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Abstract

The functionality of central vision is different from peripheral vision. Central vision is used 

for fixation and has higher acuity, making it useful for everyday activities such as reading and 

object identification. The central and peripheral representations in primary visual cortex (V1) 

also differ in how higher-order processing areas modulate their responses. For example, attention 

and expectation are top-down processes (i.e., high-order cognitive functions) that influence visual 

information processing during behavioral tasks. This top-down control is different for central 

vs. peripheral vision. Since functional networks can influence visual information processing in 

different ways, networks (such as the Fronto-Parietal (FPN), Default Mode (DMN), and Cingulo­

Opercular (CON)) likely differ in how they connect to representations of the visual field across 

V1. Prior work indicated the central representing portion of V1 was more functionally connected 

to regions belonging to the FPN, and the far-peripheral representing portion of V1 was more 

functionally connected to regions belonging to the DMN.

Our goals were (1) Assess the reproducibility and generalizability of retinotopic effects on 

functional connections between V1 and functional networks. (2) Extend this work to understand 

structural connections of central vs. peripheral representations in V1. (3) Examine the overlapping 

eccentricity differences in functional and structural connections of V1. (4) Examine the major 

white matter tracks connecting central V1 to frontal regions.

We used resting-state BOLD fMRI and DWI to examine whether portions of V1 that represent 

different visual eccentricities differ in their functional and structural connectivity to functional 

networks. All data were acquired and minimally preprocessed by the Human Connectome 

Project. We identified central and far-peripheral representing regions from a retinotopic template. 
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Functional connectivity was measured by correlated activity between V1 and functional networks, 

and structural connectivity was measured by probabilistic tractography and converted to track 

probability. In both modalities, differences between V1 eccentricity segment connections were 

compared by paired, two-tailed t-test. A spatial permutation approach was used to determine the 

statistical significance of the spatial overlap between modalities. The identified spatial overlap 

was then used in a deterministic tractography approach to identify the white matter pathways 

connecting the overlap to central V1.

We found (1) Centrally representing portions of V1 are more strongly functionally connected to 

frontal regions than are peripherally representing portions of V1, (2) Structural connections also 

show stronger connections between central V1 and frontal regions, (3) Patterns of structural and 

functional connections overlaps in the lateral frontal cortex, (4) This lateral frontal overlap is 

connected to central V1 via the IFOF.

In summary, the work’s main contribution is a greater understanding of higher-order functional 

networks’ connectivity to V1. There are stronger structural connections to central representations 

in V1, particularly for lateral frontal regions, implying that the functional relationship between 

central V1 and frontal regions is built upon direct, long-distance connections via the IFOF. 

Overlapping structural and functional connections reflect differences in V1 eccentricities, 

with central V1 preferentially connected to attention-associated regions. Understanding how 

V1 is functionally and structurally connected to higher-order brain areas contributes to our 

understanding of how the human brain processes visual information and forms a baseline for 

understanding any modifications in processing that might occur with training or experience.
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1. Introduction

The function of central vision is different from peripheral vision. Central vision is used for 

fixation and has higher acuity, making it useful for reading and object identification (Larson 

and Loschky, 2009; Pelli et al., 2007; Trouilloud et al., 2020; Yoo and Chong, 2012). 

Peripheral vision has lower acuity but is essential for visual tasks such as visual search 

and getting the gist of a scene (Larson and Loschky, 2009; Rosenholtz, 2016; Trouilloud 

et al., 2020). Differences in acuity between peripheral and central vision alone do not 

provide a full explanation of the extent of disparity in visual ability (Levi et al., 1985; 

Levi et al., 1984). Information processing of central and peripheral visual information also 

differs. Peripheral visual information is processed faster than central information (Lu et al., 

2002), and this fast processing helps determine objects’ salience within the visual field. This 

enables the visual system to direct saccades, fast eye movements, to a salient location (Lu 

et al., 2002). When central vision orients to the salient location, it provides high acuity 

information and distinguishes it from competing, distracting information (Lu et al., 2002).

The human primary visual cortex (V1) is organized along the calcarine sulcus in 

a progression of posterior representations of central vision (central V1) to anterior 
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representations of peripheral vision (far-peripheral V1) (Duncan et al., 2007; Engel et al., 

1997; Fox et al., 1987). The anatomical regions representing central and peripheral V1 differ 

in their cortical thickness (Burge et al., 2016). The central representing portion of V1– the 

part of the visual field used for fixation – has a thicker cortex compared to the peripheral 

representing cortex in individuals with healthy vision (Burge et al., 2016).

There has been extensive prior research into the physiological differences between central 

and peripheral V1. Encoding of visual information differs within V1 representations of 

central and peripheral visual fields. The area of V1 devoted to central vision is much larger 

than that devoted to processing information from the peripheral visual field (Azzopardi and 

Cowey, 1993; Horton and Hoyt, 1991). In other words, the cortical magnification factor 

(square-mm of cortex devoted to each square-degree of visual angle) is greater for central 

vision than peripheral vision. Receptive field size is greater for neurons in peripheral V1 

than in central V1 (Hubel and Wiesel, 1974). As eccentricity (distance from the center) 

increases, cortical magnification decreases, and receptive field size increases across human 

V1 and nearby visual areas (Harvey and Dumoulin, 2011).

Central and peripheral V1 also differ in how higher-order processing areas modulate their 

responses. Functional properties of cortical neurons are adaptive; top-down demands of 

high-order cognitive processing tasks influence their response (Gilbert and Li, 2013). 

For example, attention and expectation are top-down processes (i.e., high-order cognitive 

functions) that influence visual information processing during behavioral tasks (Gandhi et 

al., 1999; Somers et al., 1999; Tootell et al., 1998; Yeshurun and Carrasco, 1998). This 

top-down control is different for central vs. peripheral vision. Attention influences the 

spatial summation of receptive fields so that spatial summation in foveal cells decreases 

and spatial summation in the peripheral cells in V1 increases (Roberts et al., 2007). 

Psychophysiological data demonstrates that top-down influences on central vision stimuli 

are more potent than peripheral vision stimuli (Chen and Treisman, 2008; Zhaoping, 2017). 

Similarly, attentional suppression of distractors is greater for central vision than peripheral 

vision (Chen and Treisman, 2008). Vision representations are known to interact strongly 

with higher-order brain networks (eg. (Casarsa De Azevedo, 2019; Furl, 2015; Gazzaley et 

al., 2007; Griffis et al., 2015; Mantini et al., 2009; McMains and Kastner, 2011; Yeshurun 

and Carrasco, 1998), and these interactions appear to be distinct for central and peripheral 

vision.

Resting-state functional networks are groups of brain regions whose activity is temporally 

correlated at rest (Zalesky et al., 2014). One way to identify a functional network is 

through clusters of correlated activity in the cortex (Yeo et al., 2011). The fronto-parietal 

network (FPN) is important for directing attentional control (Zanto and Gazzaley, 2013), the 

cingulo-opercular network (CON) is involved in the maintenance of task demands (Coste 

and Kleinschmidt, 2016), and the default mode network (DMN) is less active when there 

are attentional or task goals (Raichle, 2015) and instead is thought to support tasks such as 

memory retrieval and semantic processing (Binder, 2012; Gerlach et al., 2011; Sestieri et al., 

2010; Spreng, 2012). Since functional networks can influence visual information processing 

in different ways, networks likely differ in how they connect to representations of the 

visual field across V1. There are also feedforward connections between V1 and functional 
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network regions, as evidenced by the fact that strong stimulus-driven signals are observed in 

higher-order brain regions (Katsuki and Constantinidis, 2014).

Previous work in our lab has investigated how the central-to-peripheral cortical organization 

of V1 influences functional connectivity between V1 and the rest of the cortex (Griffis et 

al., 2017). This prior work showed retinotopic patterns of functional connectivity between 

V1 and functional networks during resting fixation. Specifically, the central representing 

portion of V1 was more functionally connected to regions belonging to the FPN, and the far­

peripheral representing portion of V1 was more functionally connected to regions belonging 

to the DMN. The fact that, as described above, central vision is under different top-down 

control than peripheral vision might underlie its preferential connection to the FPN, which 

is related to directing attentional control and has been shown to facilitate bottom-up and 

top-down attentional processes for visual information (Katsuki and Constantinidis, 2014). 

The role of far-peripheral vision in environmental monitoring and the need to suppress 

visual information from this portion of the visual field during central fixation might be 

the reason for preferential connectivity to the task-negative DMN (Li, 2002). However, 

this previous work was limited by small sample size (i.e., 20 participants) and design (i.e., 

data were acquired during the resting fixation blocks of a visual task) issues (Griffis et 

al., 2017). These limitations leave questions regarding whether previous functional findings 

extend to free viewing during rest in a larger sample and, critically, how these effects relate 

to differences in the anatomical (i.e., white matter) connections of central vs. peripheral 

V1. The observed functional connections could arise from direct connections between two 

areas or and alternatively from weighted multi-synaptic connections (Honey et al., 2009; 

Vázquez-Rodríguez et al., 2019).

While brain anatomy is relatively fixed in adulthood, a healthy brain adapts with changes 

in structural connections with experience and age (Davis et al., 2009). White matter tracts 

correspond to direct connections between brain regions (Jbabdi and Johansen-Berg, 2011; 

Maier-Hein et al., 2017; Takemura et al., 2017). Structural connections can be studied 

in-vivo in humans with diffusion-weighted MRI and tractography. Major white matter tracts 

that connect to the occipital lobe, such as the inferior fronto-occipital fasciculus (connects 

occipital lobe to the lateral prefrontal cortex) and the inferior longitudinal fasciculus 

(connects occipital lobe to anterior temporal lobe), have been well documented using 

tractography methods in humans (Takemura et al., 2017; Wu et al., 2016).

Traditional tracer studies that examine anatomical connections with retrograde and 

anterograde tracers have primarily been focused on visual areas and have not been 

expanded to investigate connectivity between visual areas and higher-order processing areas 

(Andersen et al., 1990; Lysakowski et al., 1988; Neal et al., 1990). Extensive work by 

Markov and colleagues indicated some evidence of connection from V1 to regions of the 

frontal and parietal cortex, including F5 (a frontal area involved in motor planning), 8l 

(frontal eye fields), and 7A (a parietal area involved in attention modulation and planning) 

and connection to V1 from area 8l (frontal eye fields) (Markov et al., 2014). However, 

the inferior fronto-occipital fasciculus has not been found in the macaque brain, which 

may explain why tracer studies investigating V1 have not helped inform human occipital­

prefrontal cortex connections (Takemura et al., 2017).
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The current study’s goals are (1) to assess the reproducibility and generalizability of 

retinotopic effects on functional connections between V1 and functional networks found 

in prior work (Griffis et al., 2017). We aim to extend these findings in a new dataset 

collected under different task conditions (previous work used blocks of rest during a task 

with central fixation, and the current data was collected as part of a resting-state only scan). 

(2) Extend prior work on the retinotopic connectivity difference to structural connections 

between V1 and functional networks. (3) Examine regions of overlap between functional 

and structural connections. Since functional connectivity between two brain regions could 

reflect measurable structural connections, we used DWI to examine connections between 

regions (Adachi et al., 2012; Honey et al., 2009).

To address these goals, we used resting-state BOLD fMRI and DWI to examine if portions 

of V1 that represent different visual eccentricities differ in their functional and structural 

connectivity to functional networks. We found (1) substantial evidence that centrally 

representing portions of V1 are more strongly functionally connected to lateral frontal 

regions than are peripherally representing portions of V1, (2) Structural connections show 

the same pattern, with stronger connections between central V1 and frontal regions, in 

particular a lateral frontal portion of the FPN, and (3) the pattern of structural and functional 

connections is similar, suggesting that this lateral frontal functional connection pattern arises 

from a direct (uni-synaptic) structural connection. These results, coupled with relationships 

to prior work described in the discussion, are suggestive that the processing of central vision 

is mediated in part through direct connections to the lateral frontal cortex.

2. Methods

2.1. Participants

The study used diffusion-weighted imaging, resting-state functional imaging, and structural 

imaging data from the 900-subject release of the Human Connectome Project (HCP) dataset 

(Fig. 1). Participants in this dataset were healthy young adults between 22and 36 years of 

age who had normal or corrected-to-normal vision. Most subjects had at least one relative in 

the group; many of them are twins. Our hypotheses are not about individual differences, and 

due to the large sample size of the data, there is still a great deal of diversity in the sample; 

therefore, we did not treat related and unrelated samples separately. Using this relatively 

large sample size facilitates replication and extension of findings.

We excluded participants with structural abnormalities (e.g., tumors and extensive area brain 

damage) identified through HCP quality control. We then visually inspected the remaining 

data for white matter abnormalities. We excluded participants if their structural scans 

displayed large or punctate white matter hyperintensities easily detected by eye. In total, 

we excluded 114 subjects from the original 900 subject dataset. Seven hundred eighty-six 

healthy subjects passed quality control standards, including 335 males and 449 females (Fig. 

1; see participant IDs in code repository). We excluded the fMRI data from four of them due 

to quality standards for functional comparison. Otherwise, we used the same participants in 

both structural and functional connectivity analyses.
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2.2. Data acquired by the human connectome project

All data were acquired and minimally preprocessed by the Human Connectome Project 

(Glasser et al., 2016; Sotiropoulos et al., 2013; Van Essen et al., 2013, 2012). Informed 

consent was obtained by the Human Connectome Project (Van Essen et al., 2013). The IRB 

for the University of Alabama at Birmingham reviewed our use of the HCP dataset and 

determined it exempt.

T1-weighted structural MRI, resting state fMRI and multi-shell diffusion weighted (DWI) 

MRI data were acquired using a customized Siemens 3T “Connectome Skyra” (Sotiropoulos 

et al., 2013). High-resolution three-dimensional MPRAGE, T1-weighted anatomical images 

(TR = 2400 ms, TE = 2.14 ms, flip angle = 8, FOV = 320 × 320 mm2 , voxel size 0.7 × 0.7 × 

0.7 mm3 , number of slices = 256, acceleration factor (GRAPPA) = 2) were used.

Functional magnetic resonance imaging (fMRI) data were acquired with a multi-band 

gradient-echo (GE) EPI sequence (voxel size = 2 × 2 × 2 mm3 ; TR= 720 ms; TE = 33.1 

ms; flip angle = 52°; FOV = 208 × 180 mm2 ; number of slices = 72) in four runs (each of 

them took approximately 15 min) with eyes open and related fixation on a cross on a dark 

background. Phase encoding direction was right-to-left for half of the scans and left-to-right 

for the other half of the resting-state scans.

For DWI, multi-band diffusion-weighted echo-planar (EP) images (voxel size = 1.25 × 1.25 

× 1.25 mm3 ; TR= 5520 ms; TE = 89.5 ms; flip angle = 78°; MB = 3; FOV = 210 × 180 

mm2 ; number of slices = 111; b = 1000, 2000 and 3000 s/mm2 , diffusion directions = 

95, 96 and 97) were used. DWI data includes six runs (each of them took approximately 

9 min and 50 s). Each gradient table was acquired with right-to-left and left-to-right phase 

encoding polarities which were then merged after distortion correction as part of the HCP 

Preprocessing Pipeline (Glasser et al., 2013).

2.3. V1 eccentricity segment definitions

V1 eccentricity segments were hand-drawn within the Freesurfer fsaverage V1 label as 

described in a previous publication from our lab (Burge et al., 2016; Griffis et al., 2015, 

2017). Previous work has shown that cortical anatomy is a reliable predictor of the 

retinotopic organization of V1 (Benson et al., 2012; Hinds et al., 2009; Hinds et al., 2008) 

so that the more posterior parts of the visual cortex represent more central portions of 

the visual field. The average eccentricity of each segment was estimated from Benson and 

colleagues’ retinotopy template (Benson et al., 2014; Benson and Winawer, 2018). Based 

on this template, we identified three retinotopic regions: central vision (mean eccentricity 

estimates of 0–2.2° visual angle), mid-peripheral vision (mean eccentricity estimates of 

4.1–7.3° visual angle), and far-peripheral vision (mean eccentricity estimates of 14.1–25.5° 

visual angle) (Fig. 2).

These V1 eccentricity segment ROIs were defined on FreeSurfer’s fsaverage brain using the 

retinotopic template’s eccentricity, and then we interpolated them to the individual subjects’ 

cortical surfaces using FreeSurfer’s anatomical registration.
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2.4. Functional network ROI definitions

We transformed the FPN, CON, and DMN labels created by (Yeo et al., 2011) from the 

Freesurfer fsaverage brain to individual anatomical space (Yeo et al., 2011). We used voxels 

within the gray matter corresponding to the network-ROIs as seed voxels for the functional 

connectivity analysis. We used voxels within the white matter corresponding to the network­

ROIs as track seeds for the probabilistic tractography analysis. Voxels were identified using 

the Freesurfer mri_aparc2aseg command and then transformed into individual diffusion 

space.

2.5. Data analysis

2.5.1. Resting-State scan image preprocessing—The HCP minimal preprocessing 

pipeline that includes artifact removal, motion correction, and registration to common space 

was used (Fischl, 2012; Glasser et al., 2013; Jenkinson et al., 2012; Jenkinson et al., 2002; 

Van Essen et al., 2012). Along with the preprocessing steps already described by Glasser et 

al. (2013), we applied additional preprocessing steps on the residual BOLD data to reduce 

spurious variance not associated with the neural activity as described in this paragraph. 

We then censored the functional images for movement according to validated techniques 

(Carp, 2013; Griffis et al., 2017; Power et al., 2012). We replaced time points in which a 

participant moved more than 0.5 mm in one TR with an interpolated image from adjacent 

images. We excluded runs if the mean framewise displacement across the run was greater 

than 3 mm in any direction. We applied temporal band-pass filtering between 0.009 and 

0.08 Hz. We applied regressors to reduce artifactual noise, including white matter and 

CSF signals and motion parameters that we extracted during motion correction for each 

subject from the previous step. Surface reconstruction, the region of interest (ROI) label 

generation, and image registration were also visually inspected for all subjects to ensure 

the automated computations’ accuracy. Next, we concatenated both the acquisitions (those 

collected right-to-left and those collected left-to-right) into a single 4D volume for the 

functional connectivity analysis.

2.5.2. Functional connectivity analysis—Functional connectivity refers to 

synchronization between time courses of activation between two brain areas due to the 

similar temporal signal profiles from these connected areas (Friston et al., 1995). Correlation 

maps for each participant were obtained from seed-to-voxel connectivity measurements 

between central, mid-peripheral, and far-peripheral ROIs within the primary visual cortex 

(V1) to each voxel in the brain (Fig. 3). The resulting correlation coefficient maps were 

converted to z-score maps using Fisher’s z transform. Fischer’s transformed z-score maps 

were projected onto the individual cortical surface from 1 mm below the white/gray 

matter boundary using Freesurfer’s mri_vol2surf command. We compared difference maps 

by paired, two-tailed t-test using Freesurfer’s mri_glmfit function to test the functional 

connectivity differences.

2.5.3. Diffusion-weighted image preprocessing—The HCP minimal preprocessing 

pipeline was used to correct B0 and eddy current distortions (Andersson et al., 2003; 

Andersson and Sotiropoulos, 2015, 2016; Glasser et al., 2013, 2016; Sotiropoulos et 

al., 2013). Further, we performed DWI data preprocessing using the FMRIB’s Diffusion 
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Toolbox (FDT v3.0) using GPU for the acceleration of processing (graphics processing unit) 

(Hernández et al., 2013; Robinson et al., 2018). We estimated the distribution of diffusion 

parameters using Markov Chain Monte Carlo sampling for each voxel, allowing for crossing 

fiber orientations (Behrens et al., 2007).

2.5.4. Tractography—The results from our previous study on functional connectivity, 

replicated here, led to the hypothesis that structural connections from central vs. peripheral 

regions would differ between the FPN, CON, and DMN. Thus, we used these network 

regions as seeds in probabilistic tractography performed by FMRIB’s Diffusion Toolbox 

(FDT) (Hernandez-Fernandez et al., 2019) and used the V1 ROIs as targets. For each 

seed voxel, we calculated 10,000 streamlines (along with default settings of maximum 

steps: 2000, step length: 0.5 mm, curvature threshold: 0.2) and separate samples of the 

voxelwise diffusion distribution. A distance correction and loop-check, which prevents 

circular pathways, were applied. The tractography then resulted in each voxel within the 

seed ROI containing the number of streamlines that reached the target (V1 region) from that 

voxel. We performed tracking in individual diffusion space. We transformed seed and target 

regions into diffusion space for tractography analysis, and then we transformed tractography 

results into individual anatomical Freesurfer space for visualization. Surface maps of the 

track termination probabilities were smoothed using a 2 mm FWHM Gaussian filter and 

averaged across all subjects.

We transformed track frequencies (number of streamlines that reached the target) into track 

probabilities (likelihood of a track reaching the target) by dividing the log-scaled track 

frequency by the maximum log-scaled track frequency (Beer et al., 2011; Wirth et al., 2018). 

These calculated track probabilities are referred to throughout the paper as “p-track”. Track 

probabilities mitigate possible biases arising from size differences of seeds (Smith et al., 

2018; Wirth et al., 2018). Track probabilities were projected onto the individual cortical 

surface from 1 mm below the white/gray matter boundary using Freesurfer’s mri_vol2surf 

command (Beer et al., 2011; Wirth et al., 2018). Surface maps of the track termination 

probabilities were smoothed using a 2 mm FWHM Gaussian filter and averaged across all 

subjects.

After a comparison between functional and structural connectivity (Fig. 7), we performed a 

deterministic tractography approach to be able to view the pathway connecting central V1 

and the frontal portion of the multi-modality overlapping region using DSI studio and a HCP 

900-subject release template (Yeh and Tseng, 2011; Yeh et al., 2013, 2018a, 2018b)

2.5.5. Tractography analysis—To statistically test patterns of structural connections, 

we compared the central and far-peripheral eccentricity segments of V1 connectivity 

patterns within the FPN, CON, and DMN. Differences in track probabilities corresponding 

to V1 eccentricity segment connections were compared by paired, two-tailed t-test (using 

Freesurfer’s mri_glmfit with a one-sample group mean test) (Fig. 5).

2.5.6. Comparison of functional and structural connectivity—The spatial 

permutation approach to testing the overlap between two spatial brain maps developed by 

Alexander-Bloch and colleagues generates a null model for the overlap between spatial brain 
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maps by randomly rotating the surface maps (Alexander-Bloch et al., 2018). To compare 

structural and functional connectivity patterns of central vs. far-peripheral V1, we used the 

spatial permutation approach to compare structural and functional maps within the FPN, 

CON, DMN, and across all 3 of the networks together. The functional map used in these 

analyses were the functional connectivity differences between central and far-peripheral V1 

ROIs, thresholded at p < .001 (See Fig. 4). The structural map used in these analyses was the 

structural connectivity differences between central and far-peripheral V1 ROIs thresholded 

at p < 0.001 (See Fig. 6). We used a p-value threshold of p < .001 to include only those 

vertices with confidence in the differences’ direction.

2.5.7. Correspondence between functional networks and multi-modal 
connectivity patterns—We defined a multi-modal connectivity pattern as the voxels 

where connectivity for central V1 was greater than far-peripheral V1 (t-test, threshold p 
< .001) in both the structural and functional data (Fig. 7). We tested the spatial overlap 

between this multi-modal connectivity pattern to each of the functional network ROIs (FPN, 

CON, DMN) using the spatial permutation approach (Alexander-Bloch et al., 2018). We 

then compared the correlations of tests of overlap and functional network ROIs to assess if 

the pattern was more highly correlated to FPN than CON and DMN using cocor function 

(Diedenhofen and Musch, 2015).

3. Results

We hypothesized that the connectivity between the eccentricity segments of the primary 

visual cortex (V1) and functional networks (i.e., FPN, CON, DMN) differs in both structural 

and functional connections.

3.1. Functional connections to V1 depend on eccentricity

We compared the whole-brain functional connectivity patterns of each segment of V1- 

central, mid-peripheral, and far-peripheral. The t-test comparing functional connectivity 

to different eccentricity segments in V1 revealed significant effects (p < .001) in brain 

regions belonging to FPN, CON, and DMN functional networks (Fig. 3). Notably, central 

representing V1 was preferentially connected (over mid-peripheral and far-peripheral V1) to 

regions associated with the FPN, including the mid orbitofrontal and inferior parietal regions 

of the FPN (Fig. 3, left). Mid and far-peripheral representing V1 were not preferentially 

connected (over central V1) to specific networks (Baldassano et al., 2016). This finding of 

patterns of voxels with preferential connectivity to central V1 is similar to those found in a 

previous publication from our lab (Griffis et al., 2017). However, the patterns of voxels with 

preferential connectivity to mid-peripheral and far-peripheral V1 were not as distinct from 

each other as in the previous dataset (Fig. 3 middle and right). Thus, in this paper, we focus 

on distinctions between centrally representing portions of V1 to far-peripheral portions of 

V1.

Due to indications of similarity between patterns of functional connectivity of central V1 

and the FPN (from previous data in Griffis et al., 2017), we directly compared central and 

peripheral V1 functional connections to FPN. We performed pairwise statistical comparisons 

(t-test) of functional connections between central vs. far-peripheral eccentricity segments 
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of V1 and the FPN (Fig. 4). Results indicate that, like our initial functional connectivity 

findings (Fig. 3), there are preferential connections between central V1 and the inferior 

frontal gyrus compared to far-peripheral V1 (Fig. 4). This inferior frontal gyrus region aligns 

well with the anterior portion of the FPN as defined by Yeo, but interestingly, it does expand 

somewhat beyond that border into more inferior parts of the Inferior Frontal Gyrus (IFG). 

Like the FPN, the IFG is related to attention and control (Baldauf and Desimone, 2014; 

Chong et al., 2008; Fassbender et al., 2004; Hampshire et al., 2010; Swick et al., 2008, 

2011).

3.2. Structural connectivity eccentricity differences

Next, we investigated similar comparisons between central and far-peripheral V1 in a 

different modality-structural connections. A t-test comparing the structural connections 

of central and far-peripheral V1 revealed significant effects (p < .001) in brain regions 

belonging to FPN, CON, and DMN functional networks (Fig. 5). We chose these three 

networks to compare to functional connectivity findings from Fig. 3.

Notably, central representing V1 was preferentially connected (over far-peripheral V1) to 

regions associated with the FPN, including the mid orbitofrontal and inferior parietal regions 

of the FPN, as well as lateral portions of the DMN, and the insular portion of the CON. 

In contrast, far-peripheral representing V1 was preferentially connected (over central V1) 

to medial portions of the DMN (Fig. 5). To follow up on functional connectivity findings 

(Fig. 4) and to show more clearly the specific region within the FPN, the findings of Fig. 

5 have been masked for only the FPN in Fig. 6. Results indicate that, like our functional 

connectivity findings, there are also preferential structural connections between central V1 

and the FPN compared to far-peripheral V1 (Fig. 6).

3.3. Comparison of functional and structural connectivity patterns

To compare the patterns of functional and structural connections, we tested the spatial 

overlap of a map of structural connectivity differences between central vs. far-peripheral 

connectivity where central V1 connections were stronger than peripheral connections to the 

analogous map of functional differences in the same set of vertices. Vertices included in 

this analysis included all vertices within FPN, CON, and DMN combined, as these were 

the vertices with information about structural connections to V1 in our analysis. The spatial 

overlap between structural and functional connectivity patterns was statistically significant 

(r = 0.302, p = .002). We then examined each of the three networks individually for how 

similar the structural and functional connectivity findings were within the vertices of each 

functional network. Within the FPN, the spatial overlap between structural and functional 

connectivity patterns was statistically significant (r = 0.431, p = <0.00001). Within the CON, 

the spatial overlap between structural and functional connectivity patterns was statistically 

significant (r = 0.097, p = .006). Within the DMN, the spatial overlap between structural and 

functional connectivity patterns was statistically significant (r = 0.366, p = <0.0001). These 

relationships indicate that the overall pattern of vertices with stronger connections to central 

V1 than peripheral V1 is significantly consistent across structural and functional modalities, 

a result consistent with prior work (Honey et al., 2009).
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3.4. Correspondence between functional networks and multi-modal connectivity patterns

Fig. 7 shows regions where the central V1 segment had higher connectivity than the 

far-peripheral V1 segment in structural and functional comparisons. These regions include 

lateral frontal portions of the FPN, and small portions of other networks show overlap 

between the modalities (including the IFG portions of the DMN as defined from the Yeo et 

al., 2011 atlas in Fig. 3).

We calculated the spatial overlap between multi-modal regions of central dominance (as 

shown in Fig. 7) and functional networks (FPN, DMN, CON). The spatial overlap between 

the FPN and the multi-modal overlap was statistically significant (r = 0.4543, p = <0.0001), 

DMN was statistically significant (r = 0.360, p = <0.0001), and CON was not statistically 

significant (r = 0.1613, p=.089). Comparison of these correlations using Fisher’s Z test 

to compare correlations (Diedenhofen and Musch, 2015) indicated that the correlation 

was higher between FPN and the overlapping regions between structural and functional 

connectivity than the correlation between either CON or DMN and the overlapping regions 

(p<.0001).

3.5. Correspondence of structural connectivity patterns to the Inferior Fronto-Occipital 
Fasciculus (IFOF)

After investigating the overlap between functional and structural connectivity patterns (Fig. 

7), we isolated the frontal pole regions and performed deterministic tractography. Fig. 8 

shows the resulting tractography between central V1 and the frontal regions identified from 

Fig. 7. Upon visual inspection, the tracks identified were very similar to a major white 

matter pathway, the IFOF (see Fig. 8, D); therefore, Fig. 8 displays overlapping IFOF (blue) 

and the tractography results (red).

4. Discussion

Our goal was to better understand the brain network basis for interactions between sensory 

and higher-order information, especially how this differs between central vs. peripheral 

vision. Understanding the structural and functional underpinnings of these interactions is 

essential for understanding the processing differences between central and peripheral vision 

and for future work examining the plasticity of these systems.

Our approach compared structural and functional connections among different retinotopic 

eccentricities within V1 and large-scale functional networks (Fronto-Parietal Network 

(FPN), Cingulo-Opercular Network (CON), Default Mode Network (DMN)). Our results 

indicated that different visual eccentricities have different connectivity patterns to the rest 

of the brain, consistent with our previous data (Griffis et al., 2017) and data from other 

analyses (Buckner and Yeo, 2014). The present functional connectivity analyses replicated 

and extended previous findings on patterns of preferential connections between the central 

V1 eccentricity segment and the FPN (Griffis et al., 2017). Our structural connectivity 

analyses furthered the field’s understanding of the relationship between V1 and functional 

networks by describing the retinotopic pattern of structural connections. A comparison 

between structure and function showed moderate agreement, indicating that some direct 
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structural connections likely mediate the functional connections. Further, the overlap of 

structural and functional findings (Fig. 7) indicated the lateral frontal portions of the FPN 

and other nearby regions also responsible for attention and control (Inferior frontal gyrus 

(IFG)) made up more of the overlapping regions than the CON or DMN. This lateral frontal 

portion of the FPN is connected to central V1 via the IFOF (Fig. 8).

The present study found differences between the connection patterns of central and 

peripheral representations in V1. Since central and peripheral representations are still part of 

the same V1 cortical area, we would expect similarities in their connectivity patterns. Our 

results indicate that eccentricity differences in connection strength exist and are consistent 

with previously reported differences in information processing central and peripheral visual 

information. Central vision appears to be under more substantial top-down attentional 

control than peripheral vision (Chen and Treisman, 2008; Lu et al., 2002; Zhaoping, 2017). 

For example, stimuli presented within the peripheral visual field are more challenging to 

ignore than stimuli presented within the central visual field (Chen and Treisman, 2008). 

The current work suggests that this distinction may come from anatomical relationships to 

attentional networks.

4.1. Functional connectivity

Our findings are consistent with prior work, specifically, preferential connections between 

central representing segments of V1 and regions belonging to the FPN (Griffis et al., 2017). 

These results suggest that frontal areas influence cognitive control mechanisms and primary 

visual processing areas, specifically central V1. On the other hand, the mid- peripheral and 

far-peripheral regions seemed to be preferentially connected more broadly across the cortex, 

with the specific exclusion of the FPN regions. The data provide further evidence to support 

the hypothesis of eccentricity-dependent preferential connectivity of V1 to higher-order 

brain networks. One contribution in describing this connectivity is to extend previous work 

by Griffis et al., 2017, into a much larger dataset that was collected without fixation at rest, 

thereby improving the generalizability of the findings.

The patterns of connectivity for the mid- and far- peripheral regions (Fig. 3) were similar 

to each other and both differed from central V1 connectivity. This result suggests that the 

strongest retinotopic differences in V1 connectivity are rooted in the distinction between 

foveal and peripheral eccentricities. Using slightly different methods (an analysis of variance 

across all V1 ROIs, smaller V1 ROIs, fewer participants, resting during a fixation task) 

Griffis et al. (2017) obtained a similar result, but also observed modestly sized differences 

between mid and far peripheral V1 which we do not observe here. Further work is needed to 

identify what factors might lead to this difference.

4.2. Structural connectivity

Finding preferential structural connections between frontal regions to central V1 is 

consistent with our functional connectivity findings. These results support our hypothesis, 

based on functional connectivity findings, that the connections between V1 and brain 

regions associated with attentional control depend on eccentricity. As previously discussed, 

Markov et al. (2014) investigated direct structural connections in the macaque brain and 
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found weak long-range connections between V1 and regions that may correspond to the 

human FPN. These connections were projections from V1 to frontal and parietal regions 

(areas F5, 81, and 7A) rather than projecting to V1. These results could indicate that 

the structural connections observed here are bottom-up connections that provide visual 

information to direct cognitive control within the FPN. However, previous work in macaques 

has not found major white matter tracts connecting the occipital lobe to the frontal lobe 

(Takemura et al., 2017). Further, the attention system of the macaque is different from that 

in humans (Patel et al., 2015). Thus, the prior macaque literature provides limited insight 

into the structural connections between V1 and FPN in humans, so the direction of these 

connections is still unclear. Although diffusion tractography methods can conflate crossing 

fibers, tractography showed strikingly similar effects to our functional connectivity results, 

bolstering the plausibility of an interpretation of a direct connection between lateral frontal 

regions to V1. Describing this connectivity extends the knowledge of functional connectivity 

between V1 and functional networks and improves our understanding of the structural 

underpinnings of these functional connections.

4.3. Overlap between structural and functional connections and their relationship to 
functional networks

Structural connectivity patterns and functional connectivity patterns showed correspondence. 

Because diffusion tractography is typically interpreted as a direct structural connection, 

the functional connections between regions that also showed a structural connection likely 

reflect (at least in part) direct structural connections. These regions that showed centrally­

weighted structural and functional connections are shown in Fig. 7 and include the inferior 

frontal gyrus.

A direct, long-range connection between IFG and central vision representations in V1 may 

be related to the importance of speed in attentional control. For example, visual information 

needs to be processed quickly to impact attention selection. Thus, attentional control from 

the FPN to central vision representations in V1 would be improved by direct structural 

connections. Direct structural connections would also improve the processing of central 

vision information in FPN circuits. A large body of work supports top-down and bottom-up 

effects on visual processing (Gandhi et al., 1999; Somers et al., 1999; Tootell et al., 1998; 

Yeshurun and Carrasco, 1998; Zhaoping, 2017). The present study contributes to this field 

by demonstrating the eccentricity-dependent nature of the relationship between V1 and 

higher-order brain regions and the major white matter pathway, IFOF, that connects these 

regions.

4.4. Relationship between central vision processing and attention

Complex biological systems are often driven by separate control mechanisms with distinct 

functional properties (Dosenbach et al., 2008). During cognitive operations, information 

processing appears to rely on brain areas’ dynamic interaction as large-scale neural networks 

including FPN, CON, and DMN. FPN supports executive functions by initiating and 

adjusting top-down control (Dosenbach et al., 2008). The CON supports salience-related 

functions and provides stable control over entire task epochs. The suppression of DMN 

is critical for goal-directed cognitive processes (Spreng et al., 2010). Cooperation among 
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these top-down control systems of the brain is necessary for controlling attention, working 

memory, decision making, and other high-level cognitive operations (Hellyer et al., 2014; 

Keller et al., 2015; Raichle, 2015; Ray et al., 2020; Spreng, 2012; Vincent et al., 2008).

FPN includes regions such as the intraparietal sulcus that play an essential role in goal­

directed cognitive functions Spreng et al., 2010) and both spatial and non-spatial visual 

attention (Giesbrecht et al., 2003; Scolari et al., 2015). The role of central vision in visual 

processing and object recognition and the need to inhibit distractors in the visual field could 

(speculatively) be an evolutionary reason central vision representations are preferentially 

connected to attention regions, including the FPN. Contributions from high-order cognitive 

areas, like the FPN, help the brain decide which visual areas will be prioritized for visual 

attention (Scolari et al., 2015).

4.5. Limitations and future directions

Our study has several methodological limitations that we will discuss here. Our study 

used only healthy young adults from the HCP dataset, which could influence our findings’ 

generalizability. Future work should include individuals from across the lifespan.

The task participants completed during the HCP protocol was quite distinct from the 

previous dataset’s task (Griffis et al., 2017). Here, participants rested quietly, and though 

their instruction was to keep eyes open, no one assessed if the participants’ eyes were 

open or closed. In contrast, the Griffis dataset included data from the rest period between 

blocks of a task, and eye position and lid opening were confirmed via eye-tracking. The fact 

that these data closely follow each other extends the possible interpretations of the original 

dataset: the distinction between peripheral and central V1 connectivity generalizes to a new 

task context.

It should also be acknowledged that functional connectivity can be influenced by attention 

(Gratton et al., 2018; Griffis et al., 2015; Salehi et al., 2020). In both the work by Griffis 

et al. (2017) and the current study’s resting-state scan, a fixation cross presented on a 

screen at the end of the bore, and participants were scanned while inside the MRI bore. 

Participants may therefore have been allocating more attention toward the visual space in the 

center (the static screen, subtending roughly 15° visual angle) than the periphery (the bore). 

However, the fact that we observed complementary effects in the structural data indicates 

that these data are likely not due to transient states of attention and are likely to represent the 

biological organization.

We acknowledge that large veins near posterior occipital cortex area V1 could impact our 

functional connectivity measurements in this area (Winawer et al., 2010). However, we 

performed extensive preprocessing to reduce the impact of vessels on the results. In addition, 

the voxel size of our resting state scan is small (2 mm isotropic); this higher resolution 

should mitigate contributions from nearby veins due to partial voluming effects (Schira et 

al., 2009).

Functional connectivity strengths between V1 to the lateral frontal cortex are on the order of 

r = 0.1 (Fig. 4). While statistically significant (p < .001), the magnitudes of these functional 

Sims et al. Page 14

Neuroimage. Author manuscript; available in PMC 2021 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



connections are not as large as connections from V1 to other areas, for example, other 

portions of the occipital lobe. Functional connectivity magnitudes are always influenced 

by the preprocessing done to obtain them. In this case, we regressed out the mean signal 

and regressed out white matter and CSF. While this practice decreases the mean correlation 

strength (Shirer et al., 2015; Weissenbacher et al., 2009), it also improves across-subject 

reliability (Burgess et al., 2016). The debate about this practice, now a decade long, has 

focused on the interpretability of negative correlations, which we do not do here; our 

inferences are based on differences in correlations across brain areas.

DWI-based tractography produces similar results to tracer methods (Donahue et al., 2016); 

however, probabilistic tractography indirectly traces axon bundles by modeling the path of 

most restricted water movement and then estimating white matter tracts. Fibers that cross, 

fan, or converge pose problems for accurately estimating white matter tracts (Johansen-Berg 

and Rushworth, 2009). One way to improve track estimation is by modeling multiple 

angular compartments (e.g., ball-and-stick model) and using greater than 30 diffusion 

directions (i.e., 95, 96, and 97 directions in the present study), both of which were used 

in the present study (Behrens et al., 2007). Connections described in tractography are 

non-directional in that no determination of the direction of signaling is acquired. Therefore, 

the current study cannot interpret the direction (top-down versus bottom-up processing) of 

the described connections outside of the context of prior tracer studies.

Although the present tractography and functional connectivity analyzes aim to measure 

connections between eccentricity segments of V1 and functional networks, they are 

inherently different modalities, including but not limited to differences in the measurement 

of direct and indirect connections between regions. Tractography derived from diffusion­

weighted imaging identifies direct connections (Forkel et al., 2014), whereas functional 

connectivity identifies both direct and indirect connections. Therefore, the comparison 

between them is limited in scope. Since tractography describes direct connections between 

brain regions, inconsistencies where functional connectivity is present but structural 

connectivity is not, could be due to multi-synaptic, indirect connections (Honey et al., 2009; 

Vázquez-Rodríguez et al., 2019). Measuring both structural and functional connectivity 

provides valuable information to understand the relationship between brain regions that 

cannot be derived from one modality alone.

Future work could help determine the direction of the observed connections and further 

describe the complexity of direct and indirect connections between V1 and functional 

networks and examine extrastriate regions that are retinotopically mapped. While we only 

studied participants with healthy vision, future work should include participants with low 

vision to investigate possible connectivity changes related to vision loss. This work could 

serve as a baseline for these low vision studies. Future research could also help inform the 

plasticity of the described connections in the context of visual training and vision loss.

4.6. Conclusions

There is a reliable preference for central representations in V1 to be more strongly 

connected to the frontoparietal network than peripheral visual representations. This is 

particularly true for the lateral frontal portions of that network and the Inferior Frontal 
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Gyrus and is true for structural as well as functional connections. This implies that the 

functional relationship between central V1 and frontal regions is built, at least in part, upon 

direct, long-distance connections in the IFOF. Understanding how V1 is functionally and 

structurally connected to higher-order brain areas contributes to our understanding of how 

the human brain processes visual information and forms a baseline for understanding any 

modifications in processing that might occur with training or experience.

In summary, the work’s main contribution is a greater understanding of higher-order 

functional networks’ connectivity to the primary visual cortex (V1). Centrally-representing 

portions of V1 are connected to some frontal cortical regions, including portions of the FPN, 

both functionally and structurally. The lateral frontal regions where connection differences 

overlap between structural and functional data have been associated with attention in 

previous work. This suggests that the central representations of V1 are more tightly coupled 

to some brain regions involved in attention and cognitive control. Understanding how V1 

is functionally and structurally connected to higher-order brain areas contributes to our 

understanding of how the human brain processes visual information and forms a baseline for 

understanding any modifications in processing that might occur with training or experience.
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Fig. 1. Graphical representation of methods.
The figure illustrates from left to right: data used for the two main analyses, the analysis 

stream, and representations of the results. The top branch shows the analyses for functional 

connectivity and the bottom branch shows the analysis for structural connectivity. Voxel­

wise connectivity to both the central and far-peripheral ROIs were calculated for both 

modalities. Then patterns of connectivity to central V1 and far-peripheral V1 were compared 

by paired t-test. The patterns from the comparison between central and far-peripheral V1 in 

both structural and functional modalities were overlaid and compared.
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Fig. 2. V1 Eccentricity segments.
The Far-peripheral representing section of V1 is shown in yellow, the mid-peripheral 

representing section of V1 is shown in red, and the central representing section of V1 in 

green. These regions of V1 were used as seed regions in functional connectivity analyses. 

Central and far-peripheral ROIs were used as target regions for tractography analyses. We 

sometimes use shorthands like “central V1 ” to refer to these centrally representing regions 

for brevity.
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Fig. 3. Comparisons of functional connectivity between V1 eccentricity segments and homology 
to known resting-state networks.
Top Row: Differences in Functional Connectivity, depending on eccentricity. The far left 

panel highlights vertices with significantly stronger connections to central V1 than other 

portions of V1. Yellow vertices showed stronger connectivity to central V1 than to both 

far-peripheral and mid-peripheral regions (C>F&M). Red indicates stronger connectivity 

to central than mid-peripheral regions (C>M), and orange indicates stronger connectivity 

to central than far-peripheral regions (C>F). The middle and right panels show similar 

images highlighting vertices with significantly stronger connections to mid-peripheral and 

far-peripheral regions. For the middle panel, yellow is where mid-peripheral is greater 

than both central and far-peripheral (M>F&C), red is where mid-peripheral is greater than 

central (M>C), and orange is where mid-peripheral is greater than far-peripheral (M>F). 

For the panel on the right, yellow is where far-peripheral is greater than central and mid­

peripheral(F>C&M), red is where far-peripheral is greater than central(F>C), and orange 

is where far-peripheral is greater than mid-peripheral(F>M). Bottom Row: Functional 

Networks for comparison to the top-row. Previously documented FPN, CON, and DMN 

(from Yeo et al., 2011). The FPN is shown in green, the CON is shown in tan, and the 

DMN is shown in blue. The gray regions in each image indicate the relative location of 

the other two networks for comparison. Note homologies between the FPN and the regions 

preferentially connected to Central V1 top row left panel.
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Fig. 4. Group average and statistical maps of comparisons of functional connectivity between V1 
central and far-peripheral segments.
Top: Group average central minus far-peripheral differences in functional connections with 

the FPN. Group average data was thresholded for significance (p < .001) and effect size 

(connectivity differences > 0.01). The FPN is outlined in green. Bottom: Group average for 

central and peripheral functional connectivity. The top image is a subtraction between the 

data from the bottom two images.
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Fig. 5. Group average and statistical maps of comparisons of structural connectivity between V1 
eccentricity central and far-peripheral segments.
Top: Central (hot) minus Far-peripheral (cool) V1 structural connection differences to 

vertices within the FPN, CON, and DMN. Group average p-track differences between 

central and far-peripheral V1 data were thresholded for significance (p < .001) and effect 

size (p-track differences > 0.01) and masked for the FPN (outlined in green), DMN 

(outlined in dark blue), and CON (outlined in beige). Bottom: Group average for central 

and peripheral structural connectivity. The top image is a subtraction between the data from 

the bottom two images.
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Fig. 6. Group average and statistical maps of comparisons of structural connectivity between V1 
eccentricity central and far-peripheral segments.
Top: Central minus Far-peripheral V1 structural connection differences within the FPN. 

Group average p-track differences between central and far-peripheral V1 data were 

thresholded for significance (p < .001) and effect size (p-track differences > 0.01) and 

masked for the FPN (outlined in green). These data are the same as shown in Fig. 5, but 

are masked to show solely FPN to more clearly illustrate the effects present in that network. 

Bottom: Group averages for central and peripheral connectivity.
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Fig. 7. Overlap of functional and structural connectivity patterns of central greater than far V1 
eccentricity segments within resting-state networks (FPN (green outline), CON (beige outline), 
and DMN (dark blue outline)).
Yellow indicates vertices in which both structural p-track (Fig. 6) and functional connections 

(Fig. 4) were significantly greater to central V1 than far-peripheral V1 (both p < .0001).
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Fig. 8. Deterministic tractography between the frontal region identified in Fig. 7 and central V1.
Regions of interest: The green region is the left hemisphere frontal ROI, the blue region 

is the right hemisphere frontal ROI, the orange region is left hemisphere central V1, 

and the yellow region is right hemisphere central V1. A: Red tracks are results from 

tractography between central V1 ROIs and frontal ROIs. B: Overlay of the IFOF (blue) 

with the tractography results (red). C: Sagittal view of tractography results (red) with 

the surface rendered. D: Horizontal slice (the same slice as parts A and B) with the left 

hemisphere tractography results (red) and IFOF (blue) to view how the tractography results 

are integrated into the IFOF.
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