W
layer lasts for around 25 s with 10-sccm SF6 gas, 10-W RF power, 310-W ICP power, and
10-mTorr chamber pressure when the sample is kept at a temperature of 20 ◦C. After the
pattern has been successfully transferred from the mask to the W layer, the resist layer is
removed by the oxygen plasma RIE in the same chamber for 4 min with 10-W RIE power



Materials 2021, 14, 661 9 of 35

at 85-mTorr chamber pressure at room temperature. An additional ultrasonic cleaning of
the substrate surface is performed with acetone before the seeding process.
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During the seeding process, the water-based seeding suspension solution is used.
It contains 1% wt, 5-nm “blueseed” DNPs with zeta potential (ζ-potential) of −45 mV,
which is 1:4 diluted with DI water. The wafer proceeds with a 10–15-min ultrasonication
in the solution, then a 5-min ultrasonication in DI water. After rinsing with DI water
for 1 min, the sample is blow-dried by N2 and immediately loaded into the MPCVD
chamber for UNCD growth. The UNCD film is grown at 760 ◦C substrate temperature
with 2100-Watts microwave power, using Ar/CH4/H2 gas chemistry with flow rates of
400/1.2/8 sccm, respectively. Throughout the UNCD deposition, the chamber pressure is
maintained at 120 mbar. A processing time of 30 min results in a 50-nm-thick film grown
on the patterned W area. Due to the high-resolution EBL patterning and selective seeding
with a high nucleation density over the 1011 cm−2 threshold, bottom-up fabrication of
UNCD nanodevices has been realized on Si, W [57,58], and SiO2 surfaces [61].

An example of UNCD NWs grown on the EBL patterned and selectively seeded W
layer is shown in Figure 6. The SEM image of an array of 50 NWs suggests high repeatability
and consistency of this bottom-up selective growth at nanoscales (Figure 6a). The 90-nm
width of NWs measured by the atomic force microscope (AFM) (Figure 6c) is currently
limited by the resist resolution.Materials 2021, 14, x FOR PEER REVIEW 10 of 35 
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With the same design, this selectively grown UNCD NW array shows a comparable
profile quality with the top-down approach [46]. The density of the NW array is high, with
a gap of around 400 nm between two NWs. The distinct UNCD growth with a straight and
conformal NW profile in contrast to a clean substrate within such a narrow space suggests
the excellent selectivity of the water seeding-based UNCD growth at nanoscale resolution.

By tuning the right combination of e-beam dosage and e-beam resist, nearly 10-nm EBL
resolution can be expected [62]. Note that the diameter of nanodiamond seeds is around
10 nm as well; it is thus very exciting to synthesize UNCD NWs of a few nanodiamond
seeds in width based on the selective seeding and bottom-up growth method. Since
UNCD’s nanocrystals are surrounded by sp2-bonded grain boundaries, an investigation
of the UNCD NWs’ electrical properties at such a scale will provide new insights into the
UNCD’s electron transport behavior.

3. Characterizations of UNCD NWs
3.1. Structural Properties of UNCD NWs

UNCD films and UNCD NWs are characterized by various techniques to explore their
properties. SEM has been used throughout the film deposition and the NW fabrication
process to inspect the quality of diamond films, the control of process flow, and the
structure of nanowires. For example, SEM (Figure 1a,b) and high-resolution SEM (HRSEM)
(Figure 1c) are used to study the thin-film morphology, to observe the fine diamond grain
distributions and grain sizes. Another use of SEM is to determine the UNCD film thickness
by the cross-sectional view (Figure 7b). In contrast, AFM has been employed to reveal
the detailed surface information (Figure 7c). It is particularly useful to determine the
residue level of transparent resist, through the mapped 3D profile of the sample. Another
major concern about the diamond nanowire (DNW) fabrication process is the line edge
roughness (LER).
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Figure 7. (a) TEM image shows the pinhole-free UNCD film. The electron energy loss spectroscopy (EELS) thickness
measurement overlaps with TEM, indicating a 50-nm film thickness. (b) The cross-sectional SEM image, confirming the
50-nm thickness of the film. (c) AFM image of the UNCD film with an RMS surface roughness of 4.5 nm. Reprinted with
permission from [52].

Ideally, the fabricated feature follows strictly the design. However, it is determined by
both the resolution of the resist mask and the anisotropic etching mechanism. The LER
is inspected by AFM, due to its nanometer resolution. As shown in Figure 7c, the AFM
image reveals more morphological information of the UNCD NWs. Note that the image
is taken on unreleased UNCD NWs because of the scanning limitation of the AFM tip on
high-aspect-ratio features; thus, some HSQ e-beam resist residue remains on the top of the
NWs. Since the sidewall morphology depends on the UNCD’s surface roughness and grain
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size, a straight and smooth sidewall profile is formed (Figure 4f), enabling the fabrication of
such a small diamond NW as narrow as 25 nm. Another important parameter is the surface
roughness, which can be measured using either AFM [63] or white light interferometer
(WLI) [64].

While SEM and HRSEM provide sample surface images by detecting reflected or
knocked-off electrons, transmission electron microscopy (TEM) and high-resolution TEM
(HRTEM) use transmitted electrons to enable the inner nanocrystalline structure data of
UNCD NWs to be captured. Figure 7a shows the pinhole-free UNCD film, and Figure 8a
shows the TEM image taken on top of a UNCD NW, where dark spots represent the
diamond nanocrystals and the bright gaps around them are the grain boundaries [65,66].
The HRTEM shown in Figure 8b indicates that no diamond degradation occurred on
the edge as diamond nanocrystals distribute uniformly along the NW [52]. As a useful
tool to probe possible structural damage, the HRTEM shows that randomly oriented
crystalline diamond grains are enclosed by sp2-bonded grain boundaries. This provides
strong evidence of no damage to NW’s intrinsic diamond structure after the chemical
etching process.
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Figure 8. (a) TEM image of a UNCD NW whose dark dots represent UNCD grains, and (b) its
HRTEM image which shows the diamond intrinsic structure is maintained after the etching process.
Reprinted with permission from [55].

Raman spectroscopy is the most widely used non-destructive chemical analysis tech-
nique which provides detailed information about the crystalline quality by discriminating
the presence of sp2- and sp3-bonded carbon in different bonding configurations that possess
different short- and long-range order. When laser beams of different wavelengths are used,
due to the well-known resonant Raman effect, a visible laser, with an incident photon
energy much lower than the bandgap energy of sp3-bonded carbon at ~5.5 eV, generates the
Raman scattering spectra dominated by sp2-bonded carbon. Similarly, when UV excitation
is used, where the photon energy is shifted closer to the sp3-bonded carbon, thus it has a
much larger Raman scattering cross-section than the sp2-bonded carbon. To characterize
UNCD NW at a global level, confocal Raman microscopy is employed with laser excitations
at 325, 442, and 633-nm wavelengths [52], as shown in Figure 9, where the Raman spectra
are taken on a randomly picked UNCD film and NWs of different widths. Under 633-nm
(Figure 9a) and 325-nm (Figure 9b) laser excitation, each Raman spectrum shows the typical
intrinsic UNCD signature, with two broad bands centered at 1332 cm−1 from the significant
amount of sp3-bonded carbon and 1595 cm−1 from the sp2-bonded carbon [11]. The spectra
profiles from NWs of different widths remain consistent but only display an intensity
difference, without peak shift or sp2/sp3 ratio change. Under 442-nm blue laser excitation,
the 1D Raman intensity mapping across an NW is shown in Figure 9c. To further examine
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the UNCD structure over a broader area, the 2D Raman intensity mapping is performed at
a 6 × 6 µm2 area with a 300-nm scanning step from the center of UNCD NW. The intensity
information at Raman shift 1332 cm−1 is extracted from each step’s spectrum, forming
the sample intensity distribution map according to the scanning position, as shown in
Figure 9d.
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excitation. The peak at 1556 cm−1 in (b) is attributed to Raman scattering of oxygen gas molecules in the air under UV
laser. Under 442-nm laser excitation, (c) 1D Raman intensity mapping across a randomly picked UNCD NW, and (d) 2D
Raman intensity mapping of the peak at 1332-cm−1 peak taken at 6 × 6 µm2 area across a 6-µm-long NW. Reprinted with
permission from [52].

The UNCD composition information can be revealed by using near-edge X-ray absorp-
tion fine structure (NEXAFS) spectroscopy and electron energy loss spectroscopy (EELS).
The NEXAFS spectrum shown in Figure 10a gives more quantitative chemical bonding
information. Nearly 95% sp3-bonded carbon is calculated from the probing area, which is
associated with the σ* peak located at 289.3 eV, whereas for sp2-bonded carbon which is
linked to the π* peak at 285 eV, the fraction is 2.6% [57]. Similarly, EELS taken on UNCD
NW is shown in Figure 10b. The high signal ratio of carbon σ* versus π* peaks produces a
large amount of sp3-bonded carbon (diamond phase) in NW, which translates to the high
quality of the UNCD crystal structure. The NEXAFS and EELS studies clearly show the
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presence of a large amount of high-quality diamond grains in the tested samples. As shown
in Figure 7a, EELS is also used to verify the film thickness.
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Figure 10. UNCD spectra of (a) NEXAFS and (b) EELS. The large ratio of carbon σ* to π* peaks suggests a large amount of
sp3 bonded carbon (diamond phase) in UNCD NW. Reprinted (a) from [53], © 2021, ACS, and (b) [52] with permission.

The polycrystalline phase of UNCD NW has also been demonstrated by selected area
electron diffraction (SAED) in Figure 11a. The results from TEM, Raman spectrum, SAED,
and EELS studies conclude that the intrinsic UNCD structure and properties are maintained
after the NW fabrication. X-ray diffraction (XRD) is often used to detect crystalline diamond
grains. As shown in Figure 11b, the (111), (220), and (311) diamond peaks are clearly
discernible, while the other unlabeled peaks are from the tungsten pretreated SiO2/Si
substrate. According to the measured full width at half maximum (FWHM) of the (111)
peak from Figure 11b, the average grain size is in the range of 5.6 nm, estimated from
Scherrer’s Equation:

L =
Kλ

β cos θ
(3)

where β = 1.576◦ is the FWHM, the Bragg angle (2θ) equal to 43.65◦, the shape factor (K)
0.94, and the X-Ray wavelength (λ) 1.5406 Å.
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Figure 11. (a) SAED pattern of UNCD NW shows the small-sized polycrystalline diamond grain.
No significant graphite is identified. Reprinted with permission from [52]. (b) XRD spectrum in the
region of the diamond (111) peak. The inset shows the whole XRD pattern of the UNCD sample
labeled with the diffraction peaks from different planes of the cubic diamond. Reprinted with
permission from [8]; © 2021, Elsevier.
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3.2. Electrical Properties of UNCD NWs

To explore the possibility of using UNCD NWs as nanoelectronic devices, it is essen-
tial to establish their electrical characteristics first. For electrical property measurement,
two metal pads made of 10/100 nm of Cr/Au are aligned and patterned on the NW’s
supporting pads by a laser patterning and lift-off process. A diluted buffered oxide etch
(BOE) is performed afterward to release the NWs from the substrate as well as remove
the e-beam resist residue. No critical point drying (CPD) is further needed due to the dia-
mond’s robustness. The electrical measurements are conducted in a SEM/STM (scanning
tunneling microscopy) probe station under ultra-high vacuum (UHV) (<10−9 Torr). To
study the annealing effect, the sample is heated to 150 ◦C for 5 min within the probe station
chamber, then cooled down to RT. Two conducting Platinum/Iridium (Pt/Ir) probes are
introduced onto the NW’s metal pads, to provide electrical contact of a DC power supply
which is utilized to source the voltage and read current simultaneously. The I-V curve is
recorded, with the output voltage ranging from −1.0 to 1.0 V in 0.1-V steps. Throughout
the process and measurement, the UNCD NW wafer is kept within the UHV chamber
without contacting the atmospheric ambiance.

The commonly used transmission line measurement (TLM) [67] is applied to deter-
mine UNCD NWs’ electrical properties. The two-terminal current versus voltage (I-V)
measurements are conducted in a UHV probe station with the fabricated UNCD NWs
of different lengths (1, 8, 32, 64, and 128 µm) and widths (75, 100, 125, and 150 nm), as
shown in Figure 12a. As an example, Figure 12b shows the linear I-V plots of a group of
150-nm-wide N-UNCD NWs with different lengths from 1 to 128 µm, corresponding to
resistances in the range of giga-ohms (GΩs). As a comparison, after the NWs are annealed
at 150 oC for 5 min inside the UHV chamber to remove the possible surface adsorbates of
water vapor and gases, the resistances of the UNCD NWs decrease by approximately 30%
as, shown in Figure 12b,c.Materials 2021, 14, x FOR PEER REVIEW 15 of 35 
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Figure 12. (a) Principle of TLM measurement. Inset shows the SEM image of UNCD NWs of different lengths used in the
measurement. The scale bar is 20 µm. Measurement results of the N-UNCD NWs before (solid line) and after annealing
(dashed line): (b) the I-V curves, and (c) the TLM curves. Reprinted with permission from [52].

The TLM characterization has also been applied to boron-doped UNCD NWs. The
I-V curves of B-UNCD NWs of 2, 5, 10, 15, and 20 µm long with three different widths
of 75, 125, and 175 nm are given in Figure 13a–c, as well as the TLM measurement data
in Figure 13d. As shown in Figure 13, the resistances of the B-UNCD NWs are in the kΩ
range, around six orders of magnitude lower than the N-UNCD NWs, due to different
doping mechanisms. The nitrogen atoms in N-UNCD preferentially incorporate into the
grain boundaries, which limits the doping level and the electron transport of the UNCD
film [68–71]. However, the boron atoms in B-UNCD substitute the carbon atoms in the
grains, which results in a higher doping capability [72] and much lower material resistance.
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After annealing, the resistances of the N-UNCD NWs reduce by 30% at all dimensions.
Such an effect is caused by the electron transport dynamics that are influenced by surface
adsorption and desorption of gas molecules and water vapor from the environment. For
N-UNCD, the nitrogen atoms mostly sit between the UNCD’s crystalline grains; therefore,
the electron transport through the grain boundaries forms the conducting network. When
the gas and impurities from the atmosphere adsorb on the NW’s surface, they insert into
the UNCD’s grain boundaries and thus block the electron transport tunnels and increase
the resistance. This effect may not be noticeable in thin-film geometry because the volume
is so large that electrons can find more possible pathways. Meanwhile, in NW geometry,
because the dimension is drastically reduced and the electron transport tunnel is heavily
confined, the surface modification affects significantly the UNCD NW’s electronic property.
After annealing, the adsorbates are freed from the NW surface and the electron transport
tunnels within the UNCD’s grain boundaries are therefore released and electrons can
transfer more freely. The electrical characterization reveals that N-UNCD NWs are a stable
ohmic semiconductor with environment-sensitive grain boundaries whose conductivity
can be altered by gas/vapor adsorption on the surface [73]. This property makes it possible
to build N-UNCD NW-based chemical/biological sensors and NEMS-based integrated
multifunctional sensors.

4. UNCD NW Sensor Applications

With the tremendous development in UNCD synthesis and UNCD NW fabrication,
many UNCD NW-based sensor applications have been explored, including N-UNCD
NW-based methane (CH4) gas sensors [73,74], B-UNCD NW-based carbon monoxide (CO)
gas sensor and sensor arrays [32,75], UV sensors based on UNCD NWs functionalized
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with platinum nanoparticles (NPs) [76], and piezoresistive B-UNCD NWs. The availability
of this special type of DNWs inspires research efforts to make use of both the unique
physicochemical properties and geometrical advantages for applications in electrochemical
sensors, biosensors, optoelectronics, and nanophotonics. Below are a few research activities
conducted recently by our group.

4.1. Gas Sensors
4.1.1. CH4 Gas Sensors

Since CH4 is odorless and colorless, it is important to detect the presence of this
extremely flammable and explosive gas. It is also considered as a contributing factor to
enhancing the greenhouse effect by absorbing IR. The demonstrated CH4 gas sensors use
N-UNCD NWs fabricated by the top-down technique. First, 10/100-nm Ti/Au layers are
deposited to form the four electrodes, as shown in Figure 14a,b, where the sensing NWs of
a width of 150 nm are divided into three areas with four electrodes which form 5, 10, and
20-µm-long NWs between adjacent electrodes. The conductive electrodes “1” and “4” (the
external electrode pair) are connected to a switch, a DC power supply with a step voltage
Vp, and a high-precision resistor R in series (Figure 14b).
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Figure 14. (a) SEM image of UNCD NWs between Ti/Au electrodes. The scale bar is 1 µm. (b) Schematic of the sensor
platform. Reprinted with permission from [73]; © 2021, AIP Publishing.

One voltmeter (Vin) is connected to the electrodes “2” and “3” (the internal electrode
pair) and the other voltmeter (Vex) is connected in parallel with the resistor in the external
electrode circuit. Both voltmeters monitor the voltage variations of the gas sensors formed
between the internal electrode pair and the external electrode pair simultaneously. The
I-V plots of the UNCD NWs at different temperatures are shown in Figure 15, which
indicates a resistance of 33 kΩ between the internal electrodes regardless of the temperature
(Figure 15a), 350 kΩ at RT, 219 kΩ at 100 ◦C, and 188 kΩ at 250 ◦C between the external
electrodes (Figure 15b).

The sensor’s electrical properties are affected by the adsorption and desorption of the
gaseous molecules. As a result of CH4 adsorption, negative charge carriers are added to
the material, and hence the resistance decreases [77]:

CH4 + 4O−adsorption → CO2(air) + 2H2O + 4e−. (4)

Therefore, we can detect the CH4 gas concentration by measuring the conductivity
change of the sensor.
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From the measurement of the variation of voltage (Vex) across the precision resistor
Rp = 1.0 kΩ, the resistance R of the sensor can be obtained by

R = (Vp − Vex)Rp/Vex (5)

where the power supply voltage Vp = 12 V. Necessary calibrations of the sensor are con-
ducted at the characterization chamber [78]. The response is calculated as

S = (Rair − Rgas) × 100%/Rair (6)

where Rgas is the sensor resistance measured in the presence of target gas, and Rair is the
initial sensor resistance in the air. The typical sensor responsivity to the on-off period of
the methane gas of 15 parts per million (ppm) is shown in Figure 16a,b, with a minimum
detectable CH4 concentration of 2 ppm (Figures 16c and 17b). The sensor shows good
repeatability and stability, with a response and recovery time in the order of a few seconds.
It is noted that the external electrode pair gives higher responsivity than the internal
electrode pair because of the larger exposed sensing area.
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Figure 17. (a) The measured sensor response and recovery time of 3 and 9 sec. (b) The sensor response to methane gas at 

concentration of 2 ppm when operated at 25, 50, and 75 °C. Reprinted with permission from [74]; ©  2021, IAAM-VBRI. 

4.1.2. CO Gas Sensors 

CO is an invisible, tasteless, and odorless but serious toxic and flammable gas. Such 

a sensor is needed to detect this poisonous gas. The CO gas sensors are developed by 

making use of top-down fabricated B-UNCD NWAs on a 2 × 2 inch Si substrate. The 

UNCD NWs of 70-nm thickness and 100-nm width are levitated, not in contact with the 

Si substrate. Figure 18 shows the three groups of NWAs formed between four sputtered 

Figure 16. Typical RT responsivities of the N-UNCD NW CH4 gas sensor to the “on” and “off” period of the methane gas at
the concentration of 15 ppm from (a) the internal pair, and (b) the external pair of electrodes. (c) Responsivities from the
external pair of electrodes to methane down to 2 ppm. Reprinted with permission from [74]; © 2021, IAAM-VBRI.
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concentration of 2 ppm when operated at 25, 50, and 75 °C. Reprinted with permission from [74]; ©  2021, IAAM-VBRI. 
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Figure 17. (a) The measured sensor response and recovery time of 3 and 9 s. (b) The sensor response to methane gas at
concentration of 2 ppm when operated at 25, 50, and 75 ◦C. Reprinted with permission from [74]; © 2021, IAAM-VBRI.

The response and recovery time determined from Figure 17a are 3 and 9 s, respectively,
which are based on the time duration from 10% to 90% of the full response of the sensor, or
vice versa. The obtained response and recovery time are much shorter than the reported
values from regular sensors in the range of ~100 s for the response time and >200 s for the
recovery time [79]. Figure 17b shows the temperature effect on the sensor responses when
exposed to the targeted gas. The sensor output signal increases when the sensor operating
temperature is increased from 25 to 75 ◦C.

4.1.2. CO Gas Sensors

CO is an invisible, tasteless, and odorless but serious toxic and flammable gas. Such
a sensor is needed to detect this poisonous gas. The CO gas sensors are developed by
making use of top-down fabricated B-UNCD NWAs on a 2 × 2 inch Si substrate. The
UNCD NWs of 70-nm thickness and 100-nm width are levitated, not in contact with the
Si substrate. Figure 18 shows the three groups of NWAs formed between four sputtered
Au electrodes with lengths of 5, 10, and 20 µm, corresponding to resistances of R1, R2, and
R3, respectively.
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4.2. UV Photodetectors 

Figure 18. (a) Field emission scanning electron microscopy (FESEM) image of the prototypic sensor. (b) The four sputtered
Au electrodes between 5, 10, and 20-µm-long B-UNCD NWs of resistances of R1, R2, and R3. Inset shows the partial
enlargement of the array of 70-nm-wide NWs between two Au electrodes. Reprinted with permission from [32]; ©
2021, Elsevier.
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The sensing properties are evaluated toward the CO mixed with air at a concentration
from 25 to 100 ppm, and the operating temperature from RT to 400 ◦C. The responses of the
sensor arrays, defined by Equation (6), are measured when the NWAs are connected in five
different configurations (Figure 19a). The experimental results indicate that the sensor has
a high response to CO with good selectivity in this experimental condition, as indicated by
R2 (10-µm-long B-UNCD NWs) responses to eight different gases of 100 ppm concentration
at 400 ◦C (Figure 19b).

Materials 2021, 14, x FOR PEER REVIEW 19 of 35 
 

 

Au electrodes with lengths of 5, 10, and 20m, corresponding to resistances of R1, R2, and 

R3, respectively. 

 

Figure 18. (a) Field emission scanning electron microscopy (FESEM) image of the prototypic sensor. (b) The four sputtered 

Au electrodes between 5, 10, and 20-m-long B-UNCD NWs of resistances of R1, R2, and R3. Inset shows the partial en-

largement of the array of 70-nm-wide NWs between two Au electrodes. Reprinted with permission from [32]; ©  2021, 

Elsevier. 

The sensing properties are evaluated toward the CO mixed with air at a concentra-

tion from 25 to 100 ppm, and the operating temperature from RT to 400 °C. The responses 

of the sensor arrays, defined by Equation (6), are measured when the NWAs are connected 

in five different configurations (Figure 19a). The experimental results indicate that the 

sensor has a high response to CO with good selectivity in this experimental condition, as 

indicated by R2 (10-m-long B-UNCD NWs) responses to eight different gases of 100 ppm 

concentration at 400 °C (Figure 19b). 

 

Figure 19. (a) Responses of B-UNCD NW arrays to 50-ppm CO gas at different temperatures. Inset: Schematic of the sensor 

circuit, and the five sensor configurations tested: R1, R2, R3, all in series and all in parallel. Reprinted with permission from 

[75]; ©  2021, Elsevier. (b) Responses of the 10-µm-long NW arrays to different target gases with a concentration of 100 

ppm, when tested at 400 °C. Reprinted with permission from [32]; ©  2021, Elsevier. 

4.2. UV Photodetectors 

Figure 19. (a) Responses of B-UNCD NW arrays to 50-ppm CO gas at different temperatures. Inset: Schematic of the sensor
circuit, and the five sensor configurations tested: R1, R2, R3, all in series and all in parallel. Reprinted with permission
from [75]; © 2021, Elsevier. (b) Responses of the 10-µm-long NW arrays to different target gases with a concentration of
100 ppm, when tested at 400 ◦C. Reprinted with permission from [32]; © 2021, Elsevier.

4.2. UV Photodetectors

UV sensors of different device structures such as PIN [80], Schottky [81], metal–
semiconductor–metal (MSM) [82], and field emission [83] have been demonstrated using
synthetic diamond thin films of different morphologies, including single-crystalline dia-
mond (SCD) [82,84–88], microcrystalline diamond (MCD) [83], sulfur-doped sub- micro-
crystalline diamond (S-SMCD) [83], poly-crystalline diamond (PCD) [89], and nanocrys-
talline diamond (NCD) [90]. However, their performances were limited by the fundamental
issue in electrical transport featured by the high carrier concentration with low mobility
in diamond materials. Given the combination of the NW confinement with the nanoplas-
monic effect of metal nanoparticles, this new type of UV PDs has shown performance
parameters which are comparable with similar devices made of other materials.

The materials used in this study are 100-nm-thick B-UNCD films on Si substrates with
1-µm SiO2 sacrificial layers, synthesized using HFCVD. The top-down technique is used
to fabricate the UNCD NW arrays, followed by the functionalization with Pt NPs in a
plasma sputtering chamber (Figure 20a,b). The four electrodes of 10/100-nm titanium/gold
(Ti/Au) are deposited on the fabricated UNCD NWs, as shown in Figure 20c, similar to
the gas sensors as described above. This electrode design makes use of the four-point
probe measurement of sensing performance that efficiently minimizes the polarization
effect, possible carrier trapping, and space charges [91,92]. The electrodes are spaced 5, 10,
and 20 µm apart in sequence, and there are 110 nanowires between each electrode pair.
Each NW has a width of 70 nm, and the gap between any two adjacent nanowires is 1 µm
(Figure 20b). The UV PD consists of 330 UNCD NWs between four electrodes and a total
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sensing area of 270 µm2 between the pair of external electrodes and 77 µm2 between the
pair of internal electrodes. After fabrication, the sensor is annealed at 150 ◦C for 5 minutes
in the probe station chamber. The I-V plots using either an internal or external pair of
electrodes are nonlinear, as shown in Figure 20d.
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Figure 20. (a) Schematic of the B-UNCD NWs functionalized with Pt NPs. (b) SEM image of the Pt NP-coated B-UNCD 

NWs. (c) Schematic of the UV PD with four electrodes and the electric circuit. (d) The I-V electrical property of the UV PD 
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eV) within the diamond bandgap is reduced in B-UNCD to 4.1 eV based on Mendoza’s 

model and the relationships shown in Figure 21b, due to the shift of the scattering cross-

Figure 20. (a) Schematic of the B-UNCD NWs functionalized with Pt NPs. (b) SEM image of the Pt NP-coated B-UNCD
NWs. (c) Schematic of the UV PD with four electrodes and the electric circuit. (d) The I-V electrical property of the UV PD
prototype. Reprinted with permission from [76]; © 2021, ACS.

When exposed to 350-nm UV at an intensity of 0.01, 0.03, and 1 mW/cm2, the quick
and well-defined responses of external and internal electrode-based PDs under zero bias
voltage are observed (Figure 21a). The spectral response to wavelengths from 186 to 550 nm
peaks at 300 nm (Figure 21b), indicating that the direct band-to-band transition (~5.5 eV)
within the diamond bandgap is reduced in B-UNCD to 4.1 eV based on Mendoza’s model
and the relationships shown in Figure 21b, due to the shift of the scattering cross-section
caused by the Pt NPs, increment in midgap states corresponding to boron doping, the
presence of sp2-bonded carbon in grain boundaries, and B3O and B4O defects [83,93–96],
although further investigation of the observed bandgap shift is needed.

The response decreases rapidly at longer visible wavelengths, and the UV-Visible
rejection ratio R300/R550 goes up by five orders of magnitude. The PD responsivities Rλ,
defined as

Rλ =
Iλ

Wλ
(7)

where Iλ is the induced photocurrent and Wλ is the incident light power on the sensor
surface, which is 207 and 388 A/W at 300 nm from the pairs of external and internal
electrodes, respectively.

The dark current, as shown in Figure 22a,b, is ~0.06 µA, whereas the induced pho-
tocurrent is ~3 µA, leading to a signal-to-dark current ratio of 50. The fast response and
recovery times, defined as the duration taken for the amplitude of a pulse to increase from
10% to 90% of the maximum value, or vice versa, are around 20 ms (Figure 21c,d). The
B-UNCD NW-based PD maintains excellent repeatability and stability as the operating
temperature is increased up to 300 ◦C, with a decrease in photocurrent and an increase in
thermal noise (Figure 22e–g). This is a considerable improvement in heat tolerance due to
diamond’s intrinsic properties, compared to the majority of UV sensors reported.
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Figure 22. The induced photocurrent (a) from the external electrodes when exposed to square-shaped temporal distribu-
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Figure 22. The induced photocurrent (a) from the external electrodes when exposed to square-shaped temporal distribution
of 300-nm light at zero bias, (b) when the UV is off, (c) of a typical rising edge, and (d) a falling edge. The photoresponse of
the UV photodetector when exposed to 250-nm light at 0.03 mW/cm2 with 0-V bias at different temperatures from (e) 100
to (f) 200 and (g) 300 ◦C. Reprinted with permission from [76]; © 2021, ACS.

The reported performance parameters of state-of-the-art diamond-based UV PDs are
listed in Table 2. Compared with other devices in Table 2, the B-UNCD NW-based UV
PD functionalized by Pt NPs has the highest photoresponsivity of all. Its rise and decay
times are fast, in the order of milliseconds, while the dark current level and UV to visible
rejection ratio are better than most of the devices reported previously. Furthermore, this
prototype is capable of zero-biased and high-temperature operation.

Table 2. Comparison of the key device performance of the recently reported thin film and nanowire diamond-based UV
PDs. Reprinted with permission from [76]; © 2021, ACS.

Material Peak λ (nm) Dark Current UV/Visible Responsivity (A/W) Response Time Reference

SCD film 220 (NEP ~ 0.5 pW) 104 0.177 - [86]
SCD film 210 1.1 pA 104 0.048 ~80 s [97]
SCD film 218 5 µA 8.9 × 103 21.8 - [98]

B-SCD film 210 10 µA 106 230 - [99]
B-SCD film 220 ~1 µA 2 × 106 1 ~1 s [100]
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Table 2. Cont.

Material Peak λ (nm) Dark Current UV/Visible Responsivity (A/W) Response Time Reference

B-SCD film 220 - 105 5.5 × 10−3 0.3 s [81]
B-SCD film 225 1 pA 103 0.028 - [96]
SCD film 190 (S/N = 103) 105 0.01 160 s [80]
MCD film 220 5 µA - 16.2 ~20 min [101]

S-MCD film §

S-SMCD film §

S-NCD film §
220 - - 0.01 ~ms [83]

PCD film 200 <0.1 nA 106 - 150 ms [89]
PCD film 220 <0.1 nA >103 1.625 × 10−4 - [102]
NCD film 365 0.2 mA - - ~1 s [90]

UNCD NW 300 0.07 µA 105 388 20 ms [76]
§ S-: sulfur-doped.

4.3. Piezoresistance (PZR) Effect-Based Sensors

The term piezoresistivity/piezoresistance (PZR) effect describes the material resistance
change as the result of the modification of its electrical properties, such as bandgap, carrier
mobility, and so on, when a strain/stress is built up. For example, Si NWs have shown
promising potential in utilizing the PZR effect. However, the strong surface oxidation
and the limitation of operating temperature are two major problems [103,104]. Due to the
excellent intrinsic properties, especially the high thermal conductivity, diamond-based
nanoelectronic devices are excellent candidates for developing the next generation of
high-temperature PZR sensors [105].

The fabrication of the electrode-coated B-UNCD NWs (Figure 23) follows the similar
process flow as described before (Figure 23b,d), except there is a 1-µm-thick SiO2 sacrificial
layer between the 100-nm-thick B-UNCD film and Si substrate, which is finally etched away
so B-UNCD NWs are eventually released from the substrate, as shown in Figure 23c–e.
The electrical and PZR measurements of the NWs are performed in the SEM/STM probe
station under UHV. The PZR effect is measured by using an electrically floating Pt/Ir tip to
push the NW of both ends fixed, as shown in the schematic in Figure 24.

Using the remote-controlled box, the tip position is controlled with a spatial resolution
of 50 nm. By pushing an NW transversely, a deflection is generated, and the straight NW
turns to a curved one. This deflection results in the longitudinal tensile stress of the NW.
Figure 24a,b show the stress and the electrical current density distribution simulated based
on finite element analysis (FEA) for a 75-nm-wide and 5-µm-long B-UNCD NW under
100-nm transverse displacement. As expected, the highest stress occurs at the contacting
points and both anchors, while the current density distributes uniformly along the NW.

A noticeable NW deformation can be clearly observed in Figure 25b, as compared with
the red line, which is the original position of unstrained NW (Figure 25a). The standard I-V
is measured simultaneously while the NW is pushed by the tip. The sample is also heated
to 100 ◦C to study the PZR effect at different temperatures.

Under tensile stress, 75-nm-wide NWs of two lengths (5 and 10 µm) demonstrate
the resistance increase, as indicated by the smaller slopes of the I-V curves with strains
(Figure 26a). This result is completely opposite to the PZR effect of Si NW with a lower
resistance under tensile stress. The symmetric but slightly nonlinear I-V plots agree with
the I-V measurements, as shown in Figure 13a. The correlation between the resistance and
transverse displacement up to 450 nm is plotted in Figure 26b, which indicates the linear
increase in resistance with the transverse displacement until the NW physical damage
occurs beyond 400-nm transverse displacement. The results are reproducible below the
damage threshold, which suggests that within a certain force range, the B-UNCD NW can
be used as a reliable, high-resolution, and ultrasensitive force/pressure sensor.
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Figure 23. (a) SEM image of the 10 × 6 matrix of B-UNCD NW arrays. (b) HSQ NW pattern between Ti/Pt metal pads after
EBL. (c) Released B-UNCD NW after SiO2/Si etch. (d) HSQ NW patterns between Ti/Pt metal pads after EBL. (e) Released
B-UNCD NW array after SiO2/Si etch. Reprinted with permission from [52].
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Figure 24. Simulation of (a) stress and (b) current of the 75-nm-wide and 5-µm-long B-UNCD NW under 100-nm transverse
displacement. Reprinted with permission from [52].
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Figure 26. (a) The I-V curves of 75-nm-wide, 5 and 10-µm-long B-UNCD NWs with and without strain. (b) The resistance
of the 75-nm-wide, 20-µm-long B-UNCD NW as a function of the transverse displacement. The NW reaches its damage
threshold when the displacement exceeds 400 nm. Reprinted with permission from [52].
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To describe the sensitivity of the PZR effect, the gauge factor K is used [106], which
describes the changing sensitivity of material given a certain strain,

K =

(
dR
R0

)
dε

= 1 + 2ν f +
dρ

ρ0dε
(8)

where ρ0 is the resistivity and νf = 0.1 is the Poisson ratio for diamond. The strain dε can be
calculated as:

dε =
dL
L

=
2×

√
(L/2)2 + D2 − L

L
(9)

where L is the NW length and D is the transverse displacement generated by the tip’s
push. For example, for the 75-nm-wide NW, L = 5 µm, D = 100 nm, dR/R0 = 5.6%, the
calculated gauge factors K = 70, which is comparable with the best available Si nanowire
results reported so far and are 10 folds higher than nanocrystalline diamond and UNCD
films. As expected, the longer the NW length, the higher the gauge factor. Figure 27 shows
the FEA simulation of the gauge factor as a function of NW width under different strain
levels. When the NW width scales down to 50 nm, the gauge factor of the B-UNCD NW
can be as high as 1800, given a strain as small as 0.011%.
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Figure 27. The gauge factor and strain as a function of the width of NW of 5-µm-long by 100-nm-thick.
Reprinted with permission from [52].

The B-UNCD NWs are used for the first PZR measurement because of their smaller
resistances as compared with N-UNCD NWs. Its resistance increases linearly with the ap-
plied strain, originated from the crystalline structure of B-UNCD nanowires. As indicated,
thinner, longer, and narrower B-UNCD NWs of larger PZR effects are excellent candidates
for ultrasensitive pressure and force sensors.

4.4. Biosensors and Nitrogen-Vacancy Quantum Sensors

Given the combination of diamond’s biocompatibility and bioinertness with its semi-
conductor property and established nanofab techniques, CVD-grown UNCD thin films
and NWs have become the most affordable and preferred material platform for diamond-
based biosensors. In general, undoped UNCD can be used for fluorescence detection, while
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doped UNCD is suitable for diagnoses based on amperometric, gravimetric, potentiometric,
resistive/conductive, capacitive, piezoresistive, field emission, magnetometric, and electro-
chemiluminescence transduction mechanisms. Overall, these UNCD-related biosensors
can be normally categorized into two groups: in vivo and in vitro. In vivo biosensors are
surface or implant devices that measure one or a range of parameters directly on the living
tissue. These include the use as coatings for implants and prostheses in cardiovascular,
neural, muscular, epidermal, orthopedic applications [107]. The UNCD surfaced electrodes
have been widely applied in electrochemistry [108], sensing the electrical signals from
organs or muscles inside the body. The UNCD-coated bio-NEMS are implanted to replace
non-biocompatible piezo-actuated bio-NEMS and are implanted in the human retina to
restore damaged vision. Due to their mechanical strengths and flexibilities, UNCD thin
films and UNCD NWs can also be used in wearable sensor devices.

In vitro biosensors use UNCD as a substrate upon which a range of ongoing biochem-
ical reactions is sensed in a culture dish, a test tube, a microtiter plate. For example, UNCD
provides the strongest bonding stability to deoxyribonucleic acid (DNA) [42,109,110] in
DNA sensors, and simple and quick detection of viruses [111]. The self-assembled/as-
synthesized and vertically aligned UNCD NRs (Figure 28) [112,113] might be advantageous
for this type of application; higher sensitivity and better selectivity could be achieved due
to the large surface-to-volume ratio.
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The most prominent luminescent nitrogen-vacancy (NV) color center in diamond
has recently been attracting increasing interest [114,115]. As a unique platform for quan-
tum information technology (QIT)-related components, quantum memories, quantum
repeaters [116], and single photon sources [117,118] have been demonstrated. NV color
centers, served as tiny quantum magnets with different spins due to the special electronic
configuration, convert the received nuclear magnetic resonance (NMR) signals from nearby
atoms into visible photoluminescence [119,120]. The room-temperature optical sensing of
magnetic resonance using a single NV center has been demonstrated to obtain information
about the magnetic properties of individual atoms.

NV-based quantum sensors have huge potential in RT detection of magnetic fields,
electric field, strain, with nanoscale resolutions [121], and in vivo analysis of the structures
of individual proteins and other biomolecules inside cells. It has been reported that UNCD
pillars have been fabricated (Figure 29) using the EBL-ICP-RIE method for the investigation
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of NV centers. The fluorescence mapping and photoluminescence measurements have
shown higher photon intensities compared with NCD counterparts [122]. We believe the
observed high intensity is due to the nitrogen location in UNCD, the large surface-to-
volume ratio, and the light trapping in guided modes of the processed nanopillars.
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Figure 29. (a) UNCD pillar array fabricated using the EBL-ICP-RIE method. (b–d) Pillars with nominal diameters of 1000,
500, and 200 nm, respectively. (e) NV fluorescence mapping of 1000-nm UNCD pillar array. Reprinted with permission
from [122]; © 2021, John Wiley and Sons.

5. Discussion and Outlook

The advancement of the UNCD material infused with nanofab technology has resulted
in the development of UNCD-based nanosensors. In addition, new physical phenomena at
the nanometer scale have inspired the ultimate potential for these sensors to reach a single
molecule or atom sensitivities. When the active sensing area goes down to the nanoscale,
device characterization and optimization become more and more important. To optimize
electronic transport, device geometry needs to be carefully designed. The Debye length λDL
and mean free path λMFP are two material-related important parameters, given by [123]

λDL =

√
εrε0kBT

q2ND
, (10)

where εr is the dielectric constant, εo = 8.85 × 10−12 C2/(N m2) the permittivity of free
space, kB = 1.38 × 10−23 J/K the Boltzmann constant, T the temperature in Kelvin,
q = 1.6 × 10−19 C the elementary charge, ND the net density of dopants, and

λMFP = υτm (11)

where υ is the average drift velocity of charge carriers and τm the momentum relaxation
time. For B-UNCD samples used for UV sensor applications, the typical values of these
physical parameters are T ≈ 300 K (RT), εr ≈ 5.6, ND ≈ 2.4×1018 cm−3, υ ≈ 107 cm/s,
and τm ≈ 50 × 10−15 sec [124]. According to Equations (10) and (11), the estimated
λDL ≈ 0.5 nm, and λMFP ≈ 5 nm. Both are on the order of just a few nanometers or less.
Hence, the optimal device dimension needs to be further downsized to a few nanometers
because only the charge carriers within the Debye length contribute to the conductivity
change. Otherwise, the electron and hole recombine before they are collected by the metal
contacts. The sensor performance will be further improved if the NW’s width gets smaller.

The specific top-down and bottom-up techniques summarized in this review arti-
cle have demonstrated beautifully the fabrication of various UNCD nanoarchitectures,
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which provides a possible solution for the integration of a larger number of sensors into
a tiny, inexpensive, multifunctional, highly sensitive, and large-throughput sensor array.
Since each UNCD NW-based device is small, different sensors can be integrated on the
same wafer platform to form a hybrid multifunctional sensor array. Figure 30 shows an
example of such a hybrid NO2 and CO sensor where the bonding between tungsten oxide
(WO3−x) NPs and B-UNCD NWs forms the p-n junction. This heterojunction facilitates the
electron transfer mobility, given the similar work functions of tungsten oxide (~4.75 eV)
and B-UNCD.
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Figure 30. (a) Schematic of a hybrid sensing platform. (b) The electron transfer between oxidizing
gas molecules and the gas sensor. (c) The electron transfer between reducing gas molecules and
oxygen adsorbates on the gas sensor.

When NO2 or O2 gas molecules adsorb on the surfaces of tungsten oxide NPs, the
electrons from the sensor will transfer towards the gas adsorbates and therefore attract
more electrons moving from B-UNCD NWs to tungsten oxide, which will increase the NWs’
conductivity. The mobility of electron transport can be enhanced, as well as gas sensitivity.
Once the hybrid sensor receives both UV radiation and target gas exposure, UV radiation
and gas molecules will take effect on NWs and tungsten oxide NPs, respectively. On the
other hand, the NWs will absorb the photonic energy from UV radiation, and the valence
electrons will be excited and become conduction electrons. Due to the electron depletion
on the NPs’ surface, the electrons from NWs will be pushed towards tungsten oxide NPs
through the p-n junction by the diffusion potential. Such induced electron transfer will
provide abundant free electrons to the acceptor-gas molecules; meanwhile, it will retain
the bandgap for UV photonic absorption.

As indicated by the PZR effect, UNCD NWs demonstrate the electrical resistance
change when the NWs are stretched. However, the measured strain is quite small, in the
order of 0.01%. Recently, a large and uniform elasticity of the single-crystal diamond NW
of 1-mm-long by around 100-nm-wide has been reported, achieving a tensile strain of
up to 9.7% [125]. Based on the researchers’ spectroscopy analysis, a reduction of 2 eV in
the diamond band structure was observed under such a large elastic strain. Due to the
inherent sensing properties and compatibility with nanofabrication processes, this bandgap
engineering method might be possibly extended to UNCD NWs for novel applications.
On the other hand, although these devices have been demonstrated, physical models and
numerical simulations are needed to develop a deep understanding of the mechanisms of
these UNCD NW-based devices, and to further optimize the doping effect, the NW geome-
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try and fabrication, the effect of metal nanoparticle surface decoration and nanoplasmonic
effect, the electrode design, and the device performance.

6. Conclusions

Attributed to the importance of DNWs in diverse semiconductor and biological ap-
plications, highly precise UNCD NWs are effectively fabricated using the state-of-the-art
wafer fab technologies with a minimum width of 25 nm. In addition, other nanostructures
such as vertically aligned nanorods, nanotubes, and nanopillars have also been produced
using similar fabrication techniques. The material characterization confirms that the ma-
terial properties are well preserved after the thin film turns into nanoscale 1D structures.
On the other hand, the doping technique effectively reduces the material intrinsic resis-
tance and makes UNCD either a p- or n-type semiconductor. The doped UNCD NWs
are catered for developing electrical transduction-based sensors, such as current, poten-
tiometric, resistance/impedance/conductance, while non-conductive UNCD NWs are
suited for fluorescence detection. The NW geometry increases the surface-to-volume ratio
which enhances sensor performance. In addition, as demonstrated in the UV sensor case,
metal nanoparticle surface functionalization is an effective way to further improve the
sensor. Although UNCD NW-based gas sensors, UV photodetectors, and PZR sensors have
been demonstrated, there is ample room for further improvement and new applications.
Additionally, the UNCD NV center-based quantum sensors will open further potential
applications with nanoscale resolutions in biological, chemical, and medical fields.
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AFM atomic force microscopy
BOE buffered oxide etch
B-UNCD boron-doped ultrananocrystalline diamond
CPD critical point drying
CVD chemical vapor deposition
DI deionized
DNA deoxyribonucleic acid
DNP diamond nanoparticle
DNW diamond nanowire
EBL electron-beam lithography
EDS energy-dispersive X-ray spectroscopy
EELS electron energy loss spectroscopy
FEA finite element analysis
FESEM field emission scanning electron microscopy
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FE field emission
FIB focused ion beam
FWHM full width at half maximum
HFCVD hot-filament chemical vapor deposition
HRSEM high-resolution scanning electron microscopy
HRTEM high-resolution transmission electron microscopy
HSQ hydrogen silsesquioxane
ICP inductively coupled plasma
IR infrared
LER line edge roughness
MCD microcrystalline diamond
MIBK methyl isobutyl ketone
MPCVD microwave plasma chemical vapor deposition
MSM metal–semiconductor–metal
NCD nanocrystalline diamond
ND nanodiamond
NEMS nano-electro-mechanical systems
NEXAFS near-edge X-ray absorption fine structure
NMR nuclear magnetic resonance
NP nanoparticle
NR nanorod
NT nanotube
N-UNCD nitrogen-doped ultrananocrystalline diamond
NV nitrogen-vacancy
NW nanowire
NWA nanowire array
PCD polycrystalline diamond
PD photodetector
ppm parts per million
PZR piezoresistivity/piezoresistance
QIT quantum information technology
RF radio frequency
RFCVD radio frequency chemical vapor deposition
RIE reactive ion etching
RMS root-mean-square
RT room temperature
RTP a rapid thermal processor
SAED selected area electron diffraction

sccm
cm3/min in standard conditions for temperature and pressure
(a unit of mass flow rate)

SCD single-crystal diamond
SCL space-charge-limited
SEM scanning electron microscopy
SIMS secondary ion mass spectrometer
S-MCD sulfur-doped microcrystalline diamond
S-NCD sulfur-doped nanocrystalline diamond
SOD spin-on-dopant
S-SMCD sulfur-doped sub-microcrystalline diamond
STM scanning tunnel microscopy
TEM transmission electron microscopy
TLM transmission line measurement
TMB trimethyl borane
UHV ultra-high vacuum
UNCD ultrananocrystalline diamond
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UV ultraviolet
W tungsten
WLI white light interferometer
XRD X-ray diffraction
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